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This paper constructs a simple "propositions as types” interpretation for first-order classical propositional and
first- and higher-order classical predicate logic. The idea is to study inhabited types and uninhabited types in
general, which will be represented by T and _| respectively, and to show that standard Boolean algebra applies to
them using an interpretation of proofs as programs. Functions that inhabit | — 1, 1 — Tand T — T are the
identity function, a type instantiator function and a type modifier function, which as programs can be thought of
respectively as a "no-op” for the identity, a program to construct a member of a type and a program to construct a
member of one type given a member of another. T — L is not inhabited by any function, but at the type level only
there is a type destructor function which deletes all members of a non-empty type. Double negation elimination,
which is equivalent to 1. — | for an inhabited type, can be thought of as an identity function applied to an
inhabited type. To show how classical logic can be considered to be constructive, witness functions are produced
for specific types representing logical truths, assuming a small number of identities at the type level that can be

used to convert one type to another.
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1. Introduction

In systems of the A-calculus where terms represent computable functions, it is possible to assign types to terms to

help ensure that all computations (reduction sequences of the terms applied to an input term) terminate. Typed

systems of the A-calculus typically trade termination of computations with a unique result for lack of computing

universality (as there are computable functions which cannot be computed in any given typed system). We will recall

this fact later in this paper. Typed systems of the A-calculus are due to Alonzo Church (see [y who developed the
21[31[41[5

Simple Theory of Types. There have been significant developments by Jean-Yves Girard (see [2AB14151y and Thierry

Coquand (see IQl) among others, and the field was later systematised by Henk Barendregt (see I11).

The “propositions as types” view of logic, due initially to Haskell Curry (see [8191) and William Howard (seell9l)1
states that there is a correspondence (known as the Curry-Howard Isomorphism after Curry and Howard) between a

type being non-empty and the proposition corresponding to the type being true, and similarly a type being empty
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and the proposition corresponding to the type being false. Moreover, types are inhabited by (computer) programmes,
while proofs of propositions correspond to those programmes (see M for a systematic development). There are many
different systems of types used in the (typed) A-calculus, but they can be very rich systems indeed in terms of
expressiveness, the system called the Calculus of Constructions with inductive types (due to lelf121y being capable of

formalising proof in much of mathematics and being the basis of proof assistants like Coq and Lean.

To give a simple example of the Curry-Howard Isomorphism, consider the type of functions from an abstract type
A to another abstract type B, written A — B; then there is a correspondence with PropCor(A) = PropCor(B),
where — is logical implication and PropCor : Type — Prop is a function from abstract types to abstract
propositions. An abstract type is a variable that can stand for any type, and an abstract proposition is a variable that
can stand for a function from entities in a type to truth values, true or false. We will use the same variables for types
and propositions in this paper where there is no risk of confusion. There are typically types corresponding to logical
connectives including existential and universal quantification, written (3z : A)P(z) and (Vz : A)P(x) over some

base non-empty abstract type A for first-order quantification, where A is not free in P.

Due mainly to Per Martin-Lof’s intuitionistic type theory (see 1310411151y building on the intuitionistic semantics of L. E.

J. Brouwer, Arend Heyting and Andrei Kolmogorov (seel2l for example), the development of the logic of types has
always required explicit construction of a programme (a lambda term) or proof that witnesses that a type is not
empty, in particular requiring explicit witnesses of existentially quantified types. The natural logic of typed systems

of the A-calculus was for a long time taken to be intuitionistic.

This paper presents a simple way to understand classical logic in the propositions-as-types view of logic. The idea is
to study inhabited types and uninhabited types in general, which will be represented by T and L respectively, to
show that standard Boolean algebra applies to them using an interpretation of proofs as programmes, and to
produce A-terms that witness the types corresponding to true propositions. This interpretation of classical logic
looks like intuitionistic logic, but the lack of specific programme instantiations (which amount to the use of the
identity function) is a characteristic of classical logic. The goal of this paper is to show that propositions as types can
be applied in a natural manner to classical logic, and it will have been successful if the approach is convincing and
that classical logic rules such as double negation elimination are not added to type theory as axioms or definitions

but can be taken as constructive logic rules (comparelll 7.4, s11.8, s11.11).

The current literature on propositions as types for classical logic uses an approach pioneered in the late 1980s by
Timothy Griffin (see IZ). Griffin produced a way of extending typed systems of the A-calculus to rules such as
double negation elimination in classical logic. What Griffin did was to show that there are functions in some
programming languages, known as call with current continuation, of the form f: (A — R) — R for R an abstract
type representing the type of the output of the computable function f on the assumption that any (continuation)

function k : A — R can be referenced and called by f.2 In terms of double negation elimination, where R = L,
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informally we can interpret R as an exception. Then what (A — 1) — L says is that if any program a : A leads to an

exception, then an exception would result. Hence no a : A can lead to an exception, and thence a : A.

In programming terms, following Griffin’s method we introduce a program f : ((A — L) — 1) — A. f begins with
a program a : A (since we are interested in the case where A corresponds to a true proposition and assume that we
can find a witness of A),? which f saves as a continuation at its start. Now f runs any program p : (A= 1)— Lon
any g : A — L. p needs to raise an exception because p(g) : L, which is impossible. p then checks whether g exists
by computing g(a), but since g(a) : L we see that g does not exist as a : A exists. So program g raises an exception,

and f, having run both p and g, now backtracks and continues to run a. a : A follows.

The computing paradigm that Griffin’s interpretation relies on requires a powerful programming language which
can implement exceptions and handle backtracking when an exception is raised. The programming language used
by Griffin in 07 s an idealised version of the Scheme programming language, which is able to catch exceptions and
jump to different states of the program’s execution. Although there has been a large literature based on Griffin’s idea
(see L8II911201 £y example), the idea and the programming language support needed are quite complicated, programs
are prone to error and are not type safe (since the state of the program can be altered during run time). More
fundamentally, typed systems of the lambda calculus tend not to need exception handling because all computations
terminate, so exception handling might not be the right way to interpret typed systems of the lambda calculus that
use classical logic. That said, it is true that a witness to ——(3z : A)P(x) for computably decidable P can be taken to
be the same as the witness to true (3= : A)P(z) on Griffin’s interpretation (ignoring the exception handling and

backtracking), so any alternative interpretation will need to be tested against this version of Griffin’s interpretation.

2. Preliminaries

The approach taken in this paper is to use definitions of logical connectives in terms of “implies”, written “ =",
and the corresponding types in terms of the set of functions from one type to another, “— ”. We assume a standard
presentation of type theory as in Ll with T'ype the kind of types, Prop the kind of propositions and Bool the type
comprising {T, L}, for T standing for true and L for false (and as we shall see in Section 3, for true and false
propositions and for an inhabited and uninhabited type). In this paper “a inhabits type A” is written a : A and
A — Bisthetype of all functions from A to B. A function a : A — Bis both the name given to a term in the typed A
-calculus and an association of every inhabitant of type A with an inhabitant of type B. The existence of T and L is
assumed, and definitions of “for all”, written “V”, are given in Section 7, so that all logical connectives are defined in
terms of {T, L, = ,V}. We will say informally that A = T means that A is inhabited as a type or true as a
proposition, and likewise A = | means that A is empty or uninhabited as a type and false as a proposition. We will

also use statements of the form a : | to mean that a does not exist, since | is not inhabited.

Because the identity function : 1 — _L is a common witness in classical logic, we use the type identity function s to

reduce other types to i:1 — 1, where i(A— 1)=1, i((Ve:4)L)=1, {(VP:A— Bool)L)=_1 and
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i(VP : TR(n)(A))L) = 1, for TR(1)(A) := (A — Bool) and TR(n + 1)(A) := TR(n) — Bool for n:N and
n > 0, if type A is inhabited and any Boolean-valued predicate bound by a universal quantifier is empty for some

value of the quantifier variable. The rationale for using type-level functions is set out in Section 5.

The meta-logic of the typed lambda calculus is taken to be classical. That is, it is either the case that a type A has a
member, a say, a : A, or else A is empty, A = L. Of course, because A is an abstract type, the type variable a is an

abstract term, that is, a term variable.

As far as notation is concerned, the emphasis is on human readability. We use brackets rather than dots to indicate
the priority of function abstraction and application, and will sometimes be explicit about the type of a function in the
function body, for example (Az : L)(y: T): L — T emphasising that the return type y is such that y : T rather
than being the judgement “y is true”. Sometimes the type is added as a subscript, for example i, _,; meaning that the
identity function ¢ has type L. — L or¢: L — L. When inference requires assumptions (called context), we explicitly
state the assumptions in natural language, and for clarity also use a deductive notation (“”) to represent
assumptions that are made in the construction of a witness term. It will be seen that the context provides witnesses
for existentially quantified propositions (see Section 7.2 et seq.). We often mention that one term ¢ (usually a variable)
is substitutable for another z in a predicate P such that P(z). This means that if for example,
P(z) = (Vy : A)Q(z,y) and ¢ is substitutable for = in P(x) then y is not a free variable in ¢ (or otherwise that y is not
free in t). The same definition applies to all well-formed first-order formulae and to all well-formed higher-order

formulae that contain higher type variables that appear in Section 7.

The definitions used in Section 7 are not unnecessarily higher-order, so that for example “A or B” is written
AVB:=(A = 1) = Bratherthan AV B:= (VC : Prop)((A = C) = B) (used in classical logic) or
AV B:=(VC:Prop)((A = C) = ((B = C) = (C))) (used in second-order or polymorphic
intuitionistic type theories such as Girard’s System F [[&1]). The reason for this choice is that negation is treated
differently here than in intuitionistic type theories. It is common to define negation intuitionistically as
—A:= (VC : Prop)(A = C), but we prefer the simpler -4 := (A = _) as it says in terms of types that “if
b:A— Landa: A thenb(a) : L” This is absurd because L is uninhabited; hence A is uninhabited and therefore
proposition —A is true. We go into further detail in Section 5, but in essence if double negation
-—A=((A = 1) = 1) istruethen A = _ is absurd. This means that there isno d : A — L, which is

possible only if A is inhabited, i.e. proposition A is true.

The only exemption to using first-order definitions where possible, other than in the formulation of the second and
higher-order predicate calculus, is in the formulation of the identity s : 1 — L in functional programming terms,
which could be written (L = 1) := (VC : Prop)(C = C) or (L — 1) := (VC : Type)(C — C) in terms of
types. The reason for using this second-order polymorphic construction for ¢ : L — L is so that the identity
function can be called by functions f : T — T such as the identity function ¢ : A — A for inhabited A. When we

have ¢: 1 — 1 we first find out from the context an appropriate inhabited type, A say, and then use the
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polymorphism to replace ¢ : L — | with ¢: A — A. For example, given that (A — L) — | reducesto L — 1 at
the type level ifa : A, we canreplace | — | with A — Aifa : A, and we could infer that: : A — A is a witness for
(A — 1) — L. A more complicated example is, given that (3z : A)P(z) reduces to type L — L if p(a) : P(a) and
a: A, we can infer ¢ : P(a) — P(a) and then substitute ¢ : (3z : A)P(z) for i(p(a)) = p(a). The reason that this
type of inference is valid is that we are only reusing the assumptions in the context. In Section 7 we will indicate the

use of this polymorphism rule.

In any system of typed A-calculus, there is a standard set of term formation rules. The basic abstraction rule can be
defined inductively as (Az : A)t : A — B for variable z : Aandterm ¢ : B, and the basic application rule is st : B for
term s: A— B and term ¢: A. If s = (Ax: A)r: A — B, then st = r[z := t], where r[z :=¢] is the result of
substituting ¢ for z in r, which is usually known as B-reduction. 5-reduction also applies to second and higher order
types, so that in this paper we can also form (Az : TR(n)(A))t : TR(n)(A) — B, where ¢ is a term of type B,
TR(1)(A) := (A — Bool) and TR(n + 1)(A) := TR(n) — Bool for n: N (see Section 74 for details). We will
respect the role of bound and free variables, and ensure that free variables do not become bound unintentionally by
an abstraction (usually called a.-conversion), and will allow (Az : A)tx to be replaced by term ¢ if variable z is not free

in t (called n-conversion).

3. Truth Functions

We introduce truth functions as a way to make proving inference rules and axiom schemas easier and less repetitive.
Let | be any false proposition, called falsum traditionally, where in a type context | is the empty type, ie., the type
with no members. We also introduce a symbol T, verum traditionally, for any true proposition and for a non-empty

type.

Now note that the type | — 1 is not empty as it contains the identity ¢: | — 1. Hence 1 — | =T and
1 = Ll istrue. Likewise | — T is not empty because the function (Az : L)(y: T): L — T isa function with no
input which returns term y, and put slightly differently (Az : L)a: L — Awhena: A, ie., A is not empty for any
abstract type A. This construction shows that | — T=T and | = T is true. Similarly
(Az:T)(y:T): T — T is a function with input  which returns term y, which represents a standard function that
has input term z and returns term y. Hence T — T = Tand T = T is true. However, there is no function from a
non-empty type to an empty type because a function by definition associates every input with an output. Hence

T — Lisemptyand T — L = L which correspondsto T = _ being false.

4. Programmes that witness Truth Functions

It is possible to provide programs which emulate 7 : | — 1, and the programs are interpretable as terms in the
typed A-calculus. The idea is that a program that witnesses (Az : L) has no input, a program that witnesses

(y : L) has no output, while a program that witnesses (Az : T) has some input, and a program that witnesses
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(y : T) has some output. This is in contrast to the interpretation of L as “undefined” or “an exception”, which is less

applicable to typed systems of A-calculus than to untyped systems because computations terminate.

Given thats : 1 — | maps no input to no output, ¢ can be regarded as a “no op(eration)”. However, since a no-op can
only be called by a no-op, as (Az : 1)i(f(z)): L — L and (Az : L)g(i(z)) : L — L only type-check if f(z): L,
g(z) : Land z : L, the “no op” interpretation of i : L — _L does not fit the functional programming paradigm. It can
be seen that i4,4(a) = a if a: A is a usable “no op” since the identity function does not change the state of a
program at all. As noted in Section 2, we justify the use of the context to interpret ¢ : 1 — L, but the availability of

witnesses depends on the interpretation of i : 1 — 1 asig4(a) =aifa: A.

Since there is always an identity function ¢: T — T because T is an inhabited type, we can use the same
i: A — A where iy 4(a) =a if a: A as was used to interpret ¢ : L — L. It is possible to consider functions
between two inhabited types, A and B say. There is a type instantiator function cp(a) for a : A which constructs a
b : B. We prefer the latter construction when producing witnesses because T will be replaced by specific inhabited
types in order to produce witnesses, and will primarily use ¢ : A — A where i4,4(a) =a if a: A as a way to

interpret:: 1 — L.

A program that emulates EzFalso := (Az : L)(y: T): L — T is a program with no input and some output. Since
(Az : L)ExFalso(f(z)): L — T only type-checks if f(z): L and = : L, this means that f must be s: L — 1.
However, (Az : L)f(EzFalso(z)): L — T does type-check if f: T — T, and so we can say that f can call
Ez falso. A program like EzFalso is sometimes called a nullary function in computer science and can be used to

return a constant value.

It is possible to interpret a function of type T — _L as a function that has some input and no output, which we write
as F=(Ax:T)(y:L1l): T — L.But we have a problem, for we see that F(z) : L by function application, which
contradicts the existence of F' given that | is empty. While it is clearly possible to have a program F' that has some
input and no output, and such a program has names like procedure and void function, if all functions and variables are
local to F, F is a useless construct. Moreover, it is impossible to call F' with any function f: T — T since
f(F(x)) does not type-check. In fact, the only functions that can call F are the identity : : L — | or ExFalso. We

will assume that F' does not exist in any (pure) functional programming language.

5. Operator View of Truth Functions

As we have seen in Section 4, if we view truth functions as operators on programmes (and on types), we can view
types L — L and T — T as the identity operator, i. That is, (Az : A)ig—4(z) : A — A whether A is inhabited or
not, which can be stated as i4,4(A) = A. The type L. — T can be viewed as a type instantiator operator, c4, such
that c4() = a if a: A. We can even give meaning to T — L at the type level as a type destructor operator
D(A) = L for A non-empty. The type destructor D : T'ype — Bool is unusual in that it only operates at a type level;

there can be no witness function d: A — L as d(a) : L if a : A, which, as we have seen, is not possible for any
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function d. Of course 7 : | — 1 also only operates at the type level, but in that case it is possible to interpret ¢ as a

generic identity operator on all types.

What the operator view means is that truth function operators on a type A can be regarded as a combination of
identity operators, type instantiators and type destructors. For example, the type instantiator of | — A for inhabited
type A corresponds to the type instantiator c4. The double negation operation ——A for inhabited type
A corresponds to the type (T — L) — L. Thus (AD: A — 1)(D(4)) = (A — L) — L if type A is inhabited. We
have seen that there is no d(a): D(A) for a: A because D(A)= L. Hence the identity function
t4syor P (A= 1) — Lifa: A Likewiseifg: (A — 1) — L thenifd: A — | we would have g(d) : L, which
is a contradiction unlessd : 1 andg =4(r_,,),,.Butd: A — | onlyifthereisa : A, forthen (4 — 1) = 1.Thus
i4s1)sL P (A— L) — L (if and) only if a: A, d(a): L and i4,,),,(d): L, ie. d does not exist. But
i(4- 1) exists and is the identity function s : 1 — L, which can be interpreted as the i : A — A for inhabited A. If
A is not inhabited, on the other hand, then it is easy to see that ((L — L) — L) = L, and we can conclude that

——A is not inhabited (and vice versa, see Section 7.1.7).

There are two approaches taken in this paper with regard to how Boolean functions are applied. The first is simply a
truth functional computation at the type level based on truth value assignments to propositions. We will go through
the mechanical process of verifying the truth of logical propositions, but there is nothing novel in doing so. However,
the advantage of the proposition as types interpretation of logic is that it is possible to construct the witness function
(lambda terms). Truth value assignments are a coarse instrument as they conflate types. This being the case for the
witnesses produced in Section 7, we will only use the following type level reductions, which are the identities
i(A— L1)=1,i((Vz: A)L)=1,i(VP: A — Bool)Ll) =1 and i{(VP : TR(n)(A))L) = L if type A is inhabited
and any Boolean-valued predicate bound by a universal quantifier is empty for some value of the quantifier variable.
This construction helps in the justification for the reducibility of 44y, to i, (another name for

i: L — 1 given above) for example.

6. Logically True Propositions

Boolean logic classifies a proposition as logically true if it is true no matter how the truth values of its constituent
propositions and Boolean values of predicates (if any) are assigned. For example, to establish the truth of
(A = ((A = B) = B)), we need to check the truth values of A — ((A — B) — B) for truth values of
Aand BIfA=T,B=TthenT - (T —>T)—=T)=T.fA=T,B=1thenT = ((T - 1) = L)=T.If
A=1,B=Tthenl - ((L—T)— T)=T.Finallyif A=1,B=1then Ll — ((L— 1) — 1)=T. Thus
A = ((A = B) = B), which is a proposition corresponding to the logical inference rule known as modus

ponens, is logically true.

In order to produce a witness of type A— (A—B)—B), if a:A and b:B, then

M:A)((W:A—=Byz): A—- (A—B) - B) and ya=05b. We will write this more formally as
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a: A b: A f:A—> B, fa=bt (Az: A)((Ay: A— B)yz): A— ((A— B) —» B), from which follows
Az : A)((A\y : A — B)yz)af = fa = b. The cases where A = L are true by Ex falso quodlibet in Section 7.1.5. The
case wherea: Aand B= 1 istrueas (A\z: A)i,,; : A — (L — 1), since i(A — L) = L if type A is inhabited
and (Az: A)i,, a =14, . We may in fact replace ¢, ,; : (A — L) > L byigsa:(A— L) —> Lifa: Aaswe

haveis_4(a) = a.

7. A Selection of Logical Truths

We now provide a “propositions as types” Boolean logic model for some logically true propositions in first-order
classical propositional logic and first-, second- and higher-order classical predicate logic. Lambda terms witnessing
non-empty types are also produced in interesting cases. The presentation of logical systems here follows2 in terms
of higher-order classical logic, but the presentation includes introduction and elimination rules for natural deduction

style logic (seel221(23])
71. First-order Classical Propositional Logic

71.1. Implication introduction

Toprove A = (B = A), we need to check the truth values of A — (B — A) for truth valuesof Aand B.If A =T,
B=T then T (T—>T)=T. If A=T, B=1 then T (L—>T)=T. If A=1, B=T then
1= (T—1)=T. Finallyy, if A=1, B=1 then L —(L—1)=T. In terms of witnesses,
a:A,b:BF (Az: A)((Ay: B)z) : A — (B — A). Otherwise, the cases where A = | or B = L are true by Ex falso

quodlibet in Section 7.1.5.

71.2. Curry’s Principle

Toprove(A — (B = (C)) = ((A = B) = (A = C)),weconsiderwhen A — (B = C) istrue
and (A = B) — (A = C)is false, whichiswhen A - B=Tand A — C = L. Butthen A=T,C = L and
B=T. In that case, A— (B—C)=T = (T —>1)=1, ie A = (B = C) is false. It follows that
A= B=20) = (A= B) = (A= 0)) is true, a contradiction. Hence
(A= (B = C)) = ((A = B) = (A = C()) holds for all truth values of A, B and C. In terms of

witnesses, a.: A, b: B,c:CF (AM:A— (B— C))(Ay: A— B) .IfA=T,C = 1 and B = T, then using
(Az:A)z2(yz): (A= (B—=C) - (A= B) = (A= 0))
i(B—1)=1,i(A— 1)= Landi((A — B) — L) = L, thewitness can be writtenasi : L — Lori,_,,.

71.3. Definition of negation

We define —A:=(A = 1). Negation introduction (A —> 1) =—> —A and negation elimination

-A = (A = 1) follow.
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71.4. Falsum introduction

To prove A —> (-A = ), we need to check the truth values of (A — ((A — L) — 1)) for truth values of A. If
A=T,(T>({(T—->1)—>1)=T),andifA=1,1 -1 =(L— ((L—L)— L)=T).Interms of witnesses, if
a:A then using i(A—1)=_1 and i (A= 1)— 1, we have
a:AF Az : Ay, : A— ((A— L) — 1) as a witness, which has the property that (Az : A)i,,;a=14,_,,. We

can also use the assumptiona : Atoreplacei : | — | withi: A — A.

715. Falsum elimination (ex falso quodlibet sequitur)

To prove 1. —> A we need to check the truth values of L — A for truth valuesof A If A=T, 1L — T =T,and if
A=1,1 — 1| =T.Wesaw in Section 5 that the witness if A = T is the type instantiator c4 : L — A; otherwise, it is
i1,. We can then note that (L =— A) = A is true only if A is true, which translates into

a:AF Az : L — A)es(): (L — A) - A where Az : L — A)(ca())ca = a.

71.6. Contraposition (modus tollens)

Toprove (A = B) — ((B = 1) = (A = 1)) we need to check the truth values of Aand B.If A=T,

B=T then we have (T—>T)—=>({(T—->1)—>(T—1)=T. If A=T, B=_1 then we have

(T>1L)—=-((L—=L)=>(T—=1)=T. If A=1, B=T then we have
L->T)>({(T—=>1L)=>(L—>1)=T. And if A=1, B=1 then we have
L—=>1)»((L—-L)=>(L—=>1)=T.If a: A and b: B then using i(B— L)=1, i(A— L)=_1 and
il :(B—=1)—=(A—1), we can produce the witness term
a:A,b:B-(MA:A—-B)i,, :(A—-B)— ((B—1)—= (A= 1)). In this case,

(A :A— B)i, , cgla)=i,,,, where the type instantiator cg(a):B. ~We could replace
i1, :(B—=>1)—=(A— 1) with (A\g: B— L)geg: (B— 1) — (A — 1), but as g does not exist given that

cg(a) : Bywewilluse (Ag: B— A)gcg : (B — A) — (A — A) instead.

717 Double negation elimination

To prove ——A — A we cast ——A as (A = 1) =— L. It suffices to note that if A=T, (
(T —=>1)-T)=(L—=>1L)—>T=T,whileif A=1,(L—1)—1)—> L=1—1=T.A witness to
the non-emptiness of (A — L) — L is the identity function, i,_,, if A is inhabited; while if A= 1,
((L — L) — L) = L, hence if A is empty thensois (A — L) — L. Formally,usingi(A — L) = L andi,_,, : =—A4,
a:AF(M:L— 1l)a:——A— A where (Az: L — l)ai,, =a We may replace i, : —A with

ta-a: Agivena: Aasigaa) = a.

7.1.8. Definition of disjunction

We define AV B:= (A — 1) — Borintypeterms, AV B:= (A — 1) — B.
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719. Disjunction introduction

To prove the inference A —> (AV B),if A= TthenT — ((T — 1) — B)) = T because L — Bis non-empty by Ex
falso quodlibet in Section 71.5.1f A = | then L — ((L — L) — B)) = T, again by Ex falso quodlibet in Section 715 on
the first L — in the formula. Similarly for B = (AV B).Ifa: A and b : B, then using i(A — L) = L, a witness is
a:A,cg(): B (A :A)cp: A— (L — B), while if a:A and B is uninhabited a witness is
a:AF(Az: A, : A— (L — 1), and if A is uninhabited and b : B a witness is b: B+ (Az : 1 — 1)b, where

(Az: L — L)biy_,, = b Wemayreplacei, | byia_,4 inthe former case,and by ip_. p in the latter case.

71.10. Disjunction elimination

Toprove (A = C) = ((B = C) = ((AVv B) = ()), we could run through all 8 truth function values of
A Band C,but (A = C) = (B = C) = ((AVB) = C)) can only be false if (AV B) = C) is
falseand A = Cand B = C aretrue. Thatis, AV B=TandC = L. Butif(A— L)=Tand (B— 1) =T,
then A=B=1. But AVB=((L—->1)—=1)=1, a contradiction. Therefore,
(A= C) = ((B= C) = ((AVB) = ()) is logically true. If a: A, b: B and c: C then using
(A—1)=1 a witness is
a:A,b:B,c:CHAz: A= C)((Ay:B—=-C)Az: L= B)(yz()): (4A—-C) - ((B—C)— ((L—B) = (Q)),
and (Az: A — C)((A\y: B— C)(Az: L — B)(y2())fgce = geg() = c,where f: A - C,g: B— C,cg: L — B
fa=c¢ cg()=band gb=c If A, B and C are all empty, as in the potential counterexample, the witness is

L1 1) (Lo L)—(L—sL))-

71.11. Excluded middle (tertium non datur)

To prove AV—-A we use the definition AVB:=(A = 1) = B in 718 to obtain
(A= 1) = (A = 1) orin type terms (A — L) — (A — L). Using i(A — L) = L we can see that the
identity 5, _,, : AV A is a witness if A is not empty, while if A is empty (o) (o) | AV —A is a witness. In fact, if

a: Awemayreplacei, | : AV ~Awithiy,,: AV —A.

7.1.12. Definition of conjunction

We define ANB:= (A — (B = 1)) = Lorintypeterms AANB:= (A — (B — 1)) — L.

7.1.13. Conjunction introduction

To prove (A — (B = (A A B)), we check the truth value of A — (B — ((A — (B — L)) — 1)) for truth values
of Aand B.If A=T, B=T, then (T (T=>(T=>(T—=>L)—>1L)=(T=>(T=>(L=>L)=T.1If
A=T,B=Lthen((T>(L=((T=(L—->L)=1)=(T=(L=>(T—=>1L)=T.IfA= 1, B=T,then
(L=>(T=>((L=>(L=>L)N)=>L)N)=(L—=>(T—=>(T—>1L)=T. Finaly if A=1, B=.1, then

(L=L-((L=(L=L))=>L)N)=((L=>L—=>(T—>1L)=T. If a:A and b:B, then using
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i(A—1)=1, i(B—1)=1 and i1 : ANB, a witness is
a: A, b:BF(Az:A)((M\y:B)ii): A— (B— AANB), where (Ax: A)((A\y:B)ii )ab=1i,_,. We may

replacei, ,, : A A\ Bwiththe type instantiator cg : AN Bfora : Aandcp(a) = b.

7.1.14. Conjunction elimination

To prove (AN B) —> A, we check the truth value of (A — (B — 1)) — L) — A for truth values of A and B. If
A=T, B=T, then (T—->(T—-1)—-1)=T=(L—>L1L)—=T)=T. If A=T, B=.1, then
(ToL-=>L))=>L)=>T=(T—=>L)=>T)=T. If A=1, B=T, then
(L=(T=-L))=>L)>Ll=(L>L)—>1)=T. Finally, if A=1, B=1, then
(L=-L—=1)—>L)=->L=((T—L)— L)=T.Similarly for (ANB) = B.Ifa: Aandb: B, then using
i(A—-1)=1,i{(B—1l)=Landi,, : ANB, awitnessisa: A b: B (Az: L — L)a: ANB — A, since
(Az:L — Ll)ai,,, =a.Likewise,a: A, b: BF(Az: L — 1)b: ANB— B,since (Az: L — L)bi,,, =b We
may replace i,_,, : AN B with the type instantiator c4 : AN B for b: B and ca(b) : A in the case of type

A N B — A and with the type instantiator cg : A A Bfora : Aand cp(a) : Binthe case oftype AN B — B.

7.2. First-order Predicate Logic

7.2.1. Definition of first-order universal quantification

We define (Vz : A)P(z) to be the type which has a member of the form (Az : A)p(z) for p(z) : P(z) if (Vz : A)P(z) is
non-empty. In order for P(zx) to depend on x : A, we write p: (z : A) — P(z), where z : (z : A), so p(z) : P(z) as

before.

7.2.2. First-order universal introduction

To prove (P = (z: A = Q(z))) = (P = (Vz: A)Q(z)), where the variable = : A is not free in P, if
t:P— ((z:A) = Q(z)), then (tp)x : Q(z) for p: P and z : A if such a term p exists, or P = L otherwise. Then
(Ap: P)(Az : A)(tp)x : P — (Vz : A)Q(z) because p does not depend on z : A and so P does not depend on A. If
x were free in P, then we would only be able to conclude that (Ap : P)(Az : A)(tp)z : (Vz : A)(P — Q(z)).IfP = Lor
(P = (z:A = Q(z))) = Lthen P = (Vz: A)Q(z) by ex falso quodlibet (see Section 71.5). A witness of the
type (P — (z: A — Q(z))) = (P — (Vz : A)Q(z))is:

d:Ae:P, f:P— ((z:4) — Q)
FQy: P = ((z:A4) = Q) ((Ap: P)(Az : A)(yp)z)

given that Ay:P— ((z:A) = Q(z)(Ap: P)( Az : A)(yp)z)fe: (Vz : A)Q(z) and

(Ay: P = ((z:A) = Q) ((Ap: P)(Az : A)(yp)z)fed : Q(d).
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7.2.3. First-order universal elimination

To prove (Vz : A)(P(z)) = P(t), for t any term of type A, if p: (Vz: A)P(z) and ¢: A then pt: P(t). If
(Vz: A)P(z) =L, then L — P(y) by ex falso quodlibet (see Section 715). A witness of the type

(Vo : A)(P(z)) — P(t)ist: A, p(t) : P(¢t) F (Ap: (Va : A)(P(z)))(p(?)).

7.2.4. Definition of first-order existential quantification

We define (3z : A)P(z) to be the type of (Vz : A)(P(z) — L) — L. In order to handle quantification, we introduce a new
type identity rule, which is i((Vz : A)L) = L if type A is inhabited and the predicate bound by (Vz : A) is empty for
some z : A. If p(a) : P(a) and a : A then (3 : A)P(z) = L — L, or, otherwise put, i, _,, : (3z : A)P(z). We now
appeal to the polymorphic definition of i,_,, applied to the context p(a): P(a) and a: A to replace i,_,, with

a: A, pa): Pla) Fipu)—p) : 3z : A)P(z).

7.2.5. First-order existential introduction

To prove P(t) = (Jz:A)P(z) for any well-formed term t of type A, we need to show that
P(t) » (3z: A)P(z) = L leads to a contradiction. P(t) — (Jz: A)P(x) =L leads to P(t)=T and
(3z : A)P(z) = L and, by definition of first-order existential quantification, ((Vz : A)(P(z) —» 1) - L) = L. It
follows that (Vx : A)(P(z) — L) = T and by definition of first-order universal elimination, P(t) — L = T for the term
t. Hence, substituting P(t) = T we have (T — L) = L1 =T, a contradiction. If p(t) : P(t) and y: A then using

i(P(t) — L)=1L,i((Ve: A)L)= Landi,_,, : (3z: A)P(x),awitness is
t:A pt): P&)F (Az: P(y))ii, : P(t) = (Fz: A)P(z)

where (Az : P(t))i) ., p(t) =i, .. Inthis case, ipy)_,p(y : (3z : A)P(z) where p(t) : P(t) is a witness of i, ., using

the argument from Section 7.2.4.

7.2.6. First-order existential elimination

To prove (3z:A)P(z) = ((Vz:A)(P(z) = Q) = Q), where = is not free in Q, we note that
Gz : A)P(z) = (Vo : A)(P(z) > Q) —» Q) = L only if (Jz: A)P(z) =T and
(Vz: A)(P(z) > Q) > Q) =L, that is Q=1 and (Vz:A)(P(z)—Q)=T. It follows that
(Vz : A)(P(z) — L) = T. But then by definition of (3z : A)P(z), we have ((Vz : A)(P(z) — L) — 1) =T and
therefore by substitution (T—>1)=1L=T, a contradiction. Therefore,
(3z: A)P(z) — (V2 : A)(P(zx) 5 Q) = Q) =T and
(3z: A)P(z) = ((Vz: A)(P(z) = Q) = Q) follows. The reason = is not free in Q is that if = were free in
Q, the valid inference would be (3z : A)P(z) = ((Vz: A)(P(z) = Q(z)) = (3z : A)Q(z)), which does not
eliminate the existential quantifier. If p(w) : P(w), w : Aand r : (Vz : A)(P(z) for variable w substitutable for x, then,

usingi(P(z) — L) = L,i((Vz : A)L) = Landi,_, : (3z : A)P(z), awitness is of the form
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w: A, p(w) : P(w), r: (Vz: A)(P(z) - Q)
Ay : (Fz : A)P(2))((Az: (Ve : A)(P(z) = Q))((2(w))(y(w)))) :
(Fz: A)P(z) —» ((Vz : A)(P(z) - Q) = Q)

where Ay : 3z : A)P(z))(Az: (Vo : A)(P(z) — Q))((2(w))(y(w))))pr : Q, which follows from

w: A, p(w) : P(w) F ipu)—pu) * (3 : A)P(x) from Section 724, noting that y(w) = i p(y)—, pa) (w) : P(w).
7.3. Second-order Predicate Logic

73.1. Definition of second-order universal quantification

We define (VP : A — Bool)S(P) to be the type which has a member of the form (AP : A — Bool)s(P) for
s(P) : S(P) if (VP : A — Bool)S(P) is not empty. Here, Bool is the type containing true or false, often written as
2 ={0,1}, coding false | as O and true T as 1, say. In order for s(P) to depend on P : A — Bool, we write

s:(P:A— Bool) — S(P),where P : (P : A — Bool), so s(P) : S(P) as before.

7.3.2. Second-order universal introduction

To prove (R = ((P:A — Bool) = S(P))) = (R = (VP : A — Bool)S(P)), where variable
P : A — Bool isnot freein R, S(P) : Bool,ift: R — ((P : A — Bool) — S(P))), then (tr)P : S(P) forr : R if such
atermr exists,or R = L otherwise. Then (Ar : R)(AP : A — Bool)(tr)P : R — (VP : A — Bool)S(P) because r does
not depend on P:A— Bool and so R does not depend on A— Bool. If R=1 or
(R = (P:A— Bool) = S(P))) =.1,then R = (VP : A — Bool)S(P)) by ex falso quodlibet (see Section

715). A witness of the type (R — (P : A — Bool) — S(P))) — (R — (VP : A — Bool)S(P)) is:

d:A— Bool,e: R, f: R— ((P:A— Bool) — S(P))
(Ay:R— ((P:A— Bool) — S(P)))((Ar: R)(AP : A — Bool)(yr)P)

given that (Ay : R — ((P : A — Bool) — S(P)))((Ar : R)(AP : A — Bool)(yr)P)fe: (VP : A — Bool)S(P) and

(MAy:R— ((P:A— Bool) — S(P)))((Ar : R)(AP : A — Bool)(yr)P) fed : S(d).

7.3.3. Second-order universal elimination

To prove (VP : A — Bool)(S(P)) = S(t), where t is a term of type A — Bool, if p : (VP : A — Bool)S(P), then
pt: S(t)ift: A — Bool. If (VP : A — Bool)(S(P)) = L, then L = S(t) by ex falso quodlibet (see Section 715). A
witness of the type (VP : A — Bool)S(P)) — S(t) is
t: A — Bool, s(t): S(t) - (As : (VP : A — Bool)(S(P)))(s(¢)).

734. Definition of second-order existential quantification

We define (3P : A — Bool)S(P) to be the type of (VP : A — Bool)(S(P) — L) — L. To handle quantification, we
introduce a new type reduction rule, which is i(VP : A — Bool).L) = L if type A is inhabited and the predicate bound by

(VP : A — Bool) is empty for some P : A — Bool. If s(P): S(P) then (3P : A — Bool)S(P) = L — 1, or, put
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otherwise, i, ., : (3P : A — Bool)S(P). We now appeal to the polymorphic definition of i, _,, applied to the context
s(Q) : S(Q) for Q: A— Bool substitutable for P to replace 111 with

Q: A — Bool, 5(Q) : S(Q) - igg)-sq) : (3P : A — Bool)S(P).

7.3.5. Second-order existential introduction

To prove S(t) = (3P : A — Bool)S(P) for t a well-formed term of type A — Bool, we need to show that
S(t) » (3P : A — Bool)S(P) =L leads to a contradiction. S(t) — (3P : A — Bool)S(P) =L leads to
S(t)=T and (3P:A — Bool)S(P) =1 and, by definition of second-order existential quantification,
(((YP : A — Bool)(S(P) — 1) — L) = L.1t follows that (VP : A — Bool)(S(P) — L) = T and, by definition of
second-order universal elimination, (S(¢) — L) = T. Hence, substituting S(t) = T, we have (T — L) =1 =T, a
contradiction. If t: A — Bool, s(t):S(t), then using i(S(P) — L1)=_1, i((VP:A — Bool)(L)= 1 and

i1 : (3P : A — Bool)S(P), awitness of type S(t) — (3P : A — Bool)S(P) is
t: A — Bool, s(t): S(t)F (Az: S(t))ii1

where (Az : S(Q))i1—158(t) = i... In this case, igp 54 : (P : A — Bool)S(P) where s(t) : S(t) is a witness of

i1, using the argument from Section 7.34.

7.3.6. Second-order existential elimination

To prove (3P : A — Bool)S(P) = ((VP : A — Bool)(S(P) = R) = R), where P is not free in R, we note
that ((3P : A — Bool)S(P) — ((VP : A — Bool)(S(P) -+ R) —+ R) = L only if (3P : A — Bool)S(P) = T and
((VP: A — Bool)(S(P) - R) - R) = L, that is, R= 1 and (VP : A — Bool)(S(P) — R) = T. It follows that
(VP :A— Bool)(S(P) — L) =T. But then, by definition of (3IP:A — Bool)S(P), we have
(((vP: A — Bool)(S(P) — L) — L) =T and therefore, by substitution, (T — L)= L1 =T, a contradiction.
Therefore, (3P : A — Bool)S(P) — ((VP: A — Bool)(S(P) - R) - R) =T and
(3P : A — Bool)S(P) = ((VP: A — Bool)(S(P) = R) = R) follows. The reason P is not free in R is that
if P were free in R, the valid inference would be
(3P : A — Bool)S(P) = ((VP: A — Bool)(S(P) = R(P)) = (3P : A — Bool)R(P)), which does not
eliminate the existential quantifier. If Q : A — Bool, s(Q) : S(Q) and term t: (VP : A — Bool)(S(P) — R) for
predicate variable @ substitutable for P, then, using i(S(P) — L1)=_1, #((VP:A — Bool)l)= 1 and
i1 : (3P : A — Bool)S(P), awitness is of the form:

Q:A— Bool, s(Q):5(Q),t: (VP:A— Bool)(S(P) = R) -

(Az: (3P : A — Bool)S(P))(Az: (VP : A — Bool)(S(P) — R))((2(Q)z(Q)) :

(3P : A — Bool)S(P) — ((VP : A — Bool)(S(P) — R) — R)
where (Az : (3P : A — Bool)S(P))(Az: (VP : A — Bool)(S(P) — R))(2(Q)z(Q))st : R, which follows from
Q: A — Bool, s(Q) : 8(Q) Fig)-sq) : (P : A— Bool)S(P)  from  Section 734, noting  that

z(Q) = ig0)s0)(Q) : S(Q).
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74. Higher-order Predicate Logic

74.1. Definition of higher-order universal quantification

We define types above A by induction TR(1)(A) := (A — Bool) and TR(n + 1)(A) := TR(n) — Bool for n.: N and
n > 0. There is no reason in principle why we cannot use transfinite induction by introducing
TR(w)(A) := (An : N)T'R(n)(A) for example, but here we will follow tradition and treat higher-order logic as being of
finite type above type A. All higher-order types here are Boolean-valued, as we want to form terms about properties,
properties of properties, etc. Then we define (VP : TR(n)(A))S(P) to be the type which has a member of the form

(AP : TR(n)(A))s(P) for s(P) : S(P) if (YP : TR(n)(A))S(P) is not empty.

74.2. Higher-order universal introduction

To prove (R = ((P:TR(n)(4)) = S(P))) = (R = (VP :TR(n)(A))S(P)), where the variable
P : TR(n)(A) is not free in R, S(P) : Bool,ift : R — (P : TR(n)(A) — S(P))), then (¢r)P : S(P) for r : R if such a
term r exists or R = L otherwise. Then (Ar : R)(AP : TR(n)(A))trP : R — (VP : TR(n)(A))S(P) because r does not
depend on P:TR(n)(A) and so R does not depend on TR(n)(A). If R=1 or
(R = (P:TR(n)(A)) = S(P))) = Lthen R — (VP : TR(n)(A))S(P)) by ex falso quodlibet (see Section

715). Awitness of the type (R — (P : TR(n)(A)) — S(P))) — (R — (VP : TR(n)(A))S(P)) is:

d:TR(n)(A),e: R, f: R— ((P:TR(n)(A)) — S(P)) -
(Ay: R — ((P : TR(n)(A4)) — S(P)))((Ar : R)(AP : TR(n)(A))yrP)

given that (Ay: R — ((P:TR(n)(A)) — S(P)))(Ar: R)(AP : TR(n)(A))yrP)fe: (VP : TR(n)(A))S(P)and
(MAy: R — ((P:TR(n)(A)) — S(P)))((Ar : R)(AP : TR(n)(A))yrP)fed : S(d).

74.3. Higher-order universal elimination

To prove (VP : TR(n)(A))(S(P)) = S(t), where t is a term of type TR(n)(A), if p: (VP : TR(n)(A))S(P) then
pt: S(t)ift: TR(n)(A). If (VP : TR(n)(A))(S(P)) = L, then L — S(t) by ex falso quodlibet (see Section 715). A
witness of the type (VP : TR(n)(A))S(P)) — S(t) is

t: TR(n)(A), s(t) : S(t) - (As : (VP : TR(n)(A))(S(P)))(s(£)).

74.4. Definition of higher-order existential quantification

We define (3P :TR(n)(A))S(P) to be the type of (VP :TR(n)(A))(S(P)— L) — L. In order to handle
quantification, we introduce a new type reduction rule, which is i(VP : TR(n)(A))L) = L if type A is inhabited and the
predicate bound by (VP :TR(n)(A)) is empty for some P :TR(n)(A). If s(P):S(P) then
(3P : TR(n)(A))S(P) = L — L, or otherwise put, i, ,, : (3P : TR(n)(A))S(P). We now appeal to the polymorphic
definition of i,_,, applied to the context s(Q) : S(Q) for @ : TR(n)(A) substitutable for P to replace i,_,, with

Q : TR(n)(4), s(Q) : $(Q) - isq)-si) : (3P : TR(n)(A))S(P).
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74.5. Higher-order existential introduction

To prove S(t) = (3P : TR(n)(A))S(P) for t a well-formed term of type TR(n)(A), we need to show that
S(t) - (3P : TR(n)(A))S(P) = L leads to a contradiction. S(t) — (3P :TR(n)(A))S(P)= L leads to
S(t)=T and (IP:TR(n)(A))S(P)=_L and by definition of second-order existential quantification,
(((YP : TR(n)(A))(S(P) — L) — 1) = L. It follows that (VP : TR(n)(A))(S(P) — L) = T and by definition of
second-order universal elimination, S(t) — L = T. Hence, substituting S(t) = T we have (T —» L)=1=T, a
contradiction. If t:TR(n)(A), s(t):S(t) then using «(S(P)— L)= 1, i((VP:TR(n)(4))(L)=L and

i1 : (3P : TR(n)(A))S(P), awitness of type S(t) — (3P : TR(n)(A))S(P) is
t:TR(n)(A), s(t): S(t) F (Az: S())ii1

where (Az : S(Q))iL18(t) = i11. In this case igy_,gq) : (IP : TR(n)(A))S(P) where s(t) : S(t) is a witness of

i, using the argument from Section 74.4.

74.6. Higher-order existential elimination

To prove (3P : TR(n)(A))S(P) = ((VP:TR(n)(A))(S(P) = R) —> R), where P is not free in R, we note
that (3P : TR(n)(A))S(P) — ((VP : TR(n)(A))(S(P) — R) — R) = L only if (3P : TR(n)(A))S(P) = T and
(VP : TR(n)(A))(S(P) = R) — R) = L, that is R= 1 and (VP : TR(n)(A))(S(P) — R) = T. It follows that
(VP : TR(n)(A))(S(P) — 1) =T. But then by definition of (3P :TR(n)(A)S(P), we have
(((VP : TR(n)(A))(S(P) - L) —» L) =T and therefore by substitution (T — L)= L1 =T, a contradiction.
Therefore (3P : TR(n)(A))S(P) — (VP : TR(n)(A))(S(P) > R) > R) =T and
(3P : TR(n)(A))S(P) = ((VP : TR(n)(A))(S(P) = R) => R) follows. The reason P is not free in R is that
if P were free in R the valid inference would be
(3P : TR(n)(A))S(P) = ((VP : TR(n)(A))(S(P) = R(P)) = (3P : TR(n)(A))R(P)), which does not
eliminate the existential quantifier. If @ : TR(n)(4), s(Q) : S(Q) and term t: (VP : TR(n)(A))(S(P) — R) for
predicate variable @ substitutable for P, then, using i(S(P) — 1) = L, i((VP:TR(n)(A))Ll) =1 and

i1 : (3P : TR(n)(A))S(P), awitness is of the form:
Q: TR(n)(A), 5(Q) : 5(Q),t : (VP : TR(n)(4))(S(P) = R) -
(Az : (3P : TR(n)(A))S(P))(Az : (VP : TR(n)(A))(S(P) — R))(((Q
(3P : TR(n)(A))S(P) — ((VP : TR(n)(A))(S(P) - R) - R
where (Az: (3P : TR(n)(A))S(P))(Az: (VP : TR(n)(A))(S(P) — R))(2(Q)z(Q))st : R, which follows from
Q : TR(n)(4), s(Q) : S(Q) - isg)-sq) : AP : TR(n)(A))S(P) from Section Thh, noting that

z(Q) = ig9)»s0)(Q) : S(Q).
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8. Discussion

The logical systems described in this article are intended to codify logical truth in a setting of type theory and
computer science. Logical truth is a classical notion of what remains true under all truth-values of the constituent
propositions. Logically true propositions often come with generic witnesses when viewed as types. The reason is that
logical propositions as formulated here are always hypothetical judgements because they are formulated in terms of “

— " Even if the antecedent of the “ = " cannot be proven true (the domain type witnessed), nevertheless the
inference stands. This is why logical truth can be formulated in terms of types which are not in general decidable; a

generic witness enables an inference to be seen to be true, while the inference must still follow if there is no witness.

It is reasonable to expect that every logical inference rule corresponds to a logically true proposition. The logical
inference rule of modus ponens, for example, only applies when A is true; yet modus ponens is still true as a
proposition when A is false. The view in this article is that logical truths and logically true propositions are
interchangeable. It is true that Hilbert-style logical systems focus on a minimal set of inference rules, typically modus
ponens, but there is nothing in principle preventing a different choice of inference rule. In natural deduction systems
where the aim is to replace axioms with inference rules (introduction and elimination rules), the advantage is that
logical complexity can be reduced and then built up again, but there is no reason why one could not start with a

logically true proposition and undergo the same process.

There is a view that logical truth could be interpreted as encompassing all truths provable in some typed system of
the A-calculus where a type can be defined and a witness found. For example, in a type theory with the (inductive)
type of the natural numbers, N, definable, there will be types defined in terms of N (such as
(Vz:N)Jy:N)(y=z+=2) for £+ 0=z and z+s(y) =s(z+y) for =, y:N and successor function
s : N — N where s(z) # 0) that will be provable in the system insofar as the existence of a witness of the type is
concerned. This position appears to be a kind of logicism, but the position is only as strong as the cardinality of the
language of terms and types that the system uses and only relates to the specific type defined rather than to all well-
defined predicates and propositions. Thus the inductive type for N assumes that n : N can be constructed for each of
countably infinitely many natural number constant terms 0 and inductively s(n) : N for n : N; and truths about
N are specific to N and do not apply to types in general. It is best therefore to reserve the term logical truth for truths
that apply to all well-defined predicates and propositions, and note that logical inference is used in reasoning about

specific types based on rules for those types.

It is possible to regard logically true propositions as a combinatorial game played with non-empty types and the
(polymorphic) identity function. This is apparent in the generation of witnesses of non-empty types in Section 7.
While this approach may not be necessary in the case where an axiomatisation of a logic is complete with respect to a
semantics (such as first-order predicate logic with the standard semantics, seel241(25] for example), the generative

view of logical truth applies to classical logic of any order.
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In the proofs in Section 7, there is the use of a two-tier computation model, one for terms and one for types. This
technique enables logical truths to be computationally witnessed (generated) at a type and a term level (in the same
way as in 7), but will not work for propositions whose truth values cannot be decided by purely logical principles
(such as the truth of a quantified natural number proposition), being instead reliant on additional type-specific

inference rules (such as a structural induction principle).

9. Conclusion

In this paper, we have provided a simple interpretation of higher-order classical logic in terms of (truth) functions
witnessing types in the propositions-as-types view of logic. Functions that inhabit . — 1, | — T and T — T are
the identity function, a type instantiator function and a type modifier function, which as programs can be thought of
respectively as a “no op” for the identity, a program to construct a member of a type and a program to construct a
member of one type given a member of another. Double negation elimination, ——A, which is equivalent to
1 — 1 for an inhabited type, can be thought of as being witnessed by the identity function ¢ acting on a witness
a : A. We have also seen that type identity functions have been used to produce witness functions for specific types
representing logical truths, assuming only type identities of the form (A — L) =1, i((Vz:A)L) =1,
i(VP:A— Bool)Ll)=1 and #(VP:TR(n)(A))L)=1, where TR(1)(A):=(A— Bool) and
TR(n+1)(A) := TR(n) — Bool for n: N and n > 0, if type A is inhabited and any Boolean-valued predicate

bound by a universal quantifier is empty for some value of the quantifier variable.

Future work could include treating classical logical systems that include equality, comprehension axioms (for second

and higher logics) and principles such as the axiom of choice, which have a potentially logical status.

Notes

MSC Classification: 03B38.

Footnotes

1 See the history inf28l for example.

2 We can write k(a) = (Az : A)k(z)(a) for a substitutable for variable . Then we see that f(k) = k(a) and f extends

the witness q : A through ksothat f = (A\k: A — R)(k(a)).

3 The assumption of a witness to A is sufficient from a logical truth perspective, as the assumption is hypothetical. If

the witness is hypothetical, we expect the witness to be generic, such as the identity function.
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