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Robots are increasingly being used in dynamic environments like workplaces, hospitals, and homes.

As a result, interactions with robots must be simple and intuitive, with robots’ perception adapting

ef�ciently to human-induced changes.

This paper presents a robot control architecture that addresses key challenges in human-robot

interaction, with a particular focus on the dynamic creation and continuous update of the robot’s state

representation. The architecture uses Large Language Models to integrate diverse information

sources, including natural language commands, robotic skills representation, real-time dynamic

semantic mapping of the perceived scene. This enables �exible and adaptive robotic behavior in

complex, dynamic environments.

Traditional robotic systems often rely on static, pre-programmed instructions and settings, limiting

their adaptability to dynamic environments and real-time collaboration. In contrast, this architecture

uses LLMs to interpret complex, high-level instructions and generate actionable plans that enhance

human-robot collaboration.

At its core, the system’s Perception Module generates and continuously updates a semantic scene

graph using RGB-D sensor data, providing a detailed and structured representation of the

environment. A particle �lter is employed to ensure accurate object localization in dynamic, real-world

settings.

The Planner Module leverages this up-to-date semantic map to break down high-level tasks into sub-

tasks and link them to robotic skills such as navigation, object manipulation (e.g., PICK and PLACE),

and movement (e.g., GOTO).

By combining real-time perception, state tracking, and LLM-driven communication and task

planning, the architecture enhances adaptability, task ef�ciency, and human-robot collaboration in
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dynamic environments.
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1. Introduction

Immediacy is crucial in assistive robotics[1][2][3]. In a typical human-robot interaction scenario, users

may provide commands in natural language, such as “Pick the blue bottle on the table and bring it to me”. To

such aim, the use of Large Language Models (LLM) allows robots to interpret natural language requests

and “translate” instructions into plans to achieve speci�c goals; yet, these models need to know the

environment in which they operate so to generate accurate plans[4]. The need for translation arises from

the complexity of human language and the variability in instructions. Users may express commands

differently or exploit ambiguous terms that the robot must comprehend. To address these challenges,

robotic architectures must integrate natural language processing with environmental understanding.

The chief concern of the work is to exploit scene graphs as semantic maps providing a structured

representation of spatial and semantic information of robot’s environment. This enables LLMs to

generate plans based on this information. Indeed, via scene graphs robots can map the relationships

between objects, their properties, and their spatial arrangements.

Here we address such limitations by representing the environment as a graph endowed with updatable

semantics that language models can interpret. More precisely, the dynamics of the update is achieved via

particle �ltering to enhance the reliability and precision of real-time semantic mapping. The model

adopted (PSGTR) is lightweight and can be easily utilized, making it suitable for live applications and

accessible even on less powerful hardware. Using RoBee, the cognitive humanoid robot developed by

Oversonic Robotics, the system dynamically updates the environment graph and replans in case of

failure, overcoming challenges in long-term task planning.

2. Related works

A scene graph captures detailed scene semantics by explicitly modeling objects, their attributes, and the

relationships between paired objects (e.g., “blue bottle on the table”)[5]. 3D scene graphs[6]  extend this
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concept to three-dimensional spaces, representing environments like houses or of�ces, where each piece

of furniture, room, and object is a node. The edges between these nodes describe their relationships, such

as a vase on a table or a chair in front of a sofa.

Recent works, such as[7]  and[8]  have proposed to generate 3D scene graphs from RGB-D images,

combining geometric and semantic information to create detailed environmental representations. Scene

graphs have been widely used in computer vision and robotics to improve scene understanding, object

detection, and task planning. For example, SayPlan[9]  integrates 3D scene graphs and LLMs for task

navigation and planning, performing semantic searches on the scene and instructions to create accurate

plans, further re�ned through scenario simulations. DELTA[10] utilizes 3D scene graphs to generate PDDL

�les, employing multiple phases to prune irrelevant nodes and decompose long-term goals into

manageable sub-goals, enhancing computational ef�ciency for execution with classical planners.

SayNav[11] constructs scene graphs incrementally for navigation in new environments, allowing the robot

to generate dynamic and appropriate navigation plans in unexplored spaces by passing the scene graph

to a LLM, thus facilitating effective movement and execution of user requests.

In a crude summary, the main limitations of the above mentioned approaches to build environment

representations lie in their reliance on computationally heavy vision-language models (VLMs) and

computer vision models. Such models are not designed for precision and often demand signi�cant

resources, while lacking the ability to be updated in real time, and thus limiting their practical

application.

3. Architecture

Our system is based on two components:

Perception Module: it is responsible for sensing and interpreting the environment and building a

semantic map in the form of a directed graph that integrates both geometric and semantic

information. Its architecture is explained in detail below.

Planner Module: it takes the information provided by the Perception Module to formulate plans and

actions that allow the robot to perform speci�c tasks. It is composed by the following:

Task Planner: Translates user requests, expressed in natural language, into high-level skills.

Skill Planner: Translates high-level skills into speci�c, low-level executable actions.

Executor: Executes the low-level actions generated by the Skill Planner.
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Controller: Monitors the execution of actions and manages any errors or unexpected events during

the process.

Explainer: Interprets the reasons of execution failures by analyzing data received from the

Controller and provides suggestions to the Task Planner on how to adjust the plan.

These components interact to allow the robot to understand its environment and act accordingly to

satisfy user requests. In what follows we speci�cally address the Perception Module while details on the

planner will be provided in a separate article.

Robot Hardware. The system was implemented using RoBee, the cognitive humanoid robot developed by

Oversonic Robotics. RoBee, shown in Figure 1, stands 160 cm tall and weighs 60 kg. It features 32 degrees

of freedom, and is equipped with cameras, microphones, and force sensors.

3.1. Perception module

The Perception Module is the component responsible for building a representation of the environment,

which the robot can use for task planning. The representation takes the form of a semantic map, a graph

that integrates both geometric and semantic information about the environment. To generate the

semantic map, the perception module uses data from various sensors. It requires RGB-D frames obtained

from the camera which are then processed using a scene graph generation model, such as PSGTR[12] to

extract objects masks, label and relationships. Also it uses data on the camera position relative to the

geometric map to determine the location of the objects identi�ed by the model. More formally, a

Semantic Map is represented as a directed graph   where:

A node   can be one of the following types:

Room node: De�nes the different semantic areas of the environment, such as “kitchen,” “living

room,” or “bedroom.” Each room node contains information about its geometric boundaries and

the object nodes it contains;

Object node: Represents physical objects in the environment, such as “table,” “chair,” or “bottle.”

Each object node contains information about its 3D position, semantic category, dimensions, and

other relevant properties:

An edge   can represent:

The relationship between two objects;

The connection between two rooms;

= ( , )Gm Vm Em

v ∈ Vm

e ∈ Em
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The belonging of an object to one and only one room.

The presence of room nodes is important because it facilitates the categorization of objects based on

their respective rooms, which helps distinguish between objects with the same name and enhances the

natural language description of the task, while room nodes enable the application of graph search

algorithms for planning paths to objects. Room nodes are created based on the geometric map, while

object nodes are generated following the steps explained below.

As to edges, more speci�cally:

Edges between rooms directly connect two rooms and facilitate navigation between them.

Edges between objects represent the relationships between objects and are directed, the direction

capturing the in�uence of one object on another; the label associated with each edge is derived from

the inferences made by the PSGTR model.

Figure 1 shows an example of a semantic map of an of�ce, built with the room node ’Of�ce’ (italian,

’Uf�cio’) and the object nodes connected to each other by relationships and linked to the room node.

Figure 1. The �gure on the left showcases an example of a semantic map in an of�ce environment, while the

image on the right shows RoBee, the humanoid robot developed by Oversonic Robotics.

Generating and updating the semantic map

The scene graph generation process is based on the PSGTR model, a single-stage model built on the

Transformer architecture[13]. This model generates a graph representation of a scene given its panoptic

segmentation. PSGTR does not achieve the highest quality in panoptic segmentation compared to better
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models, but it provides reasonable inference times for real-time applications, taking about 400 ms to

process a 480p image on a machine with access to an NVIDIA T4 GPU.

The Perception Module uses the result of PSTGR and builds the semantic map following the steps below:

�. Reading RGB-D frames: The video frames from the robot’s cameras are sent to the model to be

analyzed and used to generate the scene graph.

�. Reading robot poses: To generate the scene and semantic map, it is necessary to know the robot’s

position relative to the geometric map, the camera’s position relative to the map, and the camera’s

mounting position on the robot.

�. Inference: Each received frame is processed by the model. Results are information about detected

objects, such as labels and masks, and the relationships between them, such as relationship labels

and associated probabilities.

�. Graph construction: This step involves extracting data from the object returned by the model and

computing values dependent on the robot system, such as the position of objects. At a �ner level it

consists of three sub-steps:

�. Node construction: Classes and masks of detected objects are extracted. Next, the 3D position

of each object is computed, starting in the pixel coordinate system, then transforming to the

camera system, and �nally to the robot’s map coordinate system. Nodes for the semantic scene

and the semantic map are instantiated using the appropriate 3D coordinates. A distance-based

�lter is applied to prune objects that are too far from the robot to avoid issues with object

detection and tracking.

�. Edge construction: Data about relationships between objects are extracted. For each

relationship, the source and target object indices are identi�ed. If both objects meet distance

constraints and the relationship probability exceeds a de�ned threshold, an edge is created

between the corresponding nodes.

�. Inference improvement through Particle Filter (PF): As the model’s output is not accurate

regarding mask inference, this leads to errors in calculating the object’s centroid for obtaining

its position relative to the map. A PF based on previous observations is applied to improve the

accuracy of the result.

At the end of the process, the semantic map is updated with the new information, and the semantic scene

is generated and provided to the planner module.
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The PF is used to track the object masks in real-time, provided as output by the PSGTR model, and to

improve the estimation of their position in space. During the update process, the �lter uses information

from frames acquired to re�ne the position estimate of the objects. The last object masks identi�ed by

the PSGTR model are compared with previous ones using the Intersection over Union (IoU) metrics and

by applying the motion model, which can be de�ned as a transformation of the camera position relative

to the map between two time instances. Denote the transformation matrices describing the camera

position at time   and at subsequent time  ,   and  , respectively; then, the change in position

and orientation can be expressed by the transformation matrix  . To associate objects

between successive frames, we use an IoU matrix computed over segmentation masks. For two masks 

 and  , IoU is de�ned as  , where   represents the area of intersection between

masks    and  , and    represents the area of their union. To compare segmentation masks

between two successive frames, we denote the segmentation mask at time   as   and at time   as 

. The transformation matrix    is applied to the previous mask to obtain a transformed mask 

  such that  . The Intersection over Union (IoU) is then computed between the

transformed mask   and the current mask   as follows:  . This allows us

to identify the same object across successive frames based on their masks.

 is the transformation matrix that describes the camera position at time  .

 is the transformation matrix that describes the camera position at time  .

 is the transformation matrix representing the change in camera position between the two time

instances.

More formally, each object is represented by a set of   particles, where each particle   at time   is a 3D

vector representing a hypothesis about the object’s position:  , where  . The

particles are initialized with a normal distribution around the initially observed position 

:  , where    is the initial covariance matrix. Initial

weights are uniform:  , where  . Prediction takes into account the camera motion. If 

  is the transformation matrix from frame    to frame  , each particle is updated as 

, where    represents the noise added to account for uncertainties in motion,

maintaining the same distribution structure used for initial particle initialization. Given a new

observation  , the particle weights are updated based on the Euclidean distance between the predicted

position and the observed one:    and  . Weights are then normalized: 
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t−1
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. The �nal position of the object    is estimated as the weighted mean of all the particles: 

.

Table 1 shows the improvement obtained over 30 measurements using particle �lter.

The overall process for updating the semantic map using the particle �lter can be summarized by the

algorithm 1.

Property No Particle Particle

Real position [m] (0.67, 0.10, 0.95) (0.67, 0.10, 0.95)

Mean position [m] (0.74, -0.08, 0.93) (0.65, 0.08, 0.94)

Mean of absolute error [m] (0.07, 0.18, 0.02) (0.02, 0.02, 0.01)

Error standard deviation [m] (0.35, 0.24, 0.03) (0.17, 0.12. 0.02)

Table 1. Comparison of position data

Algorithm 1.

=wt
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i
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4. Conclusions

Scene graphs provide a structured representation that captures geometric and semantic information

about the environment. This comprehensive understanding enables improved task planning with large

language models, allowing robots to execute commands.

In this article we have shown how to use real-time sensor data to dynamically update semantic maps,

thus enabling the robot to adapt to ongoing changes in their environment, particularly in collaborative

settings in�uenced by human actions. Here, particle �ltering is applied to improve geometric data

precision and semantic map accuracy. This can be particularly important also for social interaction and

intention prediction[14][15] other than physical interaction with the environment.

The issues addressed in this work are cogent. Indeed, the effectiveness of planners in translating complex

instructions into actionable plans relies on a robust state representation. Without an accurate semantic

map, planners risk generating plans that misalign with the actual environment, potentially leading to

task failures. The integration of semantic and geometric insights permits robots to reason about their

environment in a more informed and adaptive way, ensuring that they can operate effectively and

responsively in dynamic environments.

The adoption of a semantic map containing rich spatial information combined with a �exible LLM based

planner can easily allow to explore in the future the introduction of new spatial relationships, e.g.

wrapped, stuck under, surrounding, aligned, that could support speci�c novel robot skills[16].

Notes

The Planner Module mentioned in the article is discussed in the following paper: https://arxiv.org/abs/2411.15033)

___

Workshop on Advanced AI Methods and Interfaces for Human-Centered Assistive and Rehabilitation Robotics (a

Fit4MedRob event) - AIxIA 2024, November 25–28, 2024, Bolzano, Italy.
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