Research Article

The $V_2^{(2_r-1)}$ of PG(2r, q) as a Representation of PG(2, q)

Rita Vincenti¹

1. Independent researcher

In the André/Bruck and Bose representation of $PG(2, q^2)$ in PG(4, q) (cf. ^[1], ^[2]) a non-affine Baer subplane *B* corresponds to a ruled variety V_2^3 (cf. ^[3], ^[4]). In ^[5] is proved that a non degenerate conic in *B* is a rational normal curve of V_2^3 . Using that technique, in ^[6] is studied the representation of the projective plane $PG(2, q^r)$ in PG(2r, q) and of a non-affine subplane PG(2, q) in a variety V_2^{2r-1} . In this note are studied sections of V_2^{2r-1} by hyperplanes giving rise to caps related to some arcs in PG(2, q). Then is determined a partition of the affine points of V_2^{2r-1} in caps corresponding to a partition in conics of the affine points of PG(2, q). The V_2^{2r-1} of PG(2r, q) as a representation of PG(2, q): sections and partitions.

Corresponding author: Rita Vincenti, aliceiw213@gmail.com

1. Introduction

It is known that a projective translation plane can be represented in a projective space of even order (cf. André ^[1], Bruck and Bose ^[2]).

More precisely, if Π is the projective plane $PG(2, q^r)$ with kernel F = GF(q), then it can be represented by a 2r-dimensional projective space $\Sigma = PG(2r, q)$, fixing a hyperplane $\Sigma' = PG(2r - 1, q)$ and a spread S of Σ' with (r - 1)-dimensional subspaces, $|S| = q^r + 1$. The affine points of Π are represented by the points of $\Sigma \setminus \Sigma'$, the points at infinity by the elements of S, the affine lines by the r-subspaces S_r of Σ such that $S_r \cap \Sigma' \in S$, the line at infinity by S. If Π is Desarguesian, the spread S is regular (cf. [1], [2], and [3], [4] for r = 2, [7] for r = 3, [6] for the general case). A subplane of Π is *affine* or *non-affine* (or, *tangent*) depending on whether it intersects the line at infinity in a *subline* or in one point, respectively.

An *affine* subplane of order q is represented by a *transversal* plane to the spread, that is, a plane of Σ intersecting q + 1 elements of the spread.

A non-affine subplane π of $\Pi = PG(2, q^r)$ of order q is represented by a variety V_2^{2r-1} , that is, a ruled variety of $\Sigma = PG(2r, q)$ with the minimum order directrix a rational curve of order r - 1 and a maximum order directrix a rational curve of order r, the two curves lying in two complementary spaces of dimension r - 1 and r, respectively. The variety V_2^{2r-1} can be obtained by joining points of the two directrix curves corresponding via a projectivity (cf. [8], Cap.13, 8., 9. and [6], Section 4).

After the results obtained in ^[5], Theorem 3.1 and Theorem 3.2 for r = 2, in this note is studied a generalization for r > 2. Some properties about hyperplanes of Σ and their intersections with the variety V_2^{2r-1} are proved, a procedure to show how to represent substructures of the plane π in the space Σ (cf. Section 3.1) and viceversa (cf. Section 3.2), namely some kind of arcs and caps, respectively.

In Theorem 3.6 is proved how to construct in V_2^{2r-1} a rational normal curve of order r + 1 representing a conic in π . The paper concludes with Theorem 3.7 with a partition in caps of the affine points of V_2^{2r-1} corresponding to a partition in conics of π .

2. Preliminary Notes and Results

Denote F = GF(q) a finite field, $q = p^s$, p an odd prime, \overline{F} the algebraic closure of the field F, F^{n+1} the (n+1)-dimensional vector space over F, $PG(n,q) = PrF^{n+1}$ the n-dimensional projective space contraction of F^{n+1} over F. The geometry PG(n,q) is considered a sub-geometry of $\overline{PG(n,q)}$, the projective geometry over \overline{F} . A subspace of PG(n,q) of dimension h (an h-space) is denoted S_h (cf. [7], Section 2).

Definition 2.1. A k-arc \mathcal{K} in PG(n,q) is a set of $k \ge n+1$ points no n+1 of which lie in a hyperplane. A k-cap \mathcal{K} of PG(n,q), $n \ge 3$ is a set of k points no three of which are collinear. A tangent of \mathcal{K} is a line which has exactly one point in common with \mathcal{K} .

See Thas ^[9].

A curve of order r is denoted C^r .

Definition 2.2. A rational normal curve C^n of PG(n,q) consists of q + 1 points $(q \ge n)$ no n + 1 of which in a hyperplane S_{n-1} (that is, a hyperplane meets C^n in at most n points).

See Hirschfeld ^[10] p.229, Theorem 21.1.1, (*iv*).

Consequence – n points lie in no S_{n-2} , n-1 points in no S_{n-3} ,..., no three points in a line (that is, an S_{n-2} meets the curve in at most n-1 points, an S_{n-3} in n-2 points,..., a line in 2 points).

In PG(3,q), q odd, a (q + 1)-arc is a twisted cubic, that is, a rational normal curve of degree 3 (cf. [10], p.242-243, Theorem 21.2.3).

Definition 2.3. A variety V_u^v of dimension u and of order v of PG(n,q) is the set of the rational points of a projective variety \overline{V}_u^v of $\overline{PG(n,q)}$ defined by a finite set of polynomials with coefficients in the field F.

Definition 2.4. The ruled variety V_2^{n-1} of PG(n,q), $n \ge 4$ and $n \ne 5$, is generated by the q + 1 lines joining the corresponding points of two birationally (projectively) equivalent curves of order m and n - 1 - m, respectively, lying in two complementary subspaces of the same dimensions, m and n - 1 - m respectively. As such directrix curves have no point in common, then the number of points of V_2^{n-1} is $(q + 1)^2$ and the order is the sum of the orders of the curves.

The q + 1 lines are generatrices (or, generatrix lines).

See Bertini ^[8], Cap.9, n.1–3, Cap.13, n.1–8, p.290, 7., Vincenti ^[7], Lemma 2.2, and ^[6].

From ^[8], p.287, 3., follows

RESULT 1 – In PG(n,q) a hyperplane S_{n-1} meets a ruled variety V_2^{n-1} either in

1. a rational normal curve of order n-1 (with $q \ge n-1$)

or, in

- 2. a curve of order m < n 1 met by all the generatrix lines and in n 1 m generatrix lines and does not consist of two or more curves.
- 1. Every irreducible curve C^m , $m \le n-1$ contained in V_2^{n-1} is a rational normal curve, that is, it exists in a space S_m .

Note that since throughout the paper we will speak of rational normal curves C^h of PG(h,q) for some $h \ge 2$, we choose $q \ge h$ (see Definition 2.2).

Let Σ be the projective space $PG(2r,q), r \ge 2, \Sigma' = PG(2r-1,q)$ a hyperplane of Σ, S a regular spread of (r-1)-spaces of Σ' . It is $|S| = q^r + 1$. For the definition of spread, regulus and regular spread see $\underline{[2]}$ and $\underline{[7]}$, Definition 2.3 and the representation.

The Desarguesian plane $PG(2, q^r)$ is represented by Σ and by the spread S of Σ' according the André/Bruck and Bose method (cf. ^[1], ^[2]).

Let r = 2. In such a case the projective plane is $PG(2, q^2)$, $\Sigma = PG(4, q)$, $\Sigma' = PG(3, q)$, S is a regular spread of $q^2 + 1$ lines of Σ' . If = PG(2, q) denote a non-affine Baer subplane of $PG(2, q^2)$, $P_{\infty} \in$ the unique point on the line at infinity, then B is represented by a variety V_2^3 having as the linear directrix a line $r_{\infty} \in S$ and as a conic directrix C of a plane meeting Σ' in a line $l_{\infty} \in S$, $l_{\infty} \neq r_{\infty}$ and with $C \cap l_{\infty} = \emptyset$ (cf. [3], [5], [4]).

RESULT 2 – A non degenerate conic C of a non-affine Baer subplane B through P_{∞} is represented on the variety V_2^3 by either a twisted cubic curve (and viceversa), or by a normal rational curve of order 4 depending on whether P_{∞} belongs to C or not.

See $\frac{5}{5}$, Theorem 3.1 and Theorem 3.2.

Let $r \ge 2$, $\Pi = PG(2,q^r)$. It is $\Sigma = PG(2r,q)$, $\Sigma' = PG(2r-1,q)$, S is a regular spread of (r-1)-subspaces, $|S| = q^r + 1$.

RESULT 3 – A non-affine subplane $\pi = PG(2,q)$ of Π having only one point P_{∞} at infinity is represented in Σ by a ruled variety V_2^{2r-1} . Such a variety is the locus of the lines connecting corresponding points (via a projectivity) of a curve C_{∞}^{r-1} of a subspace $S_{r-1}^{\infty} \in S$ and of a curve C_0^r of a subspace $S_r^0 \subset \Sigma$ such that $S_r^0 \cap \Sigma' = S_{r-1}^0 \in S \setminus S_{r-1}^{\infty}$ and $C_0^r \cap S_{r-1}^0 = \emptyset$. Such lines are the generatrix lines, the curves $C_r^r = S_r \cap V_2^{2r-1}$ with $S_r \cap \Sigma' \in S$ are directrices of V_2^{2r-1} . The q+1 lines of π through P_{∞} are represented by the generatrix lines, the other lines by the q^2 directrix curves of V_2^{2r-1} .

See ^[6], Theorems 4.7, 4.8.

RESULT 4 – A subspace S_i of $S_r = PG(r,q)$ with $i \ge r-k$, meets a variety V_k^n in a variety V_{i+k-r}^n .

See ^[8], p.191, 3., comma 2.

3. Main results

3.1. From Σ to Π

Represent $\Pi = PG(2, q^r)$ in $\Sigma = PG(2r, q)$ with $r \ge 2, q \ge 2r - 1$.

Let S be a regular spread of (r-1)-spaces of a hyperplane $\Sigma' = PG(2r-1,q)$, $|S| = q^r + 1$. The elements of S are the points at infinity of Π , the r-spaces S_r such that $S_r \cap \Sigma' \in S$ are the affine lines of Π , S is the line at infinity l_{∞} of Π . Note that a *transversal r-space*, that is, an S_r with $S_r \cap \Sigma' \notin S$ might represent a Baer subplane β of Π only if r is even, as β would have order $q^{\frac{r}{2}}$, and if the points of $S_r \cap \Sigma'$ can be equally divided into $q^{\frac{r}{2}} + 1$ elements of S.

Choose and fix an (r-1)-space S_{r-1}^{∞} of S, a curve $\mathcal{C}_{\infty}^{r-1} \subset S_{r-1}^{\infty}$ of order r-1, an r-space S_r^0 such that $S_r^0 \cap \Sigma' = S_{r-1}^0 \in S \smallsetminus S_{r-1}^{\infty}$, a curve $\mathcal{C}_0^r \subset S_r^0$ with $\mathcal{C}_0^r \cap S_{r-1}^0 = \varnothing$.

Let $\pi = PG(2,q)$ be a non-affine subplane of Π of order q with $P_{\infty} \in l_{\infty}$ as its unique point at infinity corresponding to the (r-1)-space S_{r-1}^{∞} . Then π is represented by the ruled variety $\mathcal{V} = V_2^{2r-1}$ obtained by connecting corresponding points of $\mathcal{C}_{\infty}^{r-1}$ and of \mathcal{C}_0^r (see Result 3). The q+1 generatrix lines of \mathcal{V} represent the bundle (P_{∞}) of the q+1 lines of π with center P_{∞} , the curve \mathcal{C}_0^r is a directrix and represents one of the remaining q^2 lines of π .

NOTE 1 – The q^2 lines of π not belonging to (P_{∞}) , identify q^2 points on the line l_{∞} , one by one. Therefore there exists a subset $\overline{S} \subseteq S \setminus \{S_{r-1}^{\infty}\}$, $|\overline{S}| = q^2$ corresponding to such points. For r = 2, $\overline{S} = S \setminus \{S_{r-1}^{\infty}\}$.

About an element $S_{r-1} \in \overline{S}$ there is only one *r*-space S_r meeting \mathcal{V} in a directrix curve \mathcal{C}^r , which is a line of π , the only line of π with the point at infinity S_{r-1} . Then about S_{r-1}^0 there is only S_r^0 meeting \mathcal{V} in the directrix curve $\mathcal{C}_0^r \subset S_r^0$.

As C_{∞}^{r-1} is a rational normal curve, it consists of q + 1 points no r of which in a hyperplane S_{r-2} and with $q \ge r-1$ as by hypothesis $q \ge 2r-1$ (cf. Definition 2.2).

Choose a subset $\mathcal{P} = \{P_1, \dots, P_{r-1}\} \subset \mathcal{C}_{\infty}^{r-1}$ of r-1 independent points. Denote $S_{r-2}^{\mathcal{P}} = \langle \mathcal{P} \rangle$ the (r-2)-space of S_{r-1}^{∞} , generated by the points of \mathcal{P} . For r = 2 the set \mathcal{P} is a singleton.

Let $\mathcal{G}_{\mathcal{P}} = \{g_1, \dots, g_{r-1}\}$ be the set of the r-1 generatrix lines through the points of \mathcal{P} and the corresponding r-1 points of $\mathcal{C}_0^r, \mathcal{G}' = \{g'_r, \dots, g'_{q+1}\}$ the set of the remaining q+2-r generatrix lines. The hyperplane $H = S_r^0 + S_{r-2}^{\mathcal{P}}$ meets \mathcal{V} in the union of $\mathcal{C}_0^r \subset S_r^0$ with the set $\mathcal{G}_{\mathcal{P}}$ (cf. Result 1, 2)).

Consider the subspace $S_{2r-2} = S_{r-1}^0 + S_{r-2}^{\mathcal{P}}$ direct sum of the two subspaces.

In the bundle \mathcal{B}_{2r-2} of hyperplanes with axes S_{2r-2} there are q+1 hyperplanes, one being Σ' , another one being $H = S_r^0 + S_{r-2}^{\mathcal{P}}$.

Each hyperplane $H' \in \mathcal{B}_{2r-2} \setminus \{\Sigma'\}$ meets all the q+1 generatrix lines of $\mathcal{G}_{\mathcal{P}} \cup \mathcal{G}'$. If $H' \neq H$ and contains no generatrix line, the r-1 lines of $\mathcal{G}_{\mathcal{P}}$ are met by H' in the points of $\mathcal{P} \subset \mathcal{C}_{\infty}^{r-1}$. The remaining q+2-r lines of \mathcal{G}' are met in affine points. Denote $\mathcal{Q} = \{Q_r, \ldots, Q_{q+1}\}$ such a set of points.

Lemma 3.1. If r > 2, in $\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$ there are both hyperplanes containing one generatrix and hyperplanes without any generatrix line of $\mathcal{G}_{\mathcal{P}}$.

If r = 2, there exists only one hyperplane in $\mathcal{B}_{2r-2} \smallsetminus \{\Sigma'\}$ containing a generatrix line.

Proof. From Result 1 follows that a hyperplane $H' \in \mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$ meets \mathcal{V} either in a rational normal curve \mathcal{C}^{2r-1} of degree 2r - 1, or in a curve of order m < n - 1 met by all the generatrices and in n - 1 - m generatrix lines.

Let r > 2. Assume $H' \cap \mathcal{V}$ contains at least two generatrix lines, $g_i, g_j \in \mathcal{G}_{\mathcal{P}}$. As all the generatrix lines meet each directrix curve, denote A_i, A_j the points of g_i, g_j , respectively, belonging to the directrix curve $\mathcal{C}_0^r \subset S_r^0$.

As $S_{r-1}^0 \subset H'$, the line $A_i A_j$ meets Σ' in a point of S_{r-1}^0 , then H' would contain the whole S_0^r and H' = H, a contradiction.

Hence $H' \cap \mathcal{V}$ contains at most one generatrix line.

Assume each of the q-1 hyperplanes of $\mathcal{B}_{2r-2} \smallsetminus \{\Sigma', H\}$ contains one generatrix line of $\mathcal{G}_{\mathcal{P}}$. Denote H', H " two different hyperplanes of $\mathcal{B}_{2r-2} \smallsetminus \{\Sigma', H\}, g_1 \subset H', g_2 \subset H$ " with $g_1, g_2 \in \mathcal{G}_{\mathcal{P}}$.

Two different hyperplanes of $\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$ can have in common only the space S_{2r-2} , therefore such generatrix lines must be different. As $q \ge 2r - 1 > r$, then $q - 1 = |\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}| > r - 1 = |\mathcal{P}|$, so that we get a contradiction.

Hence in $\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$ there are both hyperplanes containing one generatrix and hyperplanes without any generatrix line of $\mathcal{G}_{\mathcal{P}}$.

If r = 2, $\mathcal{P} = \{P\}$, then there is only one generatrix line g through it. Hence there exists only one hyperplane in $\mathcal{B}_{2r-2} \smallsetminus \{\Sigma'\}$ containing g, and, consequently, a conic directrix.

Theorem 3.2. Let H' be a hyperplane of $\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$.

i) $r \geq 2$. If $H' \cap \mathcal{V}$ contains no generatrix line, then $H' \cap \mathcal{V}$ is a rational normal curve \mathcal{C}^{2r-1} .

 (ii_1) r>2. If $H'\cap \mathcal{V}$ contains one generatrix line $g\in \mathcal{G}_{\mathcal{P}}$, then $H'\cap \mathcal{V}=g\cup \mathcal{C}^{2r-2}$.

In both cases the curve consists of the r-1 points of \mathcal{P} and of q+2-r affine points which distribute, one for

each, on the q + 2 - r generatrix lines of \mathcal{G}' and no two of them belong to any directrix.

Let H' be a hyperplane of $\mathcal{B}_{2r-2} \smallsetminus \Sigma'$.

 ii_2) r = 2. If $H' \cap \mathcal{V}$ contains no generatrix, then $H' \cap \mathcal{V}$ is a rational normal cubic curve, if $H' \cap \mathcal{V}$ contains the generatrix line g, then $H' \cap \mathcal{V} = g \cup \mathcal{C}$ where \mathcal{C} is the conic directrix \mathcal{C}_0^2 and H' = H,.

Proof. *i*) $r \geq 2$. Assume H' contains no generatrix of $\mathcal{G}_{\mathcal{P}}$.

The hyperplane H' meets all the q + 1 generatrix lines of $\mathcal{G}_{\mathcal{P}} \cup \mathcal{G}'$. The r - 1 lines of $\mathcal{G}_{\mathcal{P}}$ are met in the points of $\mathcal{P} \subset \mathcal{C}_{\infty}^{r-1}$. The remaining q + 2 - r lines of \mathcal{G}' are met in affine points. Denote $\mathcal{Q} = \{Q_r, \ldots, Q_{q+1}\}$ the set of such points.

From Result 1, 1), follows $H \cap \mathcal{V} = \mathcal{C}^{2r-1}$, where $\mathcal{C}^{2r-1} \supset \mathcal{P} \cup \mathcal{Q}$, is a rational normal curve. The condition $q \ge 2r - 1$ can be proved although it has been assumed as a hypothesis (cf. [10], Theorem 21.1.1, (i)).

Let us assume a point $Q \in Q$ belongs to a generatrix $g \in \mathcal{G}_{\mathcal{P}}$. Then the line g, having two points in H', should belong to H', a contradiction. We get analogous contradiction if Q and a point $P_k \in \mathcal{P}$, or, if two points $Q_j, Q_h \in Q$, belong to a same generatrix g.

Hence the q+2-r affine points of \mathcal{Q} distribute, one for each, on the q+1-(r-1)=q+2-r generatrix lines $\{g'_r,\ldots,g'_{q+1}\}$.

Assume H' contains two affine points $A, B \in \mathcal{Q}$ of a directrix curve. As $H' \supset S_{2r-2} \supset S_{r-1}^0$ such a directrix necessarily should be \mathcal{C}_0^r as the line AB meets S_{r-1}^0 . Therefore H' would contain the whole S_0^r and H' = H, a contradiction. Hence no two affine points belong to a directrix curve.

 ii_1) r > 2. If H' contains one generatrix $g \in \mathcal{G}_{\mathcal{P}}$, then from Result 1, 2), follows 2r - 1 - m = 1 so that m = 2r - 2. Therefore $H' \cap \mathcal{V} = g \cup \mathcal{C}^{2r-2}$. From Result 3, \mathcal{C}^{2r-2} being irreducible, is a rational normal curve, so that it lives in a subspace S'_{2r-2} of H'. Note that \mathcal{C}^{2r-2} in addition to \mathcal{Q} , contains the whole set \mathcal{P} , including the point $g \cap \mathcal{C}_{\infty}^{r-1} \in \mathcal{P}$, otherwise it would have q points. Moreover, it meets all the generatrix lines. There are no affine point of \mathcal{C}^{2r-2} on g otherwise \mathcal{C}^{2r-2} would have q + 2 points, so that the line g meets \mathcal{C}^{2r-2} in one point and does not belong to S_{2r-2} . The proof of the first property for \mathcal{C}^{2r-2} is analogous to the proof in i) where contradictions arise from the possibility that H' contains one generatrix more than g. The proof of the second assertion is analogous.

 ii_2) r = 2. It is $\mathcal{P} = \{P\}$, $\mathcal{C}_{\infty}^{r-1}$ is a line \mathcal{C}_{∞}^1 , H' has dimension 3, g is the unique generatrix line of $\mathcal{G}_{\mathcal{P}}$. If H' does not contain g then $H' \cap \mathcal{V}$ is a rational normal cubic curve. If $g \subset H'$ then H' the residual curve of $H' \cap V_2^3$ is a conic \mathcal{C} , that is, $H' \cap V_2^3 = g \cup \mathcal{C}$.

As C is a directrix curve and $H' \supset S_{r-1}^0 = S_1^0 \in S$, the plane α of C must meet Σ' in the line $S_1^0, H' = H$, $\alpha = S_2^0$ and C is the conic C_0^2 .

Let H' be a hyperplane of the bundle $\mathcal{B}_{2r-2} \setminus \{\Sigma', H\}$ containing no generatrix line. Denote $\mathcal{Q} = \{H' \cap g'_i = Q_i | i = r, \dots, q+1\}$ the set of the q + 2 - r affine points met by H'.

Let $Q' = \{Q'_r, \dots, Q'_{q+1}\}$ be the subset of the points of $\pi \subset \Pi$ represented in Σ by the points of Q to which we add the point P_{∞} represented by S^{∞}_{r-1} . Denote $\mathcal{K} = Q' \cup \{P_{\infty}\}$ such a subset of points of π .

Proposition 3.3. \mathcal{K} is a (q+3-r)-arc of π . It is maximal, that is, a (q+1)-arc, when r = 2, q is odd, in which case \mathcal{K} is a conic.

Proof. First note that \mathcal{K} has cardinality q + 1 - (r - 1) + 1 = q + 3 - r.

If three affine points of \mathcal{K} were collinear, then the corresponding points of \mathcal{Q} should belong to a directrix curve, a contradiction to Theorem 3.2. If Q'_i, Q'_j, P_∞ were collinear, their line would be a line through P_∞ so that the two affine points Q_i, Q_j of \mathcal{C}^{2r-1} should belong to a generatrix line of \mathcal{V} , a contradiction to our assumption and to Theorem 3.2.

The arc \mathcal{K} is maximal when q + 3 - r = q + 1, that is, when r = 2, q is odd, $\Pi = PG(2, q^2)$, π is a Baer subplane of Π and \mathcal{K} is a conic.

Denote *t* the tangent line of \mathcal{K} at the point P_{∞} , g_t the corresponding line of the variety \mathcal{V} in Σ .

Corollary 3.4. The line t is represented in Σ by g_t , a generatrix line with $g_t \notin H'$.

Proof. The tangent t of \mathcal{K} at the point P_{∞} is a line through it and obviously belongs to π . As all the lines through P_{∞} in the subplane π are represented in Σ by the generatrix lines of \mathcal{V} , then g_t is a generatrix line. Such a line cannot belong to H' by hypothesis.

3.2. From Π to Σ

Let $C \subset \pi$ be a non degenerate conic containing the unique infinite point P_{∞} of π . Denote $\{P'_1, \ldots, P'_q\}$ the *q* affine points of C, $\{g'_1, \ldots, g'_q\}$ the *q* affine lines of π connecting P_{∞} with the points of $\{P'_1, \ldots, P'_q\}$, *t* the tangent line to C at P_{∞} .

Referring to the previous notations, let $\mathcal{V} = V_2^{2r-1}$, denote $\mathcal{K}_{\mathcal{C}}$ the subset of \mathcal{V} corresponding in Σ to the points of \mathcal{C} , $\mathcal{K} = \{P_1, \ldots, P_q\}$ is the set of the q affine points of $\mathcal{K}_{\mathcal{C}}$ representing $\{P'_1, \ldots, P'_q\}$, $\mathcal{G} = \{g_1, \ldots, g_q, g_t\}$ the set of the q + 1 generatrix lines of \mathcal{V} corresponding to $\{g'_1, \ldots, g'_q, t\}$ where g_t is the generatrix representing t, T the point $g_t \cap \mathcal{C}_{\infty}^{r-1}$. Note that if r = 2 the curve $\mathcal{C}_{\infty}^{r-1}$ is a line and coincides with S_{r-1}^{∞} .

Theorem 3.5. *i*) $\mathcal{K}_{\mathcal{C}}$ consists of q + 1 points of \mathcal{V} , of which the q affine points of \mathcal{K} belong each on one generatrix of $\{g_1, \ldots, g_q\}$, T, the unique point belonging to the curve $\mathcal{C}_{\infty}^{r-1}$, is the point at infinity of $\mathcal{K}_{\mathcal{C}}$. *ii*) $\mathcal{K}_{\mathcal{C}}$ is a (q + 1)-cap, the line g_t being the tangent to $\mathcal{K}_{\mathcal{C}}$ at T.

Proof. *i*) Obviously no point of \mathcal{K} belongs to the generatrix g_t as no affine point of the conic \mathcal{C} belongs to the tangent *t*.

Assume two points of \mathcal{K} belong to one generatrix $g \in \{g_1, \ldots, g_q\}$. That would mean that the two corresponding points of \mathcal{C} would be collinear with P_{∞} , a contradiction. Hence the q affine points of \mathcal{K} are distributed each on one of the q generatices g_1, \ldots, g_q different from g_t , that is, $P_i \in g_i$ for $i = 1, \ldots, q$.

Assume $\mathcal{K}_{\mathcal{C}}$ contains a point $T' \in \mathcal{C}_{\infty}^{r-1}$, $T' \neq T$. Then the generatrix to which T' belongs should be a line $g_i \in \mathcal{G}$ for some i = 1, ..., q. As $P_i \in g_i$, then the whole generatrix $g_i = T'P_i$ would be a line of the configuration. This line would add to \mathcal{K} the q-1 affine points of the generatrix g_i , whose corresponding points in π collinear with P_{∞} , would be added to \mathcal{C} , a contradiction. Therefore T' = T and it is the unique point at infinity of $\mathcal{K}_{\mathcal{C}}$.

ii) First note that no two points of \mathcal{K} are on a generatrix line as no two affine points of \mathcal{C} corresponding to them are collinear with P_{∞} .

Assume $P_i, P_j, P_h \in \mathcal{K}$ are collinear. Denote l their line and let P'_i, P'_j, P'_h be the corresponding points of \mathcal{C} . The line l is not a generatrix therefore it selects with the point $l \cap \Sigma'$ an element $S'_{r-1} \in \mathcal{S}$ and then a space S'_r with $S'_r \cap \Sigma' = S'_{r-1}$, containing a unique directrix $\mathcal{C}'^r \subset S'_r$. The line of π through the points P_i, P_j is represented in Σ by \mathcal{C}'^r , as well the line of π through P_i, P_h and P_j, P_h . That is, the three points $P'_i, P'_j, P'_j, P'_j \in \mathcal{C}$ would be collinear, a contradiction.

The line $g_t \in \mathcal{V}$, representing the tangent t to C at the point P_{∞} , has only T in common with \mathcal{K}_C , that is, it is the tangent line to \mathcal{K}_C at T.

Choose a subset $\mathcal{P} = \{P_1, \ldots, P_{r-2}, T\}$ of r-1 points of $C_{\infty}^{r-1} \subset S_{r-1}^{\infty}$.

Denote $S'_{r-2} = \langle \mathcal{P} \rangle \subset S^{\infty}_{r-1}$ the subspace generated by \mathcal{P} , let $\mathcal{G} = \{g_1, \ldots, g_{r-2}, g_t\}$ be the set of the generatrix lines through the points of \mathcal{P} with $T = g_t \cap \mathcal{P}$.

Theorem 3.6. There exists a hyperplane H' with $g_t \notin H'$ containing a subspace S_{r+1} with a rational normal curve C^{r+1} , which is a cap of \mathcal{V} with q + 1 points, of which T is at infinity.

 \mathcal{C}^{r+1} represents a conic of the subplane π of Π , through P_{∞} .

Proof.

r > 2. Choose $S_{r-1} \in S \setminus \overline{S} \cup \{S_{r-1}^{\infty}\}$ (cf. Note 1). Consider the set $\mathcal{G} \setminus \{g_t\} = \{g_1, \dots, g_{r-2}\}$ of the r-2 generatrices. Denote S_{r-1}^* the subspace generated by them. Let $H' = S_{r-1}^* + S_{r-1}$ be the hyperplane defined by the sum of such two subspaces. Obviously $H' \neq \Sigma'$ as in Σ' there are no generatrix. As H' contains 2r - 1 - m = r - 2 generatrix lines, then in $H' \cap \mathcal{V}$ there is also a residual curve \mathcal{C}^{r+1} of order m = r + 1 meeting all the generatrices (cf. Result 1).

The subspace $H' \cap S_{r-1}^{\infty}$ has dimension r-2, therefore H' contains the whole space $S'_{r-2} = \langle \mathcal{P} \rangle$, the point T included.

The curve C^{r+1} is a rational normal curve, then it lives in a subspace $S_{r+1} \subset H'$ that meets S'_{r-2} in one point. If $C^{r+1} \subset S_{r+1}$ met each generatrix in an affine point, it would be a directrix, but the maximum order of a directrix is r < r + 1, a contradiction. Hence it must meet one generatrix of \mathcal{G} in a point $P = S_{r+1} \cap S'_{r-2}$ of \mathcal{P} .

Assume $P \neq T$. Then C^{r+1} should meet g_t in an affine point, so that $g_t \subset H'$, a contradiction, as it would add one more dimension to S^*_{r-1} . Therefore P = T.

The remaining q generatrices are met one each at an affine point so that C^{r+1} has q affine points and one point at infinity. Since C^{r+1} is a normal rational curve consisting of q+1 points, it is clear that it represents a (q+1)-cap.

Denote C the subset of points of π represented in Σ by the points of C^{r+1} . Let P'_i, P'_j, P'_h be three affine points of C. Denote P_i, P_j, P_h the corresponding affine points of C^{r+1} . Assume P'_i, P'_j, P'_h are collinear. Then P_i, P_j, P_h should belong to a directrix d^r of \mathcal{V} .

Each directrix of \mathcal{V} lives in a subspace S of dimension r such that $S \cap \Sigma' \in \mathcal{S} \setminus \{S_{r-1}^{\infty}\}$ and represents a line of π . Then it should be $S \cap \Sigma' \in \overline{\mathcal{S}}$. On the contrary $H' \supset S_{r-1}$ where $S_{r-1} \in \mathcal{S} \setminus \overline{\mathcal{S}} \cup \{S_{r-1}^{\infty}\}$, a contradiction. Therefore no three affine points of \mathcal{C}^{r+1} belong to a directrix curve, that is, the corresponding points of \mathcal{C} in π are not collinear.

Assume three points $P'_i, P'_j, P_\infty \in C$ are collinear. Then the corresponding points $P_i, P_j, T \in C^{r+1}$ should belong to a generatrix line, a contradiction to what was proved above.

Hence \mathcal{C}^{r+1} represents a conic of π through the point P_{∞} .

r = 2. In this case r - 1 = 1, 2r - 1 = r + 1 = 3, S is a spread of lines. Denote s_{∞} the line $S_{r-1}^{\infty} = C_{\infty}^{r-1}$. It is $S \setminus \{s_{\infty}\} = \overline{S}$ (cf. Note 1). Moreover, $\mathcal{P} = \{T\}$, $\mathcal{G} = \{g_t\}$. Choose a line $s_0 \in \overline{S}$. Denote α the plane $s_0 + T$, β the plane with $\beta \cap \Sigma' = s_0$, containing the unique conic directrix \mathcal{C}^2 with the line s_0 at infinity. The hyperplane H defined by β and T contains also the generatrix g_t so that $H \cap \mathcal{V} = g_t \cup \mathcal{C}^2$. Let H' be one of the q-1 hyperplanes around α different from both Σ' and H. It meets the line s_{∞} in the point T. If $g_t \subset H'$, then H' should contain a conic directrix C living in a plane through s_0 . But C^2 is the unique conic directrix with s_0 at infinity, so that H' = H, a contradiction. Therefore g_t does not belong to H'.

Hence $H' \cap \mathcal{V}$ is an irreducible curve of order 2r - 1 = 3, that is, a cubic curve \mathcal{C}^3 living in the hyperplane H' that in such a case coincides with a space of dimension r + 1 of the general case. It contains the unique point T at infinity, g_t is *tangent* \mathcal{C}^3 at the point T, but it does not belong to H'.

Denote C' the set of the q + 1 points of π corresponding to the points of C^3 . If three points of C' were collinear, then the corresponding three points of C^3 would belong to a directrix curve, that is, to a conic. In such a case the hyperplane H' would contain also g_t and H' = H, a contradiction. Therefore C' is a conic with P_{∞} as its unique point at infinity (cf. also ^[5], Lemma 2.1). Note that the tangent t to C' at P_{∞} corresponds to the generatrix g_t and belongs to π .

Theorem 3.7. There exists a partition of the affine points of $\mathcal{V} = V_2^{2r-1}$, $r \ge 2$, consisting of q rational normal curves of order r + 1 and one generatrix line.

Proof. In the non-affine subplane π , denote \mathcal{F} a bundle of hyperosculating conics at P_{∞} and the line $t \ni P_{\infty}$ as their common tangent. It is easy to check that $|\mathcal{F}| = q$ so that $\mathcal{F} \cup t$ is a covering of π , the affine points of $\mathcal{F} \cup t$ is a partition of the $q^2 + q$ affine points of π .

Denote $\mathcal{L}_{\mathcal{F}}$ the q rational normal curves of order r + 1 in \mathcal{V} corresponding to the conics of \mathcal{F} and g_t the generatrix line representing t (cf. Theorem 3.5). As two conics of \mathcal{F} meet only in P_{∞} , the corresponding two curves have no affine point in common. The affine points of \mathcal{V} are $q^2 + q$, the affine points of \mathcal{V} on the curves of $\mathcal{L}_{\mathcal{F}}$ are $q \cdot q = q^2$ to which, adding the affine points of g_t , we get $q^2 + q$.

Notes

Mathematics Subject Classification: 51A05, 51A30, 51A40, 51E20

References

- 1. ^{a, b, c, d}J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Mathematische Zeits chrift, 60, (1954), 156–-186, doi:10.1007/BF01187370
- 2. ^{a, b, c, d, e}R. H. Bruck, R. C. Bose, Linear representation of projective planes in projective spaces, J.of Algebra, 4, (1966), 117–172, doi:10.1016/0021-8693(66)90054-8

- 3. ^{a, b, c}R. Casse, C. T. Quinn, Ruled cubic surfaces in \$PG{(4,q)}\$, Baer subplanes of \$PG{(2,q^{2})}\$ and Hermi tian curves, Discrete Mathematics 248, (2002), 17–-25, doi:10.1016/S0012-365X (01)00182-0
- 4. ^{a, b, c}R. Vincenti, Alcuni tipi di varietá \$V_{2}^{3}\$ di \$S_{4,q}\$ e sottopiani di Baer, Algebra e Geometria Sup pl. BUMI, Vol. 2, (1980), 31–44.
- 5. ^{a, b, c, d, e}C. T. Quinn, The André/Bruck and Bose representation of conics in Baer subplanes of \$PG{(2,q^{2}} \$), Journal of Geometry 74, (2002), 123–-138, https://doi.org/10.1007/PL00012531
- 6. a. b. c. d. e. R. Vincenti, Subplanes of \$PG{(2,q^{r})}\$, ruled varieties \$V_{2}^{{2r} 1}\$ of \$PG{({2r},q)}\$ and re lated codes, Open Journal of Discrete Mathematics, Vol.14, (2024), 54–71, doi.org/10.4236/ojdm.2024.144006
- 7. ^{a, b, c, d}R. Vincenti, Subplanes of \$PG{(2,q^{3})}\$ and the ruled varieties \$V_{2}^{5}\$ of \$PG{(6,q)}\$, Open Jo urnal of Discrete Mathematics, Vol.14, (2024), 16–27, doi.org/10.4236/ojdm.2024.142003
- 8. ^{a, b, c, d}E. Bertini, Introduzione alla geometria proiettiva degli iperspazi, (1907), Enrico Spoerri Editore, Pisa, https://archive.org/details/introduzioneall01bertgooq, https://link.springer.com/article/10.1007/BF01693238
- 9. [^]J. A. Thas, On \$k\$-caps in \$PG{(n, q)}\$ with \$q\$ even and \$n\geq 4\$, Discrete Mathematics Volume 341, Is sue 4, April 2018, 1072–1077, https://doi.org/10.1016/j.disc.2018.01.010

10. ^{a, b, c}J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Clarendon Press, Oxford, 1985.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.