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The V,2r-? of PG(2r, q) as a
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1. Independent researcher

In the André/Bruck and Bose representation of PG(2,¢?) in PG(4, q) (cf. 11, 21) a non-affine Baer
subplane B corresponds to a ruled variety V,? (cf. [31, [8]y 1n Bl s proved that a non degenerate conic in
B is a rational normal curve of V3.

Using that technique, in [6] js studied the representation of the projective plane PG (2,¢") in
PG(2r,q) and of a non-affine subplane PG(2, g) in a variety V,2 .

In this note are studied sections of szr’l by hyperplanes giving rise to caps related to some arcs in
PG(2,q). Then is determined a partition of the affine points of V,>” ! in caps corresponding to a
partition in conics of the affine points of PG(2,q).

The V,”" ! of PG(2r, q) as a representation of PG(2, g): sections and partitions.

Corresponding author: Rita Vincenti, aliceiw213@gmail.com

1. Introduction

It is known that a projective translation plane can be represented in a projective space of even order (cf.

André Il Bruck and Bose [21).

More precisely, if II is the projective plane PG(2,¢") with kernel F = GF(q), then it can be represented
by a 2r-dimensional projective space ¥ = PG(2r,q), fixing a hyperplane ¥’ = PG(2r — 1,q) and a
spread S of ¥’ with (r — 1)-dimensional subspaces, |S| = ¢" + 1. The affine points of II are represented
by the points of X \ X', the points at infinity by the elements of S, the affine lines by the r-subspaces

S, of ¥ such that S, NX' € S, the line at infinity by S. If II is Desarguesian, the spread S is regular

(cf. A 21 and Bl B for » = 2, D for r = 3, for the general case).
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A subplane of IT is daffine or non-affine (or, tangent) depending on whether it intersects the line at infinity

in a subline or in one point, respectively.

An affine subplane of order q is represented by a transversal plane to the spread, that is, a plane of

3 intersecting ¢ + 1 elements of the spread.

A non-affine subplane 7 of IT = PG(2,q") of order q is represented by a variety V,* !, that is, a ruled
variety of ¥ = PG(2r,q) with the minimum order directrix a rational curve of order » — 1 and a
maximum order directrix a rational curve of order r, the two curves lying in two complementary spaces
of dimension r — 1 and r, respectively. The variety Vf“l can be obtained by joining points of the two

directrix curves corresponding via a projectivity (cf. 81 cap.13,8.,9. and 8l Section 4).

After the results obtained in 2l Theorem 3.1 and Theorem 3.2 for » = 2, in this note is studied a
generalization for r > 2. Some properties about hyperplanes of ¥ and their intersections with the
variety Vf“l are proved, a procedure to show how to represent substructures of the plane 7 in the space

3 (cf. Section 3.1) and viceversa (cf. Section 3.2), namely some kind of arcs and caps, respectively.

In Theorem 3.6 is proved how to construct in Vfr*l a rational normal curve of order r + 1 representing a
conic in 7. The paper concludes with Theorem 3.7 with a partition in caps of the affine points of

V22T’1 corresponding to a partition in conics of .

2. Preliminary Notes and Results

Denote F' = GF(q) a finite field, ¢ = p®, p an odd prime, F the algebraic closure of the field F, F"*! the
(n + 1)-dimensional vector space over F, PG(n,q) = PrF"™" the n-dimensional projective space
contraction of F"*! over F. The geometry PG(n,q) is considered a sub-geometry of m, the
projective geometry over F. A subspace of PG (n,q) of dimension h (an h-space) is denoted S}, (cf. El,

Section 2).

Definition 2.1. A k-arc K in PG(n, q) is aset of k > n + 1 points no n + 1 of which lie in a hyperplane.
Ak-cap K of PG(n,q),n > 3 is aset of k points no three of which are collinear.

A tangent of KC is a line which has exactly one point in common with IC.
See Thas (2L

A curve of order r is denoted C".
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Definition 2.2. A rational normal curve C" of PG(n, q) consists of g + 1 points (¢ > n) non + 1 of whichina

hyperplane S,,_1 (that is, a hyperplane meets C" in at most n. points).
See Hirschfeld 1% p.229, Theorem 21.1.1, (iv).

Consequence - n points lie in no S, _3, n — 1 points in no S,_s,..., no three points in a line (that is, an

Sn_2 meets the curve in at most n — 1 points, an S,,_3 in n — 2 points,..., aline in 2 points).

In PG(3,q), g 0odd, a (g + 1)-arc is a twisted cubic, that is, a rational normal curve of degree 3 (cf. [0}

p.242-243, Theorem 21.2.3).

Definition 2.3. A variety V.’ of dimension u and of order v of PG(n, q) is the set of the rational points of a

projective variety 17:: of PG(n, q) defined by a finite set of polynomials with coefficients in the field F.

Definition 2.4. The ruled variety V," ' of PG(n,q), n > 4 and n # 5, is generated by the q -+ 1 lines joining
the corresponding points of two birationally (projectively) equivalent curves of order m and n — 1 —m,
respectively, lying in two complementary subspaces of the same dimensions, m and n — 1 — m respectively. As
such directrix curves have no point in common, then the number of points of VZ"’1 is (g + 1)2 and the order is
the sum of the orders of the curves.

The q + 1 lines are generatrices (or, generatrix lines).
See Bertini I&, Cap9, n.1-3, Cap.13, n.1-8, p.290, 7., Vincenti Ill, Lemma 2.2, and fo],
From (8] p-287, 3., follows

RESULT 1- In PG(n, q) a hyperplane S,,_1 meets a ruled variety V,"* either in

1. a rational normal curve of order n — 1 (withq > n — 1)

2. a curve of order m < n — 1 met by all the generatrix lines and in n — 1 — m generatrix lines and does not

consist of two or more curves.

1. Every irreducible curve C™, m < n — 1 contained in VZ"’1 is a rational normal curve, that is, it exists in a

space Sy,

Note that since throughout the paper we will speak of rational normal curves ch of PG (h,q) for some

h > 2, we choose g > h (see Definition 2.2).
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Let X be the projective space PG(2r,q),r > 2, %' = PG(2r — 1,q) a hyperplane of ¥, S a regular spread

of (r—1)-spaces of ¥'. It is |S| = ¢" + 1. For the definition of spread, regulus and regular spread

see Zland m, Definition 2.3 and the representation.

The Desarguesian plane PG(2,q") is represented by ¥ and by the spread S of ¥’ according the

André/Bruck and Bose method (cf. [ll, [21).

Let » = 2. In such a case the projective plane is PG(2,4¢?%), = = PG(4,q), ¥’ = PG(3,q), S is a regular
spread of q? + 1 lines of ¥'. If = PG(2,q) denote a non-affine Baer subplane of PG(2,q?), P, € the
unique point on the line at infinity, then B is represented by a variety V,* having as the linear directrix a
line ro, € S and as a conic directrix C of a plane meeting ¥’ in a line I, € S, lx # 7o and with

CNly = @ (cf. 3L 5] [&]),

RESULT 2 - A non degenerate conic C of a non-affine Baer subplane B through P, is represented on the variety
V,3 by either a twisted cubic curve (and viceversa), or by a normal rational curve of order 4 depending on

whether Py, belongs to C or not.

See 3l Theorem 3.1 and Theorem 3.2.

Let » > 2, II = PG(2,q"). It is ¥ = PG(2r,q), &' = PG(2r — 1,q), S is a regular spread of (r — 1)-
subspaces, |S| = ¢" + 1.

RESULT 3 - A non-dffine subplane m = PG(2, q) of II having only one point P, at infinity is represented in
3 by a ruled variety Vf“l. Such a variety is the locus of the lines connecting corresponding points (via a
projectivity) of a curve C’," of a subspace S, € S and of a curve Cj of a subspace S{ C ¥ such that
SINY =8%, €e8S\8®, and C;NS° |, =2. Such lines are the generatrix lines, the curves

c'=5n V22T’1 with S, "Y' € § are directrices of Vf“l. The q + 1 lines of  through P, are represented

by the generatrix lines, the other lines by the ¢ directrix curves of szr’l .

See 8l Theorems 4.7, 4.8.
RESULT 4 - A subspace S; of S, = PG(r,q) withi > r — k, meets a variety V,™ in a variety V.

i+k—r’

See @1, p191, 3., comma 2.

geios.com doi.org/10.32388/IV8SGD


https://www.qeios.com/
https://doi.org/10.32388/IV8SGD

3. Main results

31 From X toI1
RepresentII = PG(2,q")in ¥ = PG(2r,q) withr > 2,9 > 2r — 1.

Let S be a regular spread of (r — 1)-spaces of a hyperplane ¥’ = PG(2r — 1,q), |S| = ¢" + 1. The
elements of S are the points at infinity of II, the r-spaces S, such that S, N ¥’ € § are the affine lines of
II, S is the line at infinity /,, of II. Note that a transversal r-space, that is, an S, with S, N Y’ ¢ S might

z
2

represent a Baer subplane 3 of II only if r is even, as S would have order ¢z, and if the points of

S, N X' can be equally divided into q% + 1 elements of S.

Choose and fix an (r — 1)-space S=°, of S, a curve C;;! C S, of order r — 1, an r-space S? such that

SINY =8, €S\ 8% ,acurveCy C SY withCg N S? | = 2.
Let m = PG(2,q) be a non-affine subplane of II of order ¢ with P,, € I, as its unique point at infinity
corresponding to the (r — 1)-space S2°;. Then = is represented by the ruled variety V = szr’l obtained
by connecting corresponding points of C%.! and of C} (see Result 3). The g+ 1 generatrix lines of

V represent the bundle (Py) of the ¢+ 1 lines of 7= with center Py, the curve Cj is a directrix and

represents one of the remaining ¢? lines of .

NOTE 1 - The ¢? lines of 7 not belonging to ( Py, ), identify q* points on the line l,, one by one. Therefore there
exists a subset S C S\ {S%,},|S| = ¢* corresponding to such points. Forr = 2,8 = S . {S®, }.

About an element S,_; € S there is only one r-space S, meeting V in a directrix curve C", which is a line of ,
the only line of w with the point at infinity S,_1. Then about S° | there is only S? meeting V in the directrix

curveCj C Sy.

As C7>'! is a rational normal curve, it consists of ¢ 4 1 points no 7 of which in a hyperplane S,_, and with

q > r — 1 as by hypothesis ¢ > 2r — 1 (cf. Definition 2.2).

Choose a subset P = {Py,...,P,_1} CCy ! of r — 1 independent points. Denote SZ’_ , = <P > the

(r — 2)-space of S2°,, generated by the points of P. For r = 2 the set P is a singleton.

Let Gp = {g1,...,9,—1} be the set of the r — 1 generatrix lines through the points of P and the

corresponding r — 1 points of C, G’ = {g},. . ., 9y .1 the set of the remaining ¢ + 2 — r generatrix lines.
The hyperplane H = S + Sﬁ , meets V in the union of Cj C S; with the set Gp (cf. Result 1, 2)).

Consider the subspace Sy,_5 = S° | + S” , direct sum of the two subspaces.

geios.com doi.org/10.32388/IV8SGD


https://www.qeios.com/
https://doi.org/10.32388/IV8SGD

In the bundle B,,_, of hyperplanes with axes Ss._5 there are ¢ + 1 hyperplanes, one being ¥', another
onebeing H = S? + S”,.

Each hyperplane H' € By, 5 ~ {¥'} meets all the g + 1 generatrix lines of Gp UG'. If H' # H and
contains no generatrix line, the r — 1 lines of G are met by H' in the points of P  C7, '. The remaining

g+ 2 — rlines of G’ are met in affine points. Denote Q@ = {Q,, ..., Q,+1} such a set of points.

Lemma 3.1. If r > 2, in By_o ~\ {X',H} there are both hyperplanes containing one generatrix and
hyperplanes without any generatrix line of Gp.

If r = 2, there exists only one hyperplane in Ba._5 ~. {X'} containing a generatrix line.

Proof. From Result 1 follows that a hyperplane H' € Bs,_» . {¥’, H} meets V either in a rational normal
curve C*~1 of degree 2r — 1, or in a curve of order m < n — 1 met by all the generatrices and in

n — 1 — m generatrix lines.

Let » > 2. Assume H' NV contains at least two generatrix lines, g;, g; € Gp. As all the generatrix lines
meet each directrix curve, denote A;, A; the points of g;, g;, respectively, belonging to the directrix curve
cy c SP.

As S? | C H', the line 4; A; meets ¥’ in a point of S0 |, then H’ would contain the whole S} and

H' = H,a contradiction.
Hence H' NV contains at most one generatrix line.

Assume each of the ¢ — 1 hyperplanes of B,,_» \ {¥’, H} contains one generatrix line of Gp. Denote

H' H” two different hyperplanes of By,_5 ~ {¥',H}, g1 C H',g2 C H ” with g1, 92 € Gp.

Two different hyperplanes of By,_» ~ {¥', H} can have in common only the space S, therefore such
generatrix lines must be different. As ¢ > 2r — 1 > r,theng—1 = B2 ~ {¥',H}| > r—1=|P|, so

that we get a contradiction.

Hence in By._2 \ {¥', H} there are both hyperplanes containing one generatrix and hyperplanes

without any generatrix line of Gp.

If r =2, P = {P}, then there is only one generatrix line g through it. Hence there exists only one

hyperplane in Bs,_» . {X'} containing g, and, consequently, a conic directrix.

Theorem 3.2. Let H' be a hyperplane of Ba,—o ~ {¥', H}.
i) r > 2.If H' NV contains no generatrix line, then H' NV is a rational normal curve C*"~*.
ii1) r > 2.1f H' NV contains one generatrix line g € Gp,then H' NV = gU C> 2,

In both cases the curve consists of the r — 1 points of P and of q + 2 — r affine points which distribute, one for
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each, on the g + 2 — r generatrix lines of G’ and no two of them belong to any directrix.
Let H' be a hyperplane of Ba,_a \. .
ii9) r = 2. If H' NV contains no generatrix, then H' NV is a rational normal cubic curve, if H' N’V contains

the generatrix line g, then H' N’V = g U C where C iis the conic directrix Cs and H' = H,.
Proof. i) r > 2. Assume H' contains no generatrix of Gp.

The hyperplane H' meets all the g + 1 generatrix lines of Gp U G'. The r — 1 lines of Gp are met in the
points of P C C%,!. The remaining q+2—r lines of G' are met in affine points. Denote

Q ={Q,...,Qq1 }theset of such points.

From Result 1, 1), follows HNV = C*!, where C* ! > PUQ, is a rational normal curve. The
condition ¢ > 2r — 1 can be proved although it has been assumed as a hypothesis (cf. 0] Theorem 21.11,
().

Let us assume a point @ € Q belongs to a generatrix g € Gp. Then the line g, having two points in H’,
should belong to H’, a contradiction. We get analogous contradiction if @ and a point P, € P, or, if two

points Q;, Qr € Q, belong to a same generatrix g.

Hence the ¢+2-—r affine points of @ distribute, one for each, on the

g+1—(r—1)=q+2— rgeneratrixlines {g,..., g/, }.

Assume H' contains two affine points A, B € Q of a directrix curve. As H' D Sy, 2 D 5271 such a
directrix necessarily should be Cj as the line AB meets S? ;. Therefore H' would contain the whole

Siand H' = H, a contradiction. Hence no two affine points belong to a directrix curve.

i41) r > 2. If H' contains one generatrix g € Gp, then from Result 1, 2), follows 2r — 1 — m = 1 so that
m = 2r — 2. Therefore H' NV = g U C* 2. From Result 3, C*" 2 being irreducible, is a rational normal
curve, so that it lives in a subspace S}, of H'. Note that C**~2 in addition to Q, contains the whole set P,
including the point g N C% ! € P, otherwise it would have ¢ points. Moreover, it meets all the generatrix
lines. There are no affine point of C>*~? on g otherwise C?>*~> would have ¢ + 2 points, so that the line

C*% in one point and does not belong to Sy, 5. The proof of the first property for C* 2 is

g meets
analogous to the proof in i) where contradictions arise from the possibility that H’ contains one

generatrix more than g. The proof of the second assertion is analogous.

iiy) r = 2.1tis P = {P}, C% ' isaline C%, H' has dimension 3, g is the unique generatrix line of Gp. If
H' does not contain g then H' NV is a rational normal cubic curve. If g C H' then H' the residual curve

of H' NV,}isaconicC, thatis, H' N V> = gUC.
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AsCisadirectrix curveand H' > S? | = §? € S, the plane a of C must meet ¥’ in the line S?, H' = H,

o = S and Cis the conic C§ .

Let H' be a hyperplane of the bundle Bj,_» \ {¥',H} containing no generatrix line. Denote

Q={H'Ng,=Qili =r,...,q+ 1} the set of the ¢ + 2 — r affine points met by H'.

Let @ ={Q},..., Q; 1 be the subset of the points of = C II represented in ¥ by the points of Q to

which we add the point P, represented by S>°;. Denote K = Q' U { P, } such a subset of points of .

Proposition 3.3. C isa (g + 3 — r)-arc of m. It is maximal, that is, a (g + 1) -arc, when r = 2, ¢ is odd, in which

case IC is a conic.
Proof. First note that /C has cardinalityg+ 1 — (r — 1)+ 1 =g+ 3 — .

If three affine points of KC were collinear, then the corresponding points of Q should belong to a directrix
curve, a contradiction to Theorem 3.2. If @/, Q;, P,, were collinear, their line would be a line through
P, so that the two affine points Q;, Q; of ¢* ! should belong to a generatrix line of V, a contradiction to

our assumption and to Theorem 3.2.

The arc K is maximal when g+ 3 — r = ¢+ 1, that is, when r = 2, g is odd, IT = PG(2,¢?), 7 is a Baer

subplane of ITand K is a conic.
Denote ¢ the tangent line of /C at the point Py, g; the corresponding line of the variety V in 3.
Corollary 3.4. The line t is represented in X by gy, a generatrix line with g, ¢ H'.

Proof. The tangent ¢ of K at the point P, is a line through it and obviously belongs to 7. As all the lines
through P, in the subplane 7 are represented in ¥ by the generatrix lines of V, then g, is a generatrix

line. Such a line cannot belong to H' by hypothesis.

32.FromIlto X

Let C C m be a non degenerate conic containing the unique infinite point P, of w. Denote
{P/,..., P/} the qaffine points of C, {g/, . . ., g5} the g affine lines of 7 connecting P, with the points of

{P/,..., P/}, tthetangentline to Cat P,.

Referring to the previous notations, let V = Vf’"’l, denote /C¢ the subset of V corresponding in ¥ to the
points of C, K = {Py,...,P,} is the set of the ¢ affine points of K¢ representing {P},..., P/},
G ={91,-..,9¢ g:} the set of the g + 1 generatrix lines of V corresponding to {g/,..., g;,t} where g is
the generatrix representing ¢, T' the point g, N C%,*. Note that if r = 2 the curve C;' is a line and

coincides with §°; .
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Theorem 3.5. 7) IC¢ consists of ¢ + 1 points of V, of which the ¢ affine points of K belong each on one
generatrix of {g1,. .., g4}, T, the unique point belonging to the curve C7; ! is the point at infinity of K.

1) K¢ isa (g + 1)-cap, the line g; being the tangent to K¢ at T'.

Proof. i) Obviously no point of X belongs to the generatrix g; as no affine point of the conic C belongs to

the tangent ¢.

Assume two points of K belong to one generatrix g € {g1,...,9,}. That would mean that the two
corresponding points of C would be collinear with P, a contradiction. Hence the g affine points of C are

distributed each on one of the g generatices g1, . . ., g, different from g;, thatis, P, € g; fori = 1,...,q.

Assume K¢ contains a point 7" € C;', T' # T. Then the generatrix to which 7" belongs should be a
line g; € G for some i = 1,..,q. As P; € g;, then the whole generatrix g; = T" P; would be a line of the
configuration. This line would add to K the ¢ — 1 affine points of the generatrix g;, whose corresponding
points in 7 collinear with P,,, would be added to C, a contradiction. Therefore T’ = T and it is the unique

point at infinity of /C¢.

i1) First note that no two points of X are on a generatrix line as no two affine points of C corresponding

to them are collinear with P.

Assume F;, P;, P, € K are collinear. Denote [ their line and let P/, P/, Py be the corresponding points of
C. The line [ is not a generatrix therefore it selects with the point { N X’ an element S/ ; € S and then a
space S; with S} "X’ = §!_,, containing a unique directrix C" C S}. The line of 7 through the points
P, P; is represented in ¥ by C", as well the line of 7 through P;, P, and P;, P,,. That is, the three points

P!, P/,P} € C would be collinear, a contradiction.

The line g; € V, representing the tangent ¢ to C at the point Py, has only 7" in common with /C¢, that is, it

is the tangent line to K¢ at 7'.
Chooseasubset P = {P,,..., P, 5,T}of r — 1 points of C}; ' C S2,.
Denote S/ _, = <P > C S, the subspace generated by P, let G = {g1,...,9,—2, g:} be the set of the

generatrix lines through the points of P with T' = g, N P.

Theorem 3.6. There exists a hyperplane H' with g; ¢ H' containing a subspace S,.1 with a rational normal

C'r'+1

curve , Which is a cap of V with q + 1 points, of which T is at infinity.

C" represents a conic of the subplane m of I, through Pk

Proof.
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7> 2. Choose S, 1 € S~ SU{S®,} (cf. Note 1). Consider the set G~ {g:} = {g1,--.,9-2} of the
r — 2 generatrices. Denote S* , the subspace generated by them. Let H' =S¥, 4 S,_; be the
hyperplane defined by the sum of such two subspaces. Obviously H' # ¥’ as in ¥’ there are no
generatrix. As H' contains 2r — 1 — m = r — 2 generatrix lines, then in H' NV there is also a residual

curve C"*! of order m = r + 1 meeting all the generatrices (cf. Result 1).

The subspace H' N S¢°; has dimension r — 2, therefore H' contains the whole space S!_, = < P >, the

point 7" included.

The curve C"*! is a rational normal curve, then it lives in a subspace S,1 C H' that meets S!_, in one
point. If "' C S,,; met each generatrix in an affine point, it would be a directrix, but the maximum
order of a directrix is r < r + 1, a contradiction. Hence it must meet one generatrix of G in a point

P=S8,,1N8,0fP.

Assume P # T'. Then C"*! should meet g, in an affine point, so that g; C H’, a contradiction, as it would

add one more dimension to S*_;. Therefore P = T.

The remaining ¢ generatrices are met one each at an affine point so that C"** has g affine points and one
point at infinity. Since "' is a normal rational curve consisting of ¢+ 1 points, it is clear that it

represents a (g + 1)-cap.

Denote C the subset of points of 7 represented in X by the points of C"*!. Let P/, P/, P/ be three affine
points of C. Denote P;, P;, P, the corresponding affine points of C™™. Assume P/, P/, P/ are collinear.
Then P;, P;, P, should belong to a directrix d” of V.

Each directrix of V lives in a subspace S of dimension r such that SNY' € S \ {S2°; } and represents a
line of 7. Then it should be SNY' € S. On the contrary H' O S,_; where S, 1 € S~ SU {58>,}, a
contradiction. Therefore no three affine points of C"*! belong to a directrix curve, that is, the
corresponding points of C in 7 are not collinear.

Assume three points P/, P/, P,, € C are collinear. Then the corresponding points 7;, P;,T' € ¢ should
belong to a generatrix line, a contradiction to what was proved above.

CT+1

Hence represents a conic of 7 through the point P,,.

r=2Inthiscaser —1=1,2r — 1 =r+ 1 =3, S is a spread of lines. Denote s, the line S>°, = ot
Itis S \ {s} = S (cf. Note 1). Moreover, P = {T'}, G = {g:}. Choose a line s, € S. Denote « the plane
so+ T, B the plane with 8N ¥’ = s, containing the unique conic directrix C? with the line s at infinity.

The hyperplane H defined by 8 and T contains also the generatrix g, so that H NV = g, U C%.
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Let H' be one of the ¢ — 1 hyperplanes around « different from both ¥’ and H. It meets the line s, in
the point T'. If g; C H', then H' should contain a conic directrix C living in a plane through s,. But C? is
the unique conic directrix with s at infinity, so that H' = H, a contradiction. Therefore g; does not
belong to H'.

Hence H' NV is an irreducible curve of order 2r — 1 = 3, that is, a cubic curve C* living in the
hyperplane H' that in such a case coincides with a space of dimension r + 1 of the general case. It

contains the unique point T" at infinity, g, is tangent C* at the point T, but it does not belong to H'.

Denote C' the set of the ¢ + 1 points of 7 corresponding to the points of C3. If three points of C' were
collinear, then the corresponding three points of C* would belong to a directrix curve, that is, to a conic.
In such a case the hyperplane H' would contain also g; and H' = H, a contradiction. Therefore C’ is a
conic with P, as its unique point at infinity (cf. also 21, Lemma 2.1). Note that the tangent ¢ to C’ at

P, corresponds to the generatrix g; and belongs to .

Theorem 3.7. There exists a partition of the affine points of V = sz“l, r > 2, consisting of q rational normal

curves of order r + 1 and one generatrix line.

Proof. In the non-affine subplane =, denote F a bundle of hyperosculating conics at P, and the line
t 5 Py as their common tangent. It is easy to check that |F| = g so that F Ut is a covering of =, the

affine points of F U tis a partition of the g% + g affine points of 7.

Denote L r the g rational normal curves of order r + 1 in V corresponding to the conics of 7 and g; the
generatrix line representing ¢ (cf. Theorem 3.5). As two conics of 7 meet only in P, the corresponding
two curves have no affine point in common. The affine points of V are ¢> + g, the affine points of V on

the curves of L are q - ¢ = ¢* to which, adding the affine points of g;, we get ¢* + q.

Notes

Mathematics Subject Classification: 51A05, 51A30, 51A40, 51E20
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