
14 January 2025, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Optimizing Edge AI: A Comprehensive
Survey on Data, Model, and System
Strategies

Xubin Wang1,2,3, Weijia Jia2,3

1. Hong Kong Baptist University, Hong Kong; 2. BNU-HKBU United International College; 3. Beijing Normal University, China

The emergence of 5G and edge computing hardware has brought about a signi�cant shift in arti�cial

intelligence, with edge AI becoming a crucial technology for enabling intelligent applications. With

the growing amount of data generated and stored on edge devices, deploying AI models for local

processing and inference has become increasingly necessary. However, deploying state-of-the-art

AI models on resource-constrained edge devices faces signi�cant challenges that must be addressed.

This paper presents an optimization triad for e�cient and reliable edge AI deployment, including

data, model, and system optimization. First, we discuss optimizing data through data cleaning,

compression, and augmentation to make it more suitable for edge deployment. Second, we explore

model design and compression methods at the model level, such as pruning, quantization, and

knowledge distillation. Finally, we introduce system optimization techniques like framework

support and hardware acceleration to accelerate edge AI work�ows. Based on an in-depth analysis of

various application scenarios and deployment challenges of edge AI, this paper proposes an

optimization paradigm based on the data-model-system triad to enable a whole set of solutions to

e�ectively transfer ML models, which are initially trained in the cloud, to various edge devices for

supporting multiple scenarios.

Corresponding author: Weijia Jia, jiawj@bnu.edu.cn

I. Introduction

From AlphaGo to ChatGPT, the rapid progress of AI technology in recent years makes us marvel at its

huge potential. Simultaneously, media coverage of the threat of arti�cial intelligence challenging

Qeios

qeios.com doi.org/10.32388/IZOHCH 1

mailto:jiawj@bnu.edu.cn
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

human intelligence is increasing. In fact, while the potential of AI has been shown, there are still some

gaps between AI applications and the real world. To achieve better performance, larger datasets and

more parameters are often used to train AI models, which usually requires a large amount of training

consumption and also makes the model complex. A typical example is the large-scale language model

GPT-3, which has 175 billion parameters and requires about 800GB of storage[1]. Unfortunately, the

high cost of training makes it out of reach for the average person, and only exists in labs like OpenAI

with a deep accumulation. Meanwhile, these cumbersome models are di�cult to deploy to small,

resource-constrained models such as edge devices, which are widely distributed in life. Therefore,

there is an urgent need to design e�cient AI models and frameworks for use on small devices.

With the development of communication technologies such as 5G and the Internet of Things, the edge

of the network can reach a variety of devices in multiple settings, including schools, hospitals,

factories, shops and homes[2]. These widely distributed edge devices generate huge amounts of data.

According to Gartner, by 2025, about 75% of enterprise-generated data will not come from traditional

data centers or the cloud, but from edge devices[3]. Storing and processing these large amounts of data

in the traditional cloud will bring great system overhead and transmission bandwidth requirements.

Meanwhile, processing data at the edge is an important requirement for some applications (eg. Smart

Cities[4], Autonomous driving[5]), even as rapid advances in network technologies such as 5G bring

increased communication capabilities. Edge computing is a kind of computing mode which is close to

data source and strives to reduce transmission delay through local computation[6]. By putting

computing on the edge, it relieves the real-time requirements that cloud computing cannot meet in

some scenarios[7].

Edge AI refers to AI algorithms deployed on edge devices for local processing, which can process data

without a network connection. As more and more devices cannot rely on the cloud to process data, the

emergence and development of edge AI can help alleviate such problems[8]. Especially with the advent

of the era of big data, the use of arti�cial intelligence technology to improve the level of automatic

processing equipment is particularly important. For example, a prominent feature of Industry 4.0 is

smart automation, where industrial robots need to process data at high speed with minimal latency[9].

With the help of AI, industrial robots can process and infer a large amount of multi-modal data from

mobile devices, sensors and Internet of Things platforms with an e�ciency beyond the reach of

human beings, so as to �nd potential risks and deal with them in a timely and e�ective manner, thus

improving the intelligence of factories[10]. In recent years, deep learning has brought about

qeios.com doi.org/10.32388/IZOHCH 2

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

breakthroughs in arti�cial intelligence technology[11]. However, these models usually need to consider

a large number of parameters during training and rely on high-performance multi-core processing

devices such as GPUs. For AI models to cover real-life scenario problems, it is essential to deploy them

on devices with limited resources. At the same time, the deployment of the model on the local device

can also avoid data leakage during the transmission process to the server, so as to meet the increasing

importance of security and privacy needs of people. Therefore, it is necessary and practical to study

e�cient models that can be deployed to resource-constrained edge devices.

qeios.com doi.org/10.32388/IZOHCH 3

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Paper Contributions Data Model System Applications Repository

Liu et al.[12]
Edge AI for communication between edge

devices.

Chen et al.

[13]

Deep learning applications deployed at the

edge of networks.

Letaief et al.

[14]
Edge AI for 6G.

Xu et al.[15]
Introduce edge intelligence from: caching,

training, inference, and o�oading.

Deng et al.

[2]

Introduce edge intelligence from: edge for AI

and edge on AI.

Yao et al.[16]
Introduce cloud AI and edge AI from the

aspect of edge-cloud collaboration.

Murshed et

al.[17]

Deploying machine learning systems at the

edge of the network.

Park et al.

[18]

Explore the key building blocks of wireless

network intelligence.

Wang et al.

[19]

Introduce the bene�ts of edge intelligence and

intelligent edge.

Zhou et al.

[8]

Introduce edge intelligence from:

architecture, framework, and key

technologies.

Ours
Explain how to learn an e�cient model from

the data, model, and system perspectives.

Table I. Related Surveys and Their Contributions

✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓ ✓ ✓

qeios.com doi.org/10.32388/IZOHCH 4

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

A. Related Surveys

Our main work in this survey is to provide a comprehensive overview of the current state-of-the-art

techniques and approaches for developing e�cient models for resource-constrained devices.

Compared with the previous edge AI survey, Shi et al.[12] discussed from the perspective of e�cient

communication, Dai et al.[20] introduced from the perspective of computation o�oading, Zhang et al.

talked[21] mobile edge AI for the Internet of Vehicles, Park et al.[18] provided an overview for wireless

network intelligence, and Letaief et al.[14] discussed edge AI for 6G. While these surveys are essential

and cover various aspects of edge AI, they do not provide a comprehensive discussion of deploying AI

models on edge devices.

Deng et al.[2] discussed edge AI from the perspectives of AI on edge and AI for edge, while Zhou et al.

[8] provided a comprehensive overview of relevant frameworks, technologies, and structures for deep

learning models involved in training and reasoning on the network’s edge. Similarly, Xu et al.

[22] conducted an extensive review of edge intelligence, including edge inference, edge training, edge

caching, and edge o�oading. On the other hand, Hua et al.[23] introduced their survey from the

viewpoint of AI-assisted edge computing, while Murshed et al.[17] reviewed edge AI from the

perspective of practical applications. Additionally, surveys[13] and[19] also touched on edge inference

and model deployment. Finally, survey[24] and[25] covered the topics of model compression and

acceleration. Although some of these surveys have brie�y discussed the deployment of AI models on

edge devices, none has provided a comprehensive discussion of this crucial aspect. Therefore, this

survey aims to �ll this gap and provide a detailed and in-depth analysis of AI model deployment on

edge devices. Table 1 presents a comparison of our survey with the existing and signi�cant surveys on

edge AI from the data, model, system, applications, and repository aspects.

B. Our Contributions

In this survey, our focus is to provide an academic response to the following research questions (RQs):

RQ1: What are the data challenges for building and deploying machine learning (ML) models on

edge devices and how can we address them?

RQ2: How can we optimize ML models for e�cient edge deployment without signi�cantly

compromising accuracy?

qeios.com doi.org/10.32388/IZOHCH 5

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

RQ3: What system infrastructure and tools can best support edge AI work�ows and seamless model

deployment on heterogeneous edge hardware?

RQ4: What are the applications of edge AI in daily life?

RQ5: What are the challenges of edge AI and how can they be mitigated and addressed?

RQ6: What are the future trends of edge AI?

Figure 1. The taxonomy of the discussed topics in this survey.

qeios.com doi.org/10.32388/IZOHCH 6

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Acronym Explanation

5G Generation Mobile Networks

6G Generation Mobile Networks

AI Arti�cial Intelligence

ASIC Application Speci�c Integrated Circuit

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

DSP Digital Signal Processor

EC Edge Computing

Edge AI Edge Arti�cial Intelligence

FLOP Floating-point Operations Per Second

FPGA Field Programmable Gate Array

GAN Generative Adversarial Network

GIGO Garbage in, Garbage out

GPU Graphics Processing Unit

IoT Internet of Things

KD Knowledge Distillation

ML Machine Learning

NAS Neural Architecture Search

NLP Natural Language Processing

NPU Neural Processing Unit

RNN Recurrent Neural Network

SLAM Simultaneous Localization And Mapping

VPU Vision Processing Unit

5
th

6
th

qeios.com doi.org/10.32388/IZOHCH 7

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Table II. List of abbreviations

By answering the aforementioned research questions, our contributions can be summarized into the

following six points:

1. Novel Taxonomy: We propose a novel taxonomy for optimizing the deployment of ML models to

edge devices based on three dimensions: data, model, and system. This “optimization triad”

provides a systematic perspective on the requirements, challenges and solutions for enabling AI

at the edge. The proposed triad framework provides a conceptual advance in guiding integrated

edge AI solutions. It aims to inspire further development of uni�ed standards, tools, benchmarks

and best practices to accelerate progress in this space.

2. Comprehensive Review: We present a comprehensive review of techniques for optimizing the

deployment of ML models to resource-constrained edge environments. Enabling sophisticated AI

on endpoint devices demands overcoming constraints around data, computing, and

infrastructure through customized solutions. Our analysis provides an integrated perspective on

capabilities and open challenges at each layer of the ML-to-edge pipeline.

3. Potential Applications: We present an in-depth analysis of potential edge AI applications that

could enhance daily life through enhanced connectivity and intelligent personalization. By

categorizing use cases based on technical and experiential attributes, this review aims to

systematically uncover value propositions to motivate further development of customized edge

AI solutions.

4. Challenges and Mitigation Strategies: We analyze various technological and social challenges

confronting edge AI that must be navigated to ful�ll its promise of improving daily life. Our

review explains the limitations and risks of edge AI, from data to models and systems, proposing

customized solutions and controls where relevant.

5. Future Trends: We analyze emerging trends anticipated to shape the continued progress of edge

AI, guiding responsible development and maximizing bene�ts. In the future, edge AI is expected

to have broader applications and become more intelligent, �exible, secure, collaborative, and

e�cient. Advancements in AI chip technology, edge computing capabilities, and new

technologies like blockchain will enable this evolution. With improved processing power, privacy

qeios.com doi.org/10.32388/IZOHCH 8

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

protection, and security measures, edge devices will be able to handle increasingly complex

tasks, ensure user data privacy, provide e�ective industry-speci�c solutions, and unlock the full

potential of edge AI.

6. Abundant Resources: We compile a comprehensive set of resources on edge AI spanning

backgrounds, literature, and open source codes into an open access Github repository available at

https://github.com/wangxb96/Awesome-AI-on-the-edge to provide researchers and developers

a foundation to build upon. By organizing and annotating key materials in this space, our curated

collection aims to chart a roadmap of edge AI.

C. Organization

In this survey, we aim to explain how to learn e�cient models for edge deployment and edge

inference from three perspectives: data, model, and system. At the data level, we focus on data

preprocessing and improving the quality of the trained model by removing noisy data and extracting

key features. This enables the model to e�ectively learn from the data and produce accurate

predictions. At the model level, we focus on the design of the model architecture and a series of model

compression methods to further compact the model. By reducing the model’s size, we can achieve

faster inference and reduce the computational resources required to run the model. This is particularly

important for edge AI, where resource-constrained devices require e�cient models. At the system

level, we explore the software and hardware level to accelerate model training and inference methods.

By leveraging these techniques, we can achieve faster and more e�cient model training and inference,

allowing for faster deployment and more responsive edge AI systems.

The remaining sections of this paper are as follows: Section 2 reviews the fundamental concepts of

edge computing and edge AI. In Sections 3, 4, and 5, we explore optimizing ML for resource-

constrained edge environments from data, model and system levels respectively (The work pipeline is

shown in Figure 2.). Section 6 shows the application scenarios of edge AI. In Section 7, we discuss the

challenges of edge AI. Finally, we conclude the article and show the potential trends of edge AI in

Section 8. Speci�cally, we summarize the taxonomy of the discussed topics of this paper in Figure 1,

and the discussed edge AI optimization triad is shown in Figure 31.

qeios.com doi.org/10.32388/IZOHCH 9

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Figure 2. An overview of edge deployment. The �gure shows a general pipeline from the three aspects of

data, model and system. Note that not all steps are necessary in real applications.

Figure 3. Edge AI Optimization Triad.

II. Fundamental Concepts

This section provides the fundamental concepts of edge computing and edge arti�cial intelligence,

and Figure 4 shows the intersection between edge computing and arti�cial intelligence and the focus

of this survey.

qeios.com doi.org/10.32388/IZOHCH 10

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Figure 4. The intersection of edge computing and arti�cial intelligence. This survey

focuses on edge deployment and inference in edge AI.

A. Edge Computing

Cloud computing o�ers many bene�ts, including �exibility, scalability, enhanced collaboration, and

reduced costs for modern enterprises[26]. However, cloud computing systems are completely

dependent on the Internet, and without a valid Internet connection, users will not be able to access

services. Additionally, since the cloud infrastructure is provided by the cloud provider, the cloud user

has limited control over applications, resources, and services. The risk of user data being leaked in the

cloud and during transmission is also noteworthy[27]. Despite the many advantages of cloud

computing, when edge devices have real-time requirements for data processing, the response time of

modes that transport output from edge to cloud for processing and then return may be too long,

especially in the case of an unstable network. Edge computing, a distributed computing architecture,

has been proposed to address this issue. It moves data processing to the edge node where the data is

generated, addressing the issue of slow response and high delay that can occur in cloud processing[7].

Figure 5 shows the di�erence between cloud computing and edge computing.

qeios.com doi.org/10.32388/IZOHCH 11

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Figure 5. Cloud computing concentrates resources in centralized places like data centers, while edge

computing places compute and storage resources closer to the data source.

Edge application services reduce the transfer of data and aim to keep processing locally, which

alleviates problems such as network latency and transmission overhead. Since the data is stored and

processed locally, the user has absolute ownership of the data, which also avoids the risk of data

leakage during transmission between edge nodes and servers[28]. Edge computing brings computing

closer to the end-user and speeds up the response time of services, which is necessary and essential in

services such as autonomous driving[5]. When local resources are limited, the local device transmits

data to the edge network server instead of to the cloud server, which can avoid long-distance

transmission and response and thus improve e�ciency[29]. Moreover, the deployment and access of

edge devices and their ability to continue service even when communication is slow or temporarily

interrupted ensure the scalability and reliability of edge computing[7]. The application of edge

computing has been greatly successful in many aspects, for example, IoT[30], autonomous driving[5],

smart cities[4], robotics[31], and so on.

B. Edge Arti�cial Intelligence

Edge arti�cial intelligence, or edge AI, is a combination of edge computing and arti�cial intelligence.

With the proliferation of IoT devices, a large amount of multi-modal data (such as audio, video,

pictures, etc.) is continuously generated. Advances in edge computing allow data on these edge devices

to be processed locally in real-time without being sent back to the cloud, reducing latency and

providing more e�cient and timely responses[7]. Arti�cial intelligence is an automated technology

that quickly analyzes large amounts of data to extract information for further prediction and

qeios.com doi.org/10.32388/IZOHCH 12

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

decision-making, which makes it suitable for application on edge devices in many scenarios[15]. As the

computing power of edge devices improves without a signi�cant increase in hardware costs and

advances in algorithm-optimization techniques enable computationally demanding AI models to run

on edge devices, the generation and development of edge AI technology that meets the requirements

of real-time response is made possible[19].

As shown in Figure 6, edge AI allows data to be processed at the local level, which greatly reduces

latency between cloud and local data processing. With less data being transferred, the system’s

bandwidth requirements and cost are reduced. More importantly, because data is stored and processed

locally, data security is improved, and there is less risk of data leakage. Along with the application of

AI technology, this increases the level of automation of tasks handled by edge devices. Furthermore,

edge AI enables model training and reasoning on edge devices, which allows real-time decisions to be

made. It also enables local decision making, which is independent of network quality and cloud

systems, further improving the reliability of edge task execution. Edge AI is used in a wide range of

applications, including autonomous cars, virtual reality games, smart factories, security cameras, and

wearable healthcare devices[32]. Enabled by AI technology, the automation and intelligence level of

edge equipment is enhanced.

Figure 6. Edge AI is the application of AI algorithms and technologies to edge computing devices to

achieve faster and real-time data processing and applications.

qeios.com doi.org/10.32388/IZOHCH 13

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

III. Data Optimization for Edge AI Deployment

Garbage in, garbage out (GIGO) is a commonly used idiom in the computer world, which implies that

poor quality data entering a computer system will produce poor results. In industry, it is widely

recognized that data and features determine the upper limit of ML, and data preprocessing methods,

such as feature engineering, play a crucial role in industrial processes. An example of this is the GPT

series, which shares a similar basic model architecture but has seen improvements in both the scale

and quality of training data. As a result, the performance of these models has been signi�cantly

enhanced[33]. To improve the performance of the model in resource-constrained devices, data

preprocessing is often an essential step. Additionally, feature compression techniques can

signi�cantly reduce the data size, thereby reducing the model’s size and resource requirements. By

e�ectively preprocessing data, we can remove noisy or irrelevant data, extract relevant features, and

normalize the data to achieve better model performance. Common data preprocessing techniques

include data cleaning, feature selection, and feature extraction. These techniques can be applied to

various types of data, including text, image, and time-series data. In this section, we will introduce

common data preprocessing methods and their applications in resource-constrained environments.

Figure 7 shows the operations of data optimization.

Figure 7. An overview of data optimization operations. Data cleaning improves data quality by removing

errors and inconsistencies in the raw data. Feature compression is used to eliminate irrelevant and

redundant features. For scarce data, data augmentation is employed to increase the data size.

qeios.com doi.org/10.32388/IZOHCH 14

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

A. Data Cleaning

Data cleaning is a crucial step in data preprocessing that involves removing or correcting noisy or

incorrect data and removing irrelevant or redundant observations. In ML, the presence of label noise

in data can signi�cantly impact the accuracy of the trained model. However, re-labeling large datasets

accurately can be a challenging task particularly in situations where resources are limited. To address

this issue, recent research has proposed innovative approaches, such as active label cleaning, which

identi�es and prioritizes visibly mislabeled samples to clean up the noisy data[34]. Mishra et al.

[35] have developed an ensemble method based on three deep learning models to handle noise labels of

di�erent concentrations of human movement activities collected by smartphones, which can alleviate

the problem of label noise arising from crowdsourcing or rapid labeling on the Internet.

With the proliferation of smart sensors in the IoT, vast amounts of data are being collected. However,

the harsh sensor environment tends to introduce noise into the collected data. To mitigate the

problem that traditional sensor nodes are not enough to handle big data, researchers have proposed

various innovative approaches. For instance, Wang et al.[36] proposed a method of data cleaning

during data collection and optimized the model through online learning. Ma et al.[37] proposed a

federated data cleaning approach for future edge-based distributed IoT applications while protecting

data privacy. Sun et al.[38] developed a data stream cleaning system with the help of both the cloud

servers and edge devices. Additionally, Sun et al.[39] also proposed an adaptive data cleaning method

based on intelligent data collaboration for �ltering noise data. The work of Gupta et al.[40] proposed a

ProtoNN compression approach to reduce the model size further by learning a small number of

prototypes to represent the training set to enable deployment on resource-scarce devices. These

approaches o�er promising solutions for cleaning data and enabling e�cient processing of big data in

resource-constrained environments.

Discussion: While innovative approaches like active label cleaning and ensemble methods based on

deep learning models can alleviate the problem of label noise, they may have some disadvantages. For

instance, active label cleaning depends on the availability of a small set of labeled samples, and the

performance of the approach may su�er if the labeled samples are not representative of the entire

dataset. Similarly, ensemble methods can be computationally expensive and may increase the risk of

over�tting. In addition, some of the proposed approaches for data cleaning in IoT environments, such

as data cleaning during data collection and federated data cleaning, may require signi�cant

qeios.com doi.org/10.32388/IZOHCH 15

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

computational resources and may not be feasible in resource-constrained environments.

Furthermore, intelligent data collaboration for �ltering noise data may require signi�cant

communication overhead, which can be a challenge in IoT environments. Therefore, while these

approaches o�er promising solutions for cleaning data and enabling e�cient processing of big data in

resource-constrained environments, they also have limitations that need to be carefully considered.

B. Feature Compression

Feature compression is a common technique used in ML to reduce the dimensionality of high-

dimensional feature space. Two popular methods of feature compression are feature selection and

feature extraction, which aim to remove redundant and irrelevant features while retaining the

necessary information[41]. Feature selection involves choosing a subset of relevant features from the

original set while maintaining maximum usefulness, resulting in improved model accuracy, reduced

complexity, and enhanced interpretability[42]. In contrast, feature extraction creates new features

based on the functions of the original ones, ensuring that the newly created features contain useful

information while being non-redundant[43]. By leveraging these techniques, researchers can

compress the feature space and improve the e�ciency and performance of their models.

With the increasing popularity and growth of computationally constrained devices such as

smartphones, wearables, and IoT devices, there is a growing need to develop e�cient and e�ective ML

algorithms for on-device analysis on these platforms. Feature selection has emerged as a popular

technique for reducing the dimensionality of high-dimensional feature spaces and improving the

e�ciency and accuracy of ML models. In recent years, researchers have applied feature selection

methods to various resource-constrained applications. For example, Do et al.[44] proposed an

accessible melanoma detection method using smartphones, where they designed a feature selection

module to select the most discriminative features for classi�cation. Similarly, Fasih et al.[45] adopted

feature selection methods to reduce memory and computational requirements in their Active Feature

Selection approach for emotion recognition. Summerville et al.[46] designed an ultra-lightweight deep

approach based on feature selection for anomaly detection in IoT devices. Sudhakar et al.[47] proposed

ActID, a framework for user identi�cation based on activity sensors, where the feature selection

method is used to evaluate and select discriminative high-quality features, thus reducing the

complexity of the algorithm and making it better adapt to the requirements of resource-limited

devices. Laddha et al.[48] proposed a method for selecting features with high invariance and

qeios.com doi.org/10.32388/IZOHCH 16

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

robustness based on descriptor score to achieve the required pose precision for real-time

simultaneous localization and mapping (SLAM) on resource-constrained platforms.

In addition, feature selection has also been applied in other edge environments to enhance the

performance and e�ciency of ML algorithms. Several studies have demonstrated the usefulness of

this technique in various edge-based applications, such as Parkinson’s disease classi�cation[49],

atrial �brillation recognition[50], data dimensionality reduction[51], fault diagnosis on the edge of

IoT[52], COVID-19 detection[53], and more. For instance, swarm intelligence-based methods[51], pre-

training models[53], and social learning particle swarm optimization[53] have been employed to select

the most informative features. Feature selection appears to be a promising approach to reducing the

computational complexity of ML algorithms, enhancing their accuracy, and enabling real-time

analysis on resource-constrained devices. Therefore, its broader adoption is expected to facilitate on-

device analysis in constrained environments and accelerate the development of e�cient and e�ective

edge-based ML solutions.

The increasing demand for intelligent sensing and analysis on edge has led to a growing need for

e�cient and e�ective methods to reduce the energy and memory cost of deep learning algorithms in

resource-constrained edge computing systems. To address this challenge, researchers have proposed

various feature compression methods. For example, Matsubara et al.[54] proposed a supervised feature

compression method based on KD, while Chen et al.[55] proposed a sparse projection method for face

recognition. To better perform intelligent sensing at the front end, Chen et al.[56] proposed an

intermediate-layer deep learning feature compression method. Liu et al.[57] developed a method for

compressing features along the spatiotemporal dimensions for action recognition, while Shao et al.

[58] designed a lightweight encoder-decoder structure to reduce the size of corresponding features.

Further, Abdellatif et al.[59] proposed a lightweight classi�cation mechanism for detecting seizures

with high accuracy and low computational requirements at the edge of the network through feature

extraction of vital signs. Zhou et al.[60] applied image preprocessing techniques to vision sensing and

designed an industrial wireless camera system to reduce energy consumption. Similarly, Abdellatif et

al.[61] designed a multi-modal data compression and edge-based feature extraction method for event

detection. Moreno-Rodenas et al.[62] proposed a method for monitoring wastewater pumping stations

using in-camera image processing, while Guo et al.[63] designed an adaptive region-of-interest-

based image compression scheme for target detection.

qeios.com doi.org/10.32388/IZOHCH 17

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Discussion

These feature compression methods have shown great potential in reducing the energy and memory

cost of deep learning algorithms in resource-constrained edge computing systems. By compressing

features, these methods enable e�cient and e�ective analysis on edge with limited resources, making

it possible to perform intelligent sensing and analysis in a wide range of applications. While feature

compression methods are promising for edge-based applications, there is a trade-o� between the size

of the compressed features and the accuracy of the resulting model. Thus, it is essential to carefully

balance the compression ratio and the accuracy of the model to ensure the best performance on

resource-constrained devices. Moreover, further research is needed to develop more sophisticated

feature compression methods that can better adapt to di�erent applications and scenarios.

C. Data Augmentation

Data augmentation is a commonly used technique in ML to increase the amount of a dataset by

generating new data through slight modi�cations of existing data. This technique can be particularly

useful when dealing with smaller datasets and can help alleviate over�tting problems. In the �eld of

image processing, data augmentation can be achieved through various techniques such as rotation,

edge enhancement, denoising, and scaling of images[64]. By applying these modi�cations to existing

images, new and diverse images can be generated, thereby increasing the size of the dataset and

improving the performance of the model. In natural language processing (NLP) tasks, data

augmentation can be realized by various techniques such as randomly adding or deleting words,

adjusting the order of words, auxiliary task utilization[65], translating samples into a second language

and then translating back to form new samples, among others[66]. These techniques help in

generating new and diverse data, which can be used to train better models and improve the

performance of the model on the test data.

To address the challenge of limited data availability in edge devices, researchers have proposed

various data augmentation methods that generate new and diverse data for training ML models. For

instance, Wang et al.[67] designed a tra�c prediction method based on a 5G cellular infrastructure

that incorporates data augmentation to alleviate data shortages and privacy issues on edge devices.

Similarly, Liao et al.[68] proposed three data augmentation methods to accelerate the creation of a

multi-user enhanced PHY layer authentication system model. Another example is the work of Liu et al.

qeios.com doi.org/10.32388/IZOHCH 18

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

[69], who improved the prediction accuracy of a KITTI road detection model by introducing

appropriate data augmentation strategies, such as adding road edge labels to small training samples.

In addition, data augmentation has been employed by researchers to improve the generalization of

images in complex scenes, as demonstrated by Jiao et al.[70] in their method for litchi monitoring. Gu

et al.[71] proposed a line segment detection method named M-LSD that leverages data augmentation

to provide auxiliary line data for the training process. Furthermore, Liu et al.[72] utilized the data

augmentation technique to improve the performance of intrusion detection systems in the industrial

IoT by addressing the problem of data imbalance. Pan et al.[73] expanded the amount of training data

for 1D tracking through the use of data augmentation, which reduced the pressure of collecting more

data from users.

Discussion

Although data augmentation is a powerful technique for generating new and diverse data and

improving the performance of ML models, it has some limitations and disadvantages. One major

disadvantage is that data augmentation may introduce bias or unrealistic assumptions into the

training data, which can negatively a�ect the performance of the model on the test data. Moreover,

the e�ectiveness of data augmentation depends on the choice of augmentation techniques and the

speci�c application domain. For instance, some augmentation techniques may not be suitable for

certain types of data, such as medical images, where introducing arti�cial modi�cations can be risky.

Additionally, data augmentation can be computationally expensive, especially for large datasets and

complex models. Therefore, while data augmentation is a valuable technique for improving the

performance of ML models, it is important to carefully consider its limitations and potential

drawbacks in di�erent application scenarios.

IV. Model Optimization for Edge AI Deployment

Model optimization is a critical step in deploying ML models to edge devices where computational

resources are limited. There are two main approaches to model optimization: model design and model

compression (as shown in Figure 8). The former involves developing compact model architectures and

using automated neural architecture search techniques to achieve superior performance while

minimizing the computational burden and number of model parameters. The latter involves using

methods such as pruning, parameter sharing, quantization, knowledge distillation, and low-rank

qeios.com doi.org/10.32388/IZOHCH 19

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

factorization to shrink the size of deep learning models without signi�cantly a�ecting their accuracy

or performance. These techniques are crucial for deploying complicated models on devices with

limited resources or in large-scale distributed systems with constrained processing, memory, and

storage.

Figure 8. An overview of model optimization operations. Model design involves creating lightweight

models through manual and automated techniques, including architecture selection, parameter tuning,

and regularization. Model compression involves using various techniques, such as pruning, quantization,

and knowledge distillation, to reduce the size of the model and obtain a compact model that requires fewer

resources while maintaining high accuracy.

A. Model Design

Developing optimal model architectures is critical for achieving superior performance across a range

of ML applications. In this section, we will explore two approaches for addressing this challenge: the

design of compact model structures and the use of automated neural architecture search (NAS)

techniques. These strategies aim to achieve superior model performance while minimizing the

computational burden and number of model parameters, enabling practical deployment on various

computational devices.

1. Compact Architecture Design

Compact neural network architectures are typically characterized by their lower requirement for

computing resources and fewer parameters. Due to the limited computing power of edge devices, it is

increasingly important to develop neural network models that are both e�cient and compact.

Therefore, in this section, we will introduce some of the noteworthy lightweight neural network

models that have been proposed in the literature.

qeios.com doi.org/10.32388/IZOHCH 20

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

The rise of areas such as the IoT and edge computing, which require processing huge amounts of data

and the ability to perform real-time analysis on edge devices, has boosted the development of

lightweight neural networks. These lightweight neural networks typically use techniques such as

convolutional grouping, depth-separable convolution, width-separable convolution, channel

pruning, network pruning, and others to compact the network architecture[74], resulting in higher

computational e�ciency and lower memory consumption. For example, the MobileNets series[75][76]

[77] is a collection of lightweight neural networks built for mobile vision applications. These networks

were developed by Google researchers and have gained a lot of traction in the computer vision world

due to their high accuracy and minimal computing complexity, making them perfect for usage on

mobile and embedded devices with limited resources. Moreover, Zhou et al.[78] proposed to invert the

structure and introduce a novel bottleneck design, referred to as the ”sandglass block,” which

conducts identity mapping and spatial transformation at higher dimensions, thereby reducing

information loss and gradient confusion more e�ectively. In Tan et al.[79]’s research, they introduced

an automated approach for mobile NAS that incorporates model latency as a crucial optimization

objective to solve the di�culty of manual solution for so many architecture possibilities in CNN.

Shu�eNets series is a lightweight CNN proposed by MegVII, which aims to solve the balance problem

between the accuracy and e�ciency of lightweight neural networks. The core idea of Shu�eNets is to

enhance the information �ow of the network and improve its accuracy by performing channel

shu�ing within groups. In Shu�eNetV1[80], channel shu�ing is introduced, which divides the input

group into multiple sub-groups along the channel dimension and performs convolution operations on

each sub-group. The results are then concatenated along the channel dimension. Through this

operation, Shu�eNetV1 can e�ectively reduce computational complexity while improving accuracy.

Based on Shu�eNetV1, Shu�eNetV2[81] employs a novel Shu�eNetV2 unit structure, which

incorporates designs such as channel shu�ing and pointwise convolutions. This unit structure

signi�cantly improves information �ow, thereby further enhancing the accuracy of the network. In

OneShot proposed by Guo et al.[82], it alleviates the weight adaptive problem by building a simpli�ed

super network in which all architectures are single paths.

SqueezeNet[83] achieves e�cient information transfer with few parameters by introducing a

component named ”Fire module,” which consists of a 1 x 1 convolutional layer called squeeze layer

and a 1 x 1 and 3 x 3 convolutional layer called expand layer. Squeeze layer compresses the number of

channels in the input feature graph, and expand layer increases the number of channels in the

qeios.com doi.org/10.32388/IZOHCH 21

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

compressed feature graph. The subsequent version of SqueezeNet, SqueezeNext, using hardware

simulation results of power consumption and inference speed on embedded systems, showed that

compared to SqueezeNet, the model is 2.59x faster, 2.25x more energy-e�cient, and without any

accuracy degradation[84]. Han et al.[85] proposed a plug-and-play Ghost module, which tends to

generate more feature graphs through low-cost operations to enhance feature extraction, and at the

same time, it uses a Ghost bottleneck structure to enhance the representation ability of models.

The E�cientNet series[86][87][88], proposed by Tan et al. of the Google Brain Group, are also famous

e�cient CNNs. E�cientNet employs a technique called ”compound scaling,” which adjusts not only

the depth, width, and resolution of the network when scaling it up but also the interdependent

relationships between these parameters. This results in a more e�cient and accurate network[86].

E�cientNetV2 is an upgraded version of E�cientNet, which further improves the performance of the

network by using more e�cient network structure design and optimized training strategies, and

proposes an improved progressive learning method to adaptively adjust the learning strategy[87].

E�cientDet is based on E�cientNet as the backbone network and achieves higher detection accuracy

and faster inference speed through innovative designs such as the introduction of the BiFPN structure,

carefully designed feature network hierarchy and feature fusion mechanism, as well as optimized loss

function[88].

Huang et al.[89] proposed CondenseNet, an e�cient CNN architecture that encourages feature reuse

through dense connectivity and prunes �lters associated with redundant feature reuse through

learned group convolutions. The pruned network can be e�ciently converted into a network with

regular group convolutions for e�cient inference, which can be easily implemented with limited

computational costs during training. Yang et al.[90] proposed an alternative scheme named

CondenseNetV2 to improve the reuse e�ciency of features. In this approach, each layer has the

capability to selectively utilize a speci�c set of highly signi�cant features from the previous layer

while concurrently updating a set of earlier features to enhance their relevance to subsequent layers.

Mehta et al. proposed ESPNet[91] and ESPNetV2[92], where ESPNet reduces computation and learns

representations with large receptive �elds by using point-wise convolutions and spatial pyramid of

dilated convolutions. ESPNetV2 is an extension of ESPNet that uses depth-separable convolution and

outperforms ESPNet by 4-5%. FBNets (Facebook-Berkeley-Nets), a series of lightweight networks

created by Facebook and UC Berkeley, FBNet[93] uses a di�erentiable NAS framework to optimize

qeios.com doi.org/10.32388/IZOHCH 22

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

neural architecture using a gradient-based method, while the second version FBNetV2[94] focuses on

the small DNAS search space. The third version FBNetV3[95], takes into account the fact that the other

approaches overlooked a better architecture-recipe combination. PeleeNet, unlike recent lightweight

networks that heavily rely on depthwise separable convolutions, utilizes conventional convolutions

and is primarily designed for deployment on mobile devices[96].

The Inception series is also a classic network proposed by Google. The idea is to use multiple

convolution kernels of di�erent sizes to process input data in parallel and then concatenate their

outputs along the channel dimension to form the network output[97]. InceptionV2 uses batch

normalization and replaces large convolution kernels with small convolution kernels[98]. In

InceptionV3, the factorization into smaller convolutions is introduced, the larger two-dimensional

convolution is split into smaller one-dimensional convolutions, and the Inception module structure is

optimized[99]. InceptionV4 introduced stem modules and reduction Blocks[100]. Xception primarily

achieved complete separation of learning spatial correlation and learning inter-channel correlation

tasks through the introduction of depthwise separable convolutions[101].

Mehta et al.[102] proposed MobileViT to learn the global representation of networks, which combines

the advantages of CNNs and ViTs and is superior to both. Wu et al.[103] designed a lightweight NLP

architecture, Lite-Transformer, where the key is a Long Short Range of Attention, with one set of

heads focused on local context modeling and another on long-distance relationship modeling.

Recently, lightweight networks based on attention have been proposed. For instance, Hou et al.

[104] took into account that some channel attention studies ignored location information and

embedded it into channel attention to enhance network performance. To avoid the complexity of the

model caused by the sophisticated attention module, Wang et al.[105] designed an E�cient Channel

Attention (ECA) module that can bring clear performance improvement with only a handful

parameters involved. In attention mechanisms, there are two types: spatial attention and channel

attention. Combining the two can improve performance, but it inevitably leads to increased model

complexity. To address this, Zhang et al.[106] designed the Shu�e Attention (SA) module, which

combines the advantages of both types of attention while avoiding excessive model complexity. Misra

et al.[107] proposed triplet attention, a novel method for e�cient attention weight calculation by using

a three-branch structure to capture cross-dimensional interactions. In the study by Zhang et al.[108],

they designed a Split-Attention block for use in ResNet, which allows attention to span feature groups

qeios.com doi.org/10.32388/IZOHCH 23

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

while ensuring the simplicity and ease of use of ResNet. In addition, to help readers better understand

these lightweight networks, we summarized their characteristics in Table 3.

qeios.com doi.org/10.32388/IZOHCH 24

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Family Model Highlights

MobileNets

MobileNets[75]
Depth-separable convolution reduces computation while maintaining

model accuracy.

MobileNetV2[76] Introduce a novel inverted residual module with a linear bottleneck.

MobileNetsV3[77]
Explore how automatic search algorithms and network design can work

together.

MobileNeXt[78] Propose a new bottleneck design named sandglass block.

MnasNet MnasNet[79]
Propose an automated mobile NAS method to solve the di�culty of

manual solution.

Shu�eNets

Shu�eNetV1[80] Utilize pointwise group convolution and channel shu�e.

Shu�eNetV2[81] It introduces a novel unit structure, the Shu�eNetV2 unit.

OneShot[82]
It alleviates the weight co-adaption problem by constructing a simpli�ed

super network.

SqueezeNets

SqueezeNet[83] It proposes an extremely compressed network structure design.

SqueezeNext[84]
It introduces low rank �lters, bottleneck module and fully connected

layer.

GhostNet GhostNet[85]
The ghost module and ghost bottleneck are designed to reduce the

computation.

E�cientNets

E�cientNet[86]
Propose a new scaling method that uses a simple and e�cient compound

coe�cient.

E�cientNetV2[87] Combine training perceptual neural architecture searching and scaling.

E�cientDet[88]

Introduce innovative designs such as the BiFPN structure, elaborately

designed feature network hierarchy and feature fusion mechanism, as

well as optimized loss functions.

CondenseNets

CondenseNet[89]
Encourage feature reuse and realize an e�cient convolutional network

architecture.

CondensenetV2[90]
An alternative method called sparse feature reactivation is proposed to

improve feature reuse.

qeios.com doi.org/10.32388/IZOHCH 25

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Family Model Highlights

ESPNets

ESPNet[91] Propose an e�cient spatial pyramid (ESP) module.

ESPNetV2[92] It’s an extension of ESPNet and uses depth-wise separable convolutions.

FBNets

FBNet[93] Use gradient-based methods to optimize the architecture of a ConvNet.

FBNetV2[94]
Propose DMaskingNAS to alleviate the problem of small search space of

DNAS.

FBNetV3[95]
It takes into account the neglect of better architecture-recipe

combinations in previous approaches.

PeleeNet PeleeNet[96] This is a variation of DenseNet, designed for mobile devices.

Inception

InceptionV1[97] It improves the utilization rate of computing resources in the network.

InceptionV2[98] It proposes batch normalization method.

InceptionV3[99]
Use convolution decomposition to improve e�ciency and an e�cient

feature map to reduce dimension.

InceptionV4[100] It introduces stem modules and reduction blocks.

Xception[101] Propose the use of depthwise separable convolutions.

Transformer

MobileViT[102] Combine the advantages of CNNs and ViTs.

Lite-

Transformer[103]

Introduce a lightweight NLP architecture with Long-Short Range

Attention.

Attention

Based

CANet[104] Embed positional information into channel attention.

ECANet[105] Propose an E�cient Channel Attention module.

SANet[106]
Feature grouping and channel attention information replacement are

introduced.

Triplet

attention[107]
Propose triplet attention for cross-dimensional interaction.

ResNeSt[108]
A modular Split-Attention block is proposed to enable attention across

feature groups.

qeios.com doi.org/10.32388/IZOHCH 26

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Table III. Classical Lightweight Neural Network Models

Discussion

The advantages of compact architecture design are that it produces e�cient and compact neural

network models with higher computational e�ciency, lower memory consumption, and improved

accuracy. These models are suitable for deployment on edge devices with limited resources, making

them ideal for IoT and edge computing applications. However, designing optimal model architectures

can be a time-consuming and resource-intensive process. Additionally, some model design

techniques, such as depthwise separable convolutions and pointwise convolutions, may be less

e�ective in capturing complex features compared to traditional convolutional layers, which may

negatively impact the model’s accuracy.

2. Neural Architecture Search

NAS aims to automate the process of designing neural network architectures, which can be a time-

consuming and resource-intensive process when done manually. NAS typically employs di�erent

optimization methods such as evolutionary algorithms, reinforcement learning, or gradient-based

optimization to search the space of neural architectures and identify the one that performs best on a

speci�c task while satisfying certain computational constraints. Recently, with the rise of IoT and AI

of Things (AIoT), there has been a growing demand for intelligent devices with low energy

consumption, high computing e�ciency, and low resource usage. NAS has emerged as a promising

approach to design e�cient and lightweight neural networks that can be deployed on edge devices. In

this section, we will discuss various recent studies that have used NAS to design e�cient neural

networks for edge computing.

One notable subject area in current studies is the employment of advanced search algorithms and

multi-objective optimization approaches to identify neural network architectures that optimize

di�erent performance metrics such as accuracy, resource consumption, and power e�ciency. This

work has become increasingly important in recent years as edge computing applications require

e�cient yet accurate models. To this end, researchers have proposed various approaches for multi-

objective architecture search. Lu et al.[109] and Lyu et al.[110] are two such studies that employed

multi-objective optimization to identify e�cient and accurate neural network architectures for edge

qeios.com doi.org/10.32388/IZOHCH 27

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

computing applications. Similarly, Chen et al.[111] used performance-based strategies to search

e�ciently for architectures that are optimal with regard to multiple objectives. These studies

underscore the signi�cance of considering di�erent objectives during the architecture search process

to ensure that the neural architectures are both accurate and e�cient. By using advanced search

algorithms and multi-objective optimization techniques, researchers can design models that are

e�ective in resource-constrained environments while still maintaining high accuracy, which is crucial

for edge computing applications.

The innovative techniques and algorithms to improve the e�ciency and e�ectiveness of NAS are often

employed in the research. For example, Mendis et al.[112] incorporated intermittent execution behavior

into the search process to �nd accurate network architectures that can safely and e�ciently execute

under intermittent power, which is a common challenge in edge computing applications. Similarly,

Ning et al.[113] identi�ed factors that a�ect the fault resilience capability of neural network models and

used this knowledge to design fault-tolerant CNN architectures for edge devices. These studies

demonstrate the importance of considering unique challenges and constraints of edge computing

applications when designing neural networks through NAS. By incorporating innovative techniques

and algorithms, researchers can develop architectures that are not only e�cient and accurate but also

robust and reliable.

Furthermore, several studies proposed hardware-e�cient primitives and frameworks to optimize the

search process and improve the performance of the resulting networks. For instance, Liu et al.

[114] proposed the Point-Voxel Convolution (PVConv) primitive, which combines the best of point-

based and voxel-based models for e�cient NAS. This hardware-e�cient primitive achieves state-of-

the-art performance with signi�cant speedup and has been successfully deployed in real-world edge

computing scenarios, such as an autonomous racing vehicle. Donegan et al.[115] proposed the use of a

di�erentiable NAS method to �nd e�cient CNNs for Intel Movidius Vision Processing Unit (VPU),

achieving state-of-the-art classi�cation accuracy on ImageNet. These studies highlight the

importance of considering hardware e�ciency when designing neural networks for edge computing

applications. By leveraging hardware-e�cient primitives and frameworks, researchers can not only

optimize the search process but also develop neural architectures that are e�cient and e�ective in

resource-constrained environments.

Moreover, some studies propose novel NAS approaches that strictly adhere to resource constraints,

while others focus on addressing non-i.i.d. data distribution in federated learning scenarios. For

qeios.com doi.org/10.32388/IZOHCH 28

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

instance, Nayman et al.[116] introduced HardCoRe-NAS, which is a constrained NAS approach that

strictly adheres to multiple resource constraints such as latency, energy, and memory, without

compromising the accuracy of the resulting networks. Similarly, MemNAS[117] is a framework that

optimizes both the performance and memory usage of NAS by considering memory usage as an

optimization objective during the search process. On the other hand, Zhang et al.[118] focused on

addressing non-i.i.d. data distribution in federated learning scenarios by proposing the Federated

Direct NAS (FDNAS) and Cluster Federated Direct NAS (CFDNAS) frameworks. These frameworks

leverage advanced proxylessNAS and meta-learning techniques to achieve device-aware NAS, tailored

to the particular data distribution and hardware constraints of each device. These studies demonstrate

the importance of considering various constraints and challenges in the design of neural networks for

edge computing applications.

Discussion

While NAS has shown promise in designing e�cient and lightweight neural networks for edge

computing applications, there are still some disadvantages to this approach. One major limitation is

that NAS can be computationally expensive, especially when searching through a large space of

possible architectures. This can make it challenging to deploy NAS-based models in resource-

constrained environments, particularly those with limited computational power. Additionally, while

NAS can optimize for multiple objectives, it can be di�cult to �nd a balance between accuracy and

e�ciency, especially when dealing with complex tasks or non-i.i.d. data distribution. Furthermore,

the resulting neural architectures may not be easily interpretable, making it challenging to

understand how they work or explain their decisions.

B. Model Compression

Model compression is a group of methods (such as pruning, parameter sharing, quantization,

knowledge distillation and low-rank factorization) for shrinking the size of deep learning models

without signi�cantly a�ecting their accuracy or performance by eliminating extraneous components,

such as duplicated parameters or layers. Due to deep learning models’ high computational and storage

needs, model compression has become more and more crucial. These methods are created to make it

possible to deploy complicated models on devices with limited resources or in large-scale distributed

systems with constrained processing, memory, and storage. To enhance the e�cacy and e�ciency of

qeios.com doi.org/10.32388/IZOHCH 29

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

deep learning models in various applications, it is possible to employ these techniques either in

isolation or in conjunction. For instance, a classic example of combining multiple techniques is Deep

Compression, which combines techniques such as pruning, quantization, and Hu�man coding to

achieve signi�cant compression of deep neural networks (DNN)[119].

1) Model Pruning

DNN models typically consist of numerous parameters and hierarchies, making them computationally

and storage-intensive. Due to their frequent application in scenarios with limited resources, such as

mobile devices, it is imperative that these models are smaller in size and require less computational

power to perform optimally. Pruning is a prevalent model compression technique that reduces the

model’s size by eliminating extraneous layers or parameters, thereby enhancing its e�ciency and

reasoning speed. Additionally, pruning helps to prevent over�tting and bolsters the model’s ability to

generalize.

In recent years, there has been a growing interest in developing pruning techniques for AI models to

reduce their size and improve their e�ciency, particularly for deployment in resource-constrained

environments. Various research e�orts have been undertaken to address this challenge. For instance,

Xu et al.[120] developed a framework named DiReCtX, which includes improved CNN model pruning

and accuracy tuning strategies to achieve fast model recon�guration in real-time, resulting in

signi�cant computation acceleration, memory reduction, and energy savings. Ahmad et al.

[121] proposed SuperSlash, which utilizes a pruning technique guided by a ranking function to

signi�cantly reduce o�-chip memory access volume compared to existing methods. DropNet[122] is an

iterative pruning method that reduces the complexity of DNNs by removing nodes/�lters with the

lowest average post-activation value across all training samples. The �ndings suggest that DropNet

can achieve signi�cant pruning (up to 90% of nodes/�lters) without sacri�cing accuracy, and the

pruned network remains e�ective even after weight and bias reinitialization. Interestingly, Li et al.

[123] demonstrated in their study that heavily compressed large models achieve higher accuracy than

lightly compressed small models. Ma et al.[124] proposed gradient-based pruning strategies to

improve performances across languages.

Structural pruning is a prominent technique in pruning that involves removing entire structures or

modules from a neural network. One approach to structural pruning is the method developed by Gao et

al.[125], which uses an e�cient discrete optimization method to directly optimize channel-wise

qeios.com doi.org/10.32388/IZOHCH 30

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

di�erentiable discrete gates under resource constraints while freezing all other model parameters.

This results in a compact CNN with strong discriminative power. Wu et al.[126] proposed MOBC, a

pruned reinforcement learning-based approach with a structured pruning method that adaptively

reduces block migrations and foreground segment cleanings in log-structured �le systems, resulting

in improved storage endurance and reduced latency with lower overheads. Furthermore, structural

pruning has also been utilized in the development of federated learning frameworks. NestFL[127] is a

learning-e�cient federated learning framework that improves training e�ciency and achieves

personalization by assigning sparse-structured subnetworks to edge devices through progressively

structured pruning.

Dynamic pruning is a commonly used technique in neural networks that involves pruning during the

training process. The technique evaluates the importance of neural network weights or neurons and

selectively removes unimportant weights or neurons. Geng et al.[128] developed an out-of-order

architecture called O3BNN-R that uses dynamic pruning to signi�cantly reduce the size of Binarized

Neural Networks, enabling e�cient computation on cost- and power-restricted edge devices. This

technique improves the e�ciency of neural network tasks on edge devices, making them more

practical. Another novel dynamic pruning technique is FuPruner[129]. The approach optimizes both

parametric and nonparametric operators to accelerate neural networks on resource-constrained edge

devices. The approach uses an aggressive fusion method to transform the model and a dynamic �lter

pruning method to reduce computational costs while retaining accuracy. Gu et al.[130] demonstrated

that their proposed mixed-training strategy, which combines two-level sparsity and power-aware

dynamic pruning, achieves superior optimization stability, higher e�ciency, and signi�cant power

savings compared to existing methods. Some researchers have focused on pruning after training, such

as Kwon et al.[131], who proposed a framework for pruning Transformers after training, achieving

signi�cant reduction in FLOPs and inference latency while maintaining accuracy.

Several researchers have proposed jointly performing pruning and other model compression methods

to improve the e�ciency of neural networks. Lin et al.[132] introduced HRank, a �lter pruning method

that prunes �lters with low-rank feature maps, resulting in signi�cant reductions in FLOPs and

parameters while maintaining similar accuracies. Li et al.[133] proposed a novel pruning technique

called kernel granularity decomposition, which combines low-rank approximation with redundancy

exploitation to achieve model compactness and hardware e�ciency simultaneously. Tung et al.

[134] developed CLIP-Q, a novel approach that combines network pruning and weight quantization in a

qeios.com doi.org/10.32388/IZOHCH 31

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

single learning framework. Fedorov et al.[135] designed a Sparse Architecture Search method that

combines NAS with pruning to automatically design CNNs that can �t onto memory-limited MCUs

while maintaining high prediction accuracy. Khaleghi et al.[136] proposed a quantization and pruning

technique for hyperdimensional computing to achieve privacy-preserving training and inference

while obfuscating information and enabling e�cient hardware implementation. These techniques

demonstrate the e�ectiveness of jointly performing pruning and other model compression methods to

improve the e�ciency of neural networks while maintaining their accuracy.

Other approaches have incorporated context-aware pruning, such as Huang et al.[137] with

DeepAdapter, which improves inference accuracy with a smaller and faster model, and Liu et al.[138],

who devised a novel content-aware channel pruning approach for unconditional GANs that

signi�cantly reduces the FLOPs of StyleGAN2 by 11x with visually negligible image quality loss

compared to the full-size model. In addition, researchers have explored the use of pruning for speci�c

applications, such as radio frequency �ngerprinting tasks[139], super-resolution networks[140], and

privacy preserved hyperdimensional computing[136]. Moreover, some researchers have proposed

hardware-software co-design approaches for pruning, such as Sun et al.[141], who presented a

hardware-aware pruning technique for a novel 3D network called R(2+1)D that achieves high accuracy

and signi�cant computation acceleration on FPGA.

Discussion

While model pruning can improve the e�ciency and speed of neural networks, there are also some

disadvantages to this approach. One major limitation is that pruning can result in a loss of model

accuracy, especially when a signi�cant number of parameters or layers are removed. Additionally,

pruning can be computationally expensive, particularly when searching for the optimal set of

parameters to prune. Pruning can also result in a less interpretable model, as the removed parameters

or layers may have played a critical role in the network’s decision-making process. Finally, some

pruning methods may not be compatible with certain hardware or software con�gurations, limiting

their practicality.

2. Parameter Sharing

Parameter sharing is a model compression technique that involves sharing the weights of a neural

network among multiple layers. This approach results in a signi�cant reduction in the number of

qeios.com doi.org/10.32388/IZOHCH 32

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

parameters required to represent the model, thus reducing its computational and memory

requirements. Consequently, the model can be better suited for deployment on resource-constrained

devices. This technique has been successfully applied to various deep learning architectures, including

CNNs and RNNs.

Several studies have explored di�erent parameter sharing techniques to achieve high compression

rates with minimal or no loss of accuracy. For instance, Wu et al.[142] proposed a novel scheme for

compressing CNNs by applying k-means clustering on the weights to achieve parameter sharing. The

proposed method includes a spectrally relaxed k-means regularization to make hard assignments of

convolutional layer weights to learned cluster centers during re-training, and is evaluated across

several CNN models demonstrating promising results in terms of compression ratio and energy

consumption reduction without incurring accuracy loss. Obukhove et al.[143] designed T-Basis, a

compact representation of a set of tensors modeled using Tensor Rings for e�cient neural network

weight compression while allowing for weight sharing. T-Basis achieves high compression rates with

acceptable performance drops and is well-suited for resource-constrained devices. In Ullrich et al.

[144]’s research, they employed a version of soft weight-sharing to realize competitive compression

rates. You et al.[145] proposed ShiftAddNAS, a NAS method for hybrid neural networks that integrate

both powerful multiplication-based and e�cient multiplication-free operators. It highlights a novel

weight sharing strategy that e�ectively shares parameters among di�erent operators with

heterogeneous distributions, leading to a largely reduced supernet size and better searched networks.

These methods have shown promising results in achieving high compression rates with minimal or no

loss of accuracy. In research[146], the proposed methods incorporate parameter sharing among

candidate architectures to enable e�cient search over a large design space and consistently

outperform manual design and random search approaches, achieving up to 1.0% absolute word error

rate reduction and 28% relative model size reduction on the Switchboard corpus.

Moreover, many studies have applied parameter sharing methods to practical applications. For

example, E�cientTDNN[147] is a novel speaker embedding architecture search framework that

employs weight-sharing subnets to e�ciently search for TDNN architectures, achieving a favorable

trade-o� between accuracy and e�ciency with parameter sharing, as demonstrated on the VoxCeleb

dataset. CpRec[148] is a compressed sequential recommendation framework that employs block-wise

adaptive decomposition and layer-wise parameter sharing schemes to reduce the number of

parameters in sandwich-structured DNNs used in sequential recommender systems. Sindhwani et al.

qeios.com doi.org/10.32388/IZOHCH 33

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

[149] proposed a uni�ed framework for learning structured parameter matrices with low displacement

rank, enabling a rich range of parameter sharing con�gurations that o�er superior accuracy-

compactness-speed tradeo�s for mobile deep learning.

Discussion: While parameter sharing can lead to signi�cant reductions in the number of parameters

required to represent a neural network, there are also several disadvantages to this approach. One

major limitation is that parameter sharing can result in a loss of model accuracy, particularly when

the shared parameters are not well-suited for the task at hand. Additionally, parameter sharing may

not be compatible with certain types of neural networks or architectures, limiting its applicability.

Another potential issue is that parameter sharing can result in a less interpretable model, as it may be

more di�cult to understand how the shared parameters contribute to the network’s decision-making

process. Finally, some parameter sharing methods may be computationally expensive or require

signi�cant computational resources, particularly when searching for the optimal set of shared

parameters.

3. Model Quantization

The quantization technique has become increasingly important for optimizing DNN models for

deployment on resource-constrained devices. It o�ers multiple bene�ts, including improved

computational e�ciency, reduced memory and storage usage, and lower power consumption. By

reducing the precision of model parameters and activations, quantization enables a signi�cant

reduction in model size while minimizing the impact on task accuracy. It is a widely adopted technique

in the �eld of deep learning and has been shown to o�er signi�cant improvements in model e�ciency

and performance on a range of hardware platforms.

Recently, there has been a growing interest in applying quantization techniques to design lightweight

models for edge devices. This trend is driven by the need to improve the e�ciency and performance of

ML on edge devices, which often have limited resources. One such technique is progressive fractional

quantization and dynamic fractional quantization, which were proposed in FracTrain by Fu et al.[150].

This method reduces the computational cost and energy/latency of DNN training while maintaining

comparable accuracy. Similarly, edgeBERT[151] is a hardware system that employs a combination of

adaptive attention span, selective network pruning, and �oating-point quantization to alleviate

computation and memory footprint overheads on resource-constrained edge platforms. PNMQ is a

data-free method for network compression using Parametric Non-uniform Mixed precision

qeios.com doi.org/10.32388/IZOHCH 34

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Quantization, which allows e�cient implementations for network compression on edge devices

without requiring any model retraining or expensive calculations[152]. Another technique for

quantized deep neural networks (QDNNs) is SPEQ[153], a novel stochastic precision ensemble training

method that employs KD without the need for a separate teacher network. Moreover, Cui et al.

[154] proposed a quantization-based approach for reducing the storage and memory consumption of

deep ensemble models, using a di�erentiable and parallelizable bit sharing scheme that allows the

members to share less signi�cant bits of parameters, while maintaining accuracy, and an e�cient

encoding-decoding scheme for real deployment on edge devices.

Some studies have also explored the quantization of other neural networks. For example, Capsule

Networks (CapsNets) have been shown to outperform traditional CNNs in image classi�cation, but

they are computationally intensive and challenging to deploy on resource-constrained edge devices. A

specialized quantization framework for CapsNets has been developed to enable e�cient edge

implementations, which can reduce the memory footprint by 6.2x with minimal accuracy loss[155].

Moreover, FSpiNN is a memory and energy-e�cient framework for spiking neural networks (SNNs)

that incorporates �xed-point quantization while maintaining accuracy, making it suitable for

deployment on edge devices with unsupervised learning capability[156].

Hardware-based quantization design are also a recent research hotspot. Zhou et al.[157] proposed an

INT8 training method implemented in Octo, a lightweight cross-platform system that achieves higher

training e�ciency and memory reduction over full-precision training on commercial AI chips.

Similarly, Wang et al.[158] introduced the Hardware-Aware Automated Quantization (HAQ)

framework, which determines the optimal quantization policy for each layer in a DNN based on the

hardware architecture, resulting in reduced latency and energy consumption without signi�cant

accuracy loss. Li et al.[159] devised a novel quantization framework, RaQu, that combines information

about neural network models and hardware structures to improve resource utilization and

computation e�ciency on resistive-memory-based processing-in-memory (RRAM-based PIM) for

edge devices. Additionally, a hardware/software co-design solution is proposed via an inexact

multiplier and a retraining strategy to quantize neural network weights to Fibonacci encoded values

for computationally demanding algorithms on resource-constrained edge devices[160].

qeios.com doi.org/10.32388/IZOHCH 35

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Discussion

Model quantization is a useful technique for improving the e�ciency and performance of deep neural

networks on resource-constrained devices. However, it also has some drawbacks. One major

limitation is that quantization can result in a loss of model accuracy, especially if the precision of

model parameters and activations is reduced too much. Additionally, �nding the optimal set of

precision levels can be computationally expensive. Reduced precision can also make the model less

interpretable, making it di�cult to comprehend how the model is making its decisions. Moreover,

certain hardware or software con�gurations may not be compatible with some quantization methods,

limiting their practicality.

4. Knowledge Distillation

KD is a model compression technique that aims to reduce the size and computational cost of DNNs by

transferring knowledge from a large and complex teacher model to a smaller and simpler student

model. It works by softening the teacher’s output into a probability distribution and using it to train

the student model to mimic the teacher’s behavior. This technique allows for the compression of

complex models while still maintaining their performance, making them more e�cient and practical

for deployment in real-world applications.

KD, introduced by Geo�rey Hinton et al.[161], has been e�ectively employed in various domains. One

approach is the self-distillation framework proposed by Zhang et al.[162] that enhances the

performance of CNNs by compressing the knowledge within the network. This framework improves

accuracy while providing depth-wise scalable inference on resource-limited edge devices. Another

approach is the DynaBERT model introduced by Hou et al.[163], which is a dynamically adjustable BERT

model that can adapt to the requirements of di�erent edge devices by selecting adaptive width and

depth. The training process involves KD from the full-sized model to small sub-networks, resulting in

superior performance compared to existing BERT compression methods. Zhang et al.[164] proposed

the SCAN framework, which divides DNNs into multiple sections and constructs shallow classi�ers

using attention modules and KD. This framework’s threshold-controlled scalable inference

mechanism allows for sample-speci�c inference, resulting in signi�cant performance gains on

CIFAR100 and ImageNet. In addition, Zhang et al.[165] proposed the dynamic knowledge distillation

(DKD) framework for deep CNNs, which leverages a dynamic global distillation module for multiscale

features imitation and a dynamic instance selection distillation module for self-judgment. The

qeios.com doi.org/10.32388/IZOHCH 36

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

framework also tailors a training-status-aware loss to handle hard samples in regression, enabling

the deployment of models on low computation edge devices such as satellites and unmanned aerial

vehicles. Hao et al.[166] designed the CDFKD-MFS framework, which compresses multiple pretrained

models into a tiny model for resource-limited edge devices without requiring the original dataset.

This framework utilizes a multi-header student module, an asymmetric adversarial data-free KD

module, and an attention-based aggregation module. Additionally, Hao et al.[167] proposed a �ne-

grained manifold distillation method for transformer-based networks to compress the architecture of

vision transformers into compact students, achieving high accuracy with lower computational costs.

Zhang et al.[168] used a comparable model to teach lexical knowledge to its counterpart model,

achieving signi�cant performance gain. Furthermore, Shen et al.[169] used two models to teach each

other and reach the trade-o� between the two models. Their results show the teacher models in KD

don’t necessarily have to be larger or much stronger models.

In addition, various other KD methods have been proposed for di�erent applications. For example, Liu

et al.[138] proposed novel content-aware KD and e�ective channel pruning schemes specialized for

unconditional GANs, achieving a substantial improvement over the state-of-the-art compression

method. Ni et al.[170] introduced an end-to-end Vision-to-Sensor KD (VSKD) framework for human

activity recognition (HAR) based on a multi-modal approach, which reduces computational demands

on edge devices and produces a learning model that closely matches the performance of the

computational expensive approach, using only time-series data. Jin et al.[171] presented a Personalized

Federated Learning (PFL) framework for edge devices, named pFedSD, which utilizes self-KD to train

models that perform well for individual clients. By distilling knowledge from previous personalized

models, pFedSD accelerates the process of recalling personalized knowledge and provides an implicit

ensemble of local models. Li et al.[172] developed an instance-speci�c multi-teacher KD model (IsMt-

KD) for distracted driver posture classi�cation on embedded systems with limited memory space and

computing resources. This model utilizes an instance-speci�c teacher grading module to dynamically

assign weights to teacher models based on individual instances, achieving high accuracy and real-

time inference on edge hardware platforms.

KD methods can be combined with other model compression approaches to further improve the

performance of DNNs on edge devices. For instance, Boo et al.[153] proposed a stochastic precision

ensemble training scheme for QDNNs that utilizes KD with a continuously changing teacher model

formed by sharing the student network’s parameters. This allows for improved performance in

qeios.com doi.org/10.32388/IZOHCH 37

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

various edge device tasks without the need for cumbersome teacher networks. Xia et al.[173] presented

an on-device recommender system for a session-based recommendation that uses ultra-compact

models and a self-supervised KD framework to address the challenges of limited memory and

computing resources. The compressed model achieves a 30x size reduction with almost no accuracy

loss and even outperforms its uncompressed counterpart. Xu et al.[174] devised a lightweight Identity-

aware Dynamic Network (IDN) for subject-agnostic face swapping on edge devices, which utilizes an

e�cient Identity Injection Module (IIM) and a KD-based method for stable training. Moreover, the

proposed lightweight SegFormer model in[175] for e�cient semantic segmentation on edge devices

utilizes a dynamic gated linear layer to prune uninformative neurons based on input instance and a

two-stage KD to transfer knowledge from the original teacher to the pruned student network,

achieving more than 60% computation savings with a minimal drop in mIoU.

Discussion

KD is a powerful method for compressing complex models while maintaining their performance,

enabling e�cient deployment on resource-limited edge devices. However, it can result in a loss of

model accuracy if the precision level is not appropriately chosen, and it can be computationally

expensive, particularly when dealing with large datasets or complex models. Additionally, while there

are many successful applications of KD, its e�ectiveness can vary depending on the speci�c domain

and task, and it may require careful tuning and experimentation to achieve optimal results.

5. Low-rank Factorization

DNNs often require high memory consumption and large computational loads, which limits their

deployment on edge or mobile devices. Low-rank factorization is a method that can help by

approximating weight matrices with low-rank matrices, �nding a lower-dimensional representation

of the data that retains the most important information. For example, SVD training[176] is a new

method that achieves low-rank DNNs during training without applying SVD on every step, using

sparsity-inducing regularizers on singular values. This method achieves a higher reduction in

computation load under the same accuracy compared to previous factorization and �lter pruning

methods. E�orts have also been made to apply low-rank factorization on resource-constrained edge

devices. MicroNet[177] is an e�cient CNN designed for edge devices, achieving low computational cost

by using Micro-Factorized convolution that factorizes pointwise and depthwise convolutions into

qeios.com doi.org/10.32388/IZOHCH 38

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

low-rank matrices. The network compensates for network depth reduction with the introduction of

the Dynamic Shift-Max activation function. MicroNet-M1 achieves 61.1% top-1 accuracy on ImageNet

classi�cation with 12 MFLOPs, outperforming MobileNetV3 by 11.3%.

Discussion

Low-rank factorization is a promising approach for reducing the computational and memory

requirements of DNNs, making them more practical for deployment on resource-limited edge devices.

However, implementing low-rank factorization can be challenging due to the high computational cost

of the factorization operation, and the need for extensive retraining to achieve convergence.

V. System Optimization for Edge AI Deployment

As the demand for real-time performance and resource-e�cient deep learning models increases,

system optimization has become a crucial area of research. To address the need for deploying deep

learning models on edge devices, it is necessary to optimize their computational e�ciency. In this

section, we present frameworks for lightweight model training and inference from a software

perspective, as well as methods for accelerating models using hardware-based approaches. The

work�ow of system optimization is shown in Figure 9.

Figure 9. An overview of system optimization operations. Software optimization involves

developing frameworks for lightweight model training and inference, while hardware

optimization focuses on accelerating models using hardware-based approaches to improve

computational e�ciency on edge devices.

qeios.com doi.org/10.32388/IZOHCH 39

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

A. Software Optimization

1. Edge AI Learning Frameworks

PyTorch and TensorFlow are widely-used deep learning frameworks, but they may not be suitable for

mobile applications due to their relative heaviness and third-party dependencies, which can be

problematic for mobile devices. However, with the evolution and development of the AI ecosystem,

these frameworks have been speci�cally designed for mobile deep learning through TensorFlow Lite

and PyTorch Mobile, allowing for e�cient training and deployment on mobile devices.

Both TensorFlow Lite and PyTorch Mobile are lightweight deep learning frameworks designed

speci�cally for mobile applications. They provide a more streamlined development process and

facilitate e�ective model training and deployment on mobile devices. The restricted computing and

memory capabilities of mobile devices have been taken into account in the optimization of these

frameworks for them. This optimization makes the models suitable for edge computing scenarios as

they can be trained and deployed on mobile devices with less resource consumption. TensorFlow Lite

and PyTorch Mobile have a range of features that are speci�cally designed for mobile applications.

Speci�cally, some features of these two frameworks are highlighted in Table 4. Moreover, TensorFlow

Lite is found to perform better with lightweight deep learning models and is suitable for edge

computing applications, especially for mobile devices[178].

qeios.com doi.org/10.32388/IZOHCH 40

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Framework Producer Highlights

TensorFlow

Lite
Google

Optimization of on-device ML by addressing: latency, privacy, connectivity, size,

and power consumption

Support for multiple platforms including Android, iOS, embedded Linux, and

microcontrollers

Support for multiple programming languages, including Java, Swift, Objective-C,

C++, and Python

High-performance with hardware acceleration and model optimization support

Examples for common ML tasks on various platforms, including

image/object/text classi�cation

Pytorch

Mobile
Facebook

Works on iOS, Android, and Linux platforms

Provides APIs for common preprocessing and integration tasks

Supports tracing and scripting via TorchScript IR

O�ers XNNPACK �oating point and QNNPACK 8-bit quantized kernels for Arm

CPUs

Provides an e�cient mobile interpreter, build level optimization, and streamline

model optimization via optimize_for_mobile

Table IV. Edge AI Learning Frameworks

2. Edge AI Inference Frameworks

Lightweight model inference is becoming increasingly important for applications at the edge, where

computational resources are often limited. To address this, a number of software frameworks have

emerged that allow for e�cient inference of lightweight models, such as NCNN, OpenVINO and ONNX

Runtime. These frameworks typically provide optimized implementations of common operations and

architectures, and can run on a variety of hardware platforms, including IoT devices, mobile devices,

and edge servers. In Table 5, we have presented a list of commonly used AI inference frameworks,

including their manufacturers, supported hardware, advantages, and limitations.

qeios.com doi.org/10.32388/IZOHCH 41

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Framework Producer
Supported

Hardware
Advantages Limitations

ONNX

Runtime[179]
Microsoft

CPU, GPU,

etc

It has built-in optimizations that

can boost inferencing speed up to

17 times and training speed up to

1.4 times

It supports multiple frameworks,

operating systems, and hardware

platforms

High performance, and low latency

Limited support for

non-ONNX models

No support for some

hardware backends

OpenVINO[180] Intel

CPU, GPU,

VPU, FPGA,

etc

It optimizes deep learning

pipelines for high performance and

throughput

Support for advanced functions

such as FP16, INT8 quantization

It supports multiple deep learning

frameworks and multiple operating

systems

Only Intel hardware

products are supported

Deploying and

integrating models still

requires some technical

knowledge and

experience

NCNN[181] Tencent
CPU, GPU,

etc

High performance and low memory

usage

Supports a variety of hardware

devices and model formats

Supports 8-bit quantization and

ARM NEON optimization

Limited support for

non-NCNN models

Arm NN[182] Arm CPU, GPU,

etc
Cross platform

Supports a variety of hardware

devices and model formats

Existing software can

automatically take advantage of

new hardware features

Limited support for

operators and network

structures

qeios.com doi.org/10.32388/IZOHCH 42

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Framework Producer
Supported

Hardware
Advantages Limitations

Support for ARM Compute Library

MNN[183] Alibaba
CPU, GPU,

NPU

MNN is a lightweight, device-

optimized framework with

quantization support

MNN is versatile, supporting

various neural networks and

models, multiple inputs/outputs,

and hybrid computing on multiple

devices

MNN achieves high performance

through optimized assembly, GPU

inference, and e�cient

convolution algorithms.

MNN is easy to use, with support

for numerical calculation, image

processing, and Python API

Limited community

support

Technical expertise

required

TensorRT[184] NVIDIA CPU, GPU

Maximize throughput by

quantifying the model to INT8

while maintaining high accuracy

Optimize GPU video memory and

bandwidth usage by merging nodes

in the kernel

Select the best data layer and

algorithm based on the target GPU

platform

Minimize video memory footprint

and e�ciently reuses memory for

tensors

An extensible design for processing

multiple input streams in parallel

It only runs on NVIDIA

graphics cards

It does not open source

the kernel

qeios.com doi.org/10.32388/IZOHCH 43

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Framework Producer
Supported

Hardware
Advantages Limitations

TVM[185] Apache
CPU, GPU,

DSP, etc

Compilation and minimal runtimes

optimize ML workloads on existing

hardware for better performance

Supports a variety of hardware

devices and model formats

TVM’s design enables �exibility for

block sparsity, quantization,

classical ML, memory planning, etc

Deploying and

integrating models still

requires some technical

knowledge and

experience

Table V. Edge AI Inference Frameworks

E�cient AI inference frameworks for edge devices have seen rapid progress in academic research

recently, with a focus on deploying CNN models in resource-constrained scenarios. Xia et al.

[186] introduced a lightweight neural network architecture called SparkNet, which reduces weight

parameters and computation demands for CNN feedforward inference on edge devices. Memsqueezer,

an on-chip memory architecture for deep CNN inference acceleration on mobile/embedded devices,

was designed by Wang et al.[187], achieving 2x performance improvement and 80% energy reduction

with compression and redundancy detection. Wang et al.[188] presented an end-to-end solution for

CNN model inference on integrated GPUs at the edge, using a uni�ed IR and ML-based scheduling

search schemes. Pipe-it, a pipelined framework limiting parallelization of convolution kernels to

assigned clusters, was proposed by Wang et al.[189] for CNN inference on ARM big.LITTLE architecture

in edge devices. SCA, a secure CNN accelerator using stochastic computing to protect models and

weights during both training and inference phases, was devised by Zhao et al.[190], achieving

signi�cant speedup and energy reduction over non-secure and inference-only secure baselines. Hou

et al.[191] developed NeuLens, a dynamic CNN acceleration framework for mobile and edge platforms

that achieves signi�cant latency reduction and accuracy improvement using a novel dynamic

inference mechanism and operation reduction compatible with hardware-level accelerations.

qeios.com doi.org/10.32388/IZOHCH 44

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Studies have also focused on deploying recurrent neural network (RNN) models. For example,

Srivastava et al.[192] proposed an e�cient RNN compression method for human action recognition,

which uses a Variational Information Bottleneck theory-based pruning approach and a group-lasso

regularization technique to signi�cantly reduce model parameters and memory footprint. EdgeDRNN

was designed by Gao et al.[193] for edge RNN inference with a batch size of 1, adopting the delta

network algorithm to exploit temporal sparsity in RNNs to realize high performance and power

e�ciency. Wen et al.[194] developed a structured pruning method through neuron selection to reduce

the overall storage and computation costs of RNNs, achieving signi�cant practical speedup during

inference without performance loss. Zhang et al.[195] proposed DirNet, a model compression approach

for RNNs that dynamically adjusts the compression rate and sparsity of sparse codes across

hierarchical layers while maintaining minimum accuracy loss.

Numerous works have explored the deployment of DNNs on edge devices to optimize performance and

resource utilization. For example, Ding et al.[196] proposed a new task-mapping programming

paradigm to embed scheduling into tensor programs for e�cient DNN inference and introduced the

Hidet deep learning compiler. Liu et al.[197] devised edgeEye, a high-level API for real-time intelligent

video analytics applications, allowing developers to focus on application logic, while Wang et al.

[158] developed the HAQ framework, which utilizes reinforcement learning to determine the optimal

quantization policy for each layer of a DNN, taking into account the speci�c hardware architecture and

resource constraints. Xie et al.[198] proposed GRACE, a DNN-aware compression algorithm that

optimizes the compression strategy for a target DNN model, enabling e�cient source compression at

IoT devices without disturbing the inference performance. Huang et al.[199] designed LcDNN, a

lightweight collaborative DNN for the mobile web that executes a lightweight binary neural network

(BNN) branch on the mobile device to reduce the model size, accelerates inference, and reduces energy

cost. Farhadi et al.[200] proposed a system-level design to improve the energy consumption of object

detection on resource-limited user-end devices by deploying a shallow neural network (SHNN) and

implementing a knowledge transfer mechanism to update the SHNN model using DNN knowledge

from a powerful edge device. Yang et al.[201] designed DA3, a memory-e�cient on-device multi-

domain learning approach that reduces activation memory usage during training on resource-limited

edge devices while maintaining high accuracy performance. Additionally, Kosta et al.[202] proposed

RAPID-RL, an architecture for e�cient deep reinforcement learning that allows conditional activation

of DNN layers based on input di�culty level, dynamically adjusting computational e�ort during

qeios.com doi.org/10.32388/IZOHCH 45

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

inference while maintaining performance. Table 6 summarizes the optimized models, goals, and

performance of these studies. Moreover, some studies have explored other models, such as Weightless

Neural Networks (WNN)[203], Binarized Neural Networks (BNN)[128][204], Long Short-Term Memory

(LSTM)[205], transformer[206] and Graph Neural Networks (GNN)[207][208][209].

qeios.com doi.org/10.32388/IZOHCH 46

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Model Goal Performance

SparkNet[186] CNN
To reduce parameters and computation

demands

Compress CNN by a factor of 150x

Performance: 337.2 GOP/s

Energy e�ciency: 44.48 GOP/s/w

Memsqueezer[187] CNN To enable CNN inference on edge devices

2x performance improvement

80% energy consumption

reduction

UGIO[188] CNN
To propose an end-to-end solution for

CNN inference on edge devices

Achieves similar, or even better

(up to 1.62x), performance

ACG-Engine[210] CNN

To address the performance bottleneck

of instance normalization in generative

networks on edge devices

Speed: 4.56x

Power e�ciency: 29x

Pipe-it[189] CNN
To perform CNN inference on ARM

big.LITTLE architecture in edge devices
Achieve a 39% higher throughput

SCA[190] CNN
Enable IP protection when deploying

CNN on edge devices

4.8x speedup over a non-secure

baseline

34.2x speedup over an inference-

only secure baseline

Reduce 84.3% over a non-secure

baseline

Reduce 98.5% speedup over an

inference-only secure baseline

NeuLens[191] CNN

To achieve latency reduction and

accuracy improvement in CNN

acceleration on edge systems

Reduce up to 58% latency

Improve up to 67.9% accuracy

improvement

qeios.com doi.org/10.32388/IZOHCH 47

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Model Goal Performance

TS-VIB-

LSTM[192]
RNN

To compress RNN for human action

recognition on edge devices
More than 70x compression rate

edgeDRNN[193] RNN

To enable a low-latency, low-power

RNN accelerator for real-time

applications on edge devices

It updates a 5M 2-layer GRU-RNN

in 0.5ms for low-latency edge

inference

5x faster than commercial edge AI

platforms

It achieves 20.2GOp/s throughput

and 4x higher power e�ciency

than commercial platforms

SP-RNN[194] RNN

To enable the deployment of RNN

models on edge devices through network

pruning techniques

Nearly 20x speedup

Without performance loss

DirNet[195] RNN

To introduce a model compression

approach for RNNs to make it can be

deployed on resource constrained

devices

Reduce 8x model size

With negligible performance loss

Hidet[196] DNN
To design e�cient tensor programs for

deep learning operators

Outperform by up to 1.48x (1.22x

on average)

Reduce tuning time by 11x

edgeEye[196] DNN
For real-time intelligent video analytics

applications

Achieve e�cient and high-

performance deep learning

inference

HAQ[158] DNN
Optimize specialized neural network for

a particular hardware architecture

Reduce latency by 1.4 - 1.95x

Reduce energy consumption by

1.9x

qeios.com doi.org/10.32388/IZOHCH 48

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Model Goal Performance

With the negligible loss of

accuracy

GRACE[198] DNN

To enable e�cient source compression

at IoT devices without disturbing the

inference performance

Reduce a source size by 23%

Achieves 7.5% higher inference

accuracy

Reduce 90% bandwidth

consumption

LcDNN[199] DNN
To enable deep learning on the mobile

web

Reduce the model size by 16x -

29x

Reduce the end-to-end latency

Reduce the mobile energy cost

DA3[201] DNN
To enable on-device multi-domain

learning

Reduce training memory by 5x -

37x

Reduce training time by 2x

RAPID-RL[202] DNN
To enable deep RL systems to be

deployed on edge devices

Incur 0.34x (0.25x)’s operations

while maintaining 0.88x (0.91x)’s

performance

Table VI. Summary of Model Inference Methods from the Literature

B. Hardware Optimization

In addition to software optimizations, hardware acceleration is crucial for achieving high performance

for lightweight models on edge devices. Various approaches to hardware acceleration include using

specialized processors such as Central Processing Unit (CPU), Graphic Processing Unit (GPU), Field

Programmable Gate Array (FPGA), Application Speci�c Integrated Circuit (ASIC), and Neural

Processing Unit (NPU), as well as implementing custom hardware designs for speci�c models. Table 7

qeios.com doi.org/10.32388/IZOHCH 49

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

provides information on common processors for edge devices, including basic information, examples,

and features.

qeios.com doi.org/10.32388/IZOHCH 50

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Hardware Basic Information Examples Advantages Limitations

CPU
A kind of universal

computing equipment

ARM Cortex-M55

Intel Atom x7-

E3950

Qualcomm

Snapdragon 865

Apple A14 Bionic

MediaTek Helio

P90

It has a wide range

of application

scenarios and

versatility

Stable computing

performance

Rich hardware and

software ecosystem

and support

CPU performance and

e�ciency may not be

as good as dedicated

GPU and ASIC

GPU

Can be used to

accelerate deep

learning algorithms

Qualcomm

Adreno 640

Imagination

Technologies

PowerVR

Series9XE

Intel Iris Plus

Graphics G7

NVIDIA Tegra X1

ARM Mali-G76

High parallelism

Flexibility

Wide application

support

High power

consumption

FPGA

To accelerate deep

learning algorithms

through customized

hardware logic

Lattice sensAI

QuickLogic EOS

S3

Xilinx Zynq

UltraScale+

Intel Movidius

Neural Compute

Stick

Highly �exible

Low power

consumption

Customizable

High development and

deployment costs

qeios.com doi.org/10.32388/IZOHCH 51

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Hardware Basic Information Examples Advantages Limitations

ASIC

To achieve high

performance and

power e�ciency

through hardware

optimization

Google edge TPU

Horizon Robotics

Sunrise

MediaTek

NeuroPilot

Cambricon

MLU100

Highly optimized

hardware structure

Low power

consumption

High performance

High development and

production costs

NPU

Designed to accelerate

deep learning

algorithms

Qualcomm

Hexagon 680

Apple Neural

Engine

Huawei Kirin 990

MediaTek APU

NVIDIA Jetson

Nano

High e�ciency

Low power

consumption

Highly optimized

hardware structure

Limited support for

some models

Table VII. Edge AI Model Accelerator

In recent years, there has been a growing interest in using CPU-based accelerators for model inference

on edge devices due to their versatility and stable computing performance. REDUCT[211] is a solution

that bypasses traditional CPU resources to enable e�cient data parallel DNN inference workloads,

achieving signi�cant performance/Watt improvements and raw performance scaling on multi-core

CPUs. By maximizing the utilization of existing bandwidth resources and distributing lightweight

tensor compute near all caches, REDUCT achieves performance similar to or better than state-of-the-

art Domain Speci�c Accelerators (DSA) for DNN inference. Similarly, Zhu et al.[212] designed the

Neural CPU (NCPU) architecture to optimize the end-to-end performance of low-cost embedded

systems. It combines a binary neural network accelerator with an in-order RISC-V CPU pipeline,

achieving energy savings and area reduction compared to conventional heterogeneous architectures,

qeios.com doi.org/10.32388/IZOHCH 52

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

while supporting �exible programmability and local data storage to avoid costly core-to-core data

transfer.

GPUs are recognized as powerful hardware accelerators for deep learning, thanks to their highly

parallel architecture and programmability. Capodieci et al.[213] presented a prototype real-time

scheduler for GPU activities on an embedded SoC featuring an NVIDIA GPU architecture, with

preemptive EDF scheduling and bandwidth isolations using a Constant Bandwidth Server. FPGAs are

also increasingly used as hardware accelerators for deep learning due to their highly �exible and

customizable hardware logic. For example, Xia et al.[186] proposed an FPGA-based accelerator

architecture speci�cally built for SparkNet, achieving high performance and energy e�ciency with a

fully pipelined CNN hardware accelerator. Choudhury et al.[214] proposed an FPGA overlay for e�cient

CNN processing that exploits all forms of parallelism inside a convolution operation and can be scaled

based on available compute and memory resources. Yu et al.[215] explored FPGA-based overlay

processors for an e�cient acceleration of lightweight operations in LW-CNNs, utilizing a

corresponding compilation �ow. Overall, GPUs and FPGAs o�er di�erent advantages for hardware

acceleration, with GPUs providing powerful parallel computing capabilities and FPGAs o�ering highly

customizable hardware logic for e�cient and scalable acceleration.

ASICs are increasingly popular as dedicated hardware accelerators for deep learning, owing to their

highly optimized hardware structure and low power consumption. For example, Tambe et al.

[151] proposed edgeBERT for multi-task NLP inference, which adopts algorithm-hardware co-design

and early exit prediction based on entropy. Roohi et al.[216] designed ApGAN to alleviate the

computationally intensive GAN problem, especially for running on resource-constrained edge devices.

NPUs can be considered ASICs designed speci�cally for AI, and they are also gaining popularity as

dedicated hardware accelerators for deep learning due to their high e�ciency and low power

consumption. Some studies aim to improve task performance by enhancing the NPU. For example,

Kouris et al.[217] introduced two new dimensions to the NPU hardware architecture design space, Fluid

Batching, and Stackable Processing Elements, to improve NPU utilization. Yang et al.[218] proposed

BitSystolic, a 2b-8b NPU that supports mixed-precision DNN models with con�gurable numerical

precision and con�gurable data �ows. Multiple measures are adopted to improve hardware utilization,

such as in PL-NPU[219], where a posit-based logarithm-domain processing element, a recon�gurable

inter-intra-channel-reuse data�ow, and a pointed-stake-shaped codec unit are employed. Some

studies have also used acceleration methods that combine multiple processors, such as FPGA +

qeios.com doi.org/10.32388/IZOHCH 53

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

GPU[220] and CPU + GPU[221]. Overall, ASICs and NPUs o�er highly optimized hardware structures and

low power consumption, making them ideal for e�cient and high-performance deep learning on edge

devices. Speci�cally, the basic information on these hardware acceleration methods is listed in Table

8.

qeios.com doi.org/10.32388/IZOHCH 54

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Hardware Model Strategy Performance

REDUCT[211] CPU DNN
It bypasses CPU resources to

optimize DNN inference

2.3x increase in convolution

performance/Watt

2x to 3.94x scaling in raw

performance

1.8x increase in inner-product

performance/Watt

2.8x scaling in performance

NCPU[212] CPU BNN
Propose a uni�ed

architecture

Achieved 35% area reduction

and 12% energy saving

compared to conventional

heterogeneous architecture

Implemented two-core NCPU

SoC achieves an end-to-end

performance speed-up of 43%

or an equivalent 74% energy

saving

Prototype[213] GPU DNN

The schedulability of

repeated real-time GPU

tasks is signi�cantly

improved

Achieved 35% area reduction

and 12% energy saving

compared to conventional

heterogeneous architecture

Implemented two-core NCPU

SoC achieves an end-to-end

performance speed-up of 43%

or an equivalent 74% energy

saving

SparkNoC[186] FPGA CNN Simultaneous pipelined work

Performance: 337.2 GOP/s

Energy e�ciency: 44.48

GOP/s/w

qeios.com doi.org/10.32388/IZOHCH 55

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Hardware Model Strategy Performance

FPGA

Overlay[214]
FPGA CNN

It exploits all forms of

parallelism inside a

convolution operation

An improvement of 1.2x to 5x

in maximum throughput

An improvement of 1.3x to 4x

in performance density

Light-OPU[215] FPGA CNN
With a corresponding

compilation �ow

Achievement of 5.5x better

latency and 3.0x higher power

e�ciency on average

compared with NVIDIA Jetson

TX2

Achievement of 1.3x to 8.4x

better power e�ciency

compared with previous

customized FPGA accelerators

edgeBert[151] ASIC Transformer
It employs entropy-based

early exit predication

The energy savings are up to

7x, 2.5x, and 53x compared to

conventional inference

without early stopping,

latency-unbounded early exit

approach

ApGAN[216] ASIC GAN

By binarizing weights and

using a hardware-

con�gurable in-memory

addition scheme

Achieve energy e�ciency

improvements of up to 28.6x

Achieve a 35-fold speedup

Fluid

Batching[217]
NPU DNN

Fluid Batching and Stackable

Processing Elements are

introduced

1.97x improvement in average

latency

6.7x improvement in tail

latency SLO satisfaction

qeios.com doi.org/10.32388/IZOHCH 56

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Method Hardware Model Strategy Performance

BitSystolic[218] NPU DNN
Based on a systolic array

structure

It achieves high power

e�ciency of up to 26.7

TOPS/W with 17.8 mW peak

power consumption

PL-NPU[219] NPU DNN

A posit-based logarithm-

domain processing element,

a recon�gurable inter-intra-

channel-reuse data�ow, and

a pointed-stake-shaped

codec unit are employed

3.75x higher energy e�ciency

1.68x speedup

FARNN[220]
FPGA +

GPU
RNN

To separate RNN

computations into di�erent

tasks that are suitable for

GPU or FPGA

Improve by up to 4.2x

DART[221]
CPU +

GPU
DNN

It o�ers deterministic

response time to real-time

tasks and increased

throughput to best-e�ort

tasks

Response time was reduced by

up to 98.5%

Achieve up to 17.9% higher

throughput

Table VIII. Summary of edge AI Model Accelerator from the Literature

VI. Application Scenarios

Edge AI is a technology that deploys AI algorithms and models on edge devices such as smartphones,

cameras, sensors, and robots, enabling data processing and decision-making at the device end. This

approach avoids data transmission delays and privacy issues while improving response speed and

security. Edge AI has a wide range of application scenarios, including smart homes, industrial

qeios.com doi.org/10.32388/IZOHCH 57

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

automation, healthcare, and many others. With edge AI, devices can perform advanced tasks such as

object detection, face recognition, and action recognition without relying on the cloud or other

external computing resources.

A. Smart Homes

In traditional smart home systems, sensors, cameras, and other devices collect home environment

data and transmit it to the cloud for processing and decision-making. However, data transmission

delays and privacy issues can cause real-time and security problems in the system, greatly reducing

the quality of the user experience. Edge AI technology enables the deployment of AI algorithms and

models on smart home devices, allowing for data processing and decision-making to occur at the

device level. This approach can enable many aspects of home life, such as electricity demand

forecasting[222], human activity prediction[223], and energy management[224]. In particular, edge AI

techniques e�ectively circumvent issues related to data transmission delay and privacy, resulting in

improved security and response times. For example,[225] identi�es new vulnerabilities and attacks in

widely-used smart home platforms by analyzing the complex interactions among the participating

entities. With edge AI, smart home devices can become more intelligent and autonomous, providing

bene�ts such as energy e�ciency, improved security, and enhanced user experience.

B. Industrial Automation

Smart industry is a technological approach that aims to improve the e�ciency and quality of

production by deploying AI algorithms at the device level[226]. This is achieved through the

implementation of industrial automation, which involves the use of advanced technologies and

systems to control and monitor industrial processes. By deploying AI algorithms on industrial devices,

smart industry enables machines to learn from data, adapt to changes in the production environment,

and optimize their own operations in real-time. This results in improved e�ciency, reduced waste,

and enhanced product quality, which ultimately leads to increased pro�tability for industrial

businesses[227]. The application of smart industry has been shown to have a signi�cant impact on

various aspects of industrial operations, including maintenance, quality control, and supply chain

management. By leveraging AI-powered analytics and predictive maintenance, industrial companies

can reduce downtime and increase the lifespan of their equipment while also improving product

quality through real-time monitoring and control. Overall, the smart industry represents a major

qeios.com doi.org/10.32388/IZOHCH 58

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

technological advancement in the �eld of industrial automation, providing businesses with the tools

and capabilities needed to optimize their production processes and remain competitive in today’s

fast-paced business environment.

C. Healthcare

Edge AI technology can provide faster and more accurate disease diagnosis and treatment for

intelligent healthcare systems, thereby improving medical e�cacy and e�ciency. Recent research in

healthcare has explored various aspects of the �eld, such as heart patient analysis[228], voice disorder

detection[229], COVID-19 analysis[230] [231], and pathology detection[232] [233]. In[234], a privacy-

preserving Faster R-CNN framework is proposed for object detection in medical images using additive

secret sharing techniques and edge computing. This approach ensures the privacy and security of

medical data while also enabling accurate and e�cient diagnosis. The use of edge AI in healthcare also

allows for real-time monitoring of patient vitals and early detection of potential health issues, leading

to improved patient outcomes. Overall, edge AI holds great promise for the healthcare industry,

providing opportunities for improved medical diagnosis, treatment, and patient care.

D. Autonomous Vehicles

In the �eld of autonomous driving, real-time performance is critical for ensuring safe and e�cient

operation. Previous research has extensively studied the collaborative work between cloud/edge and

edge computing, such as data scheduling[235], resource allocation[236], perception information

sharing[237], object detection[238], and computation o�oading[239][240]. By utilizing edge algorithms

on vehicles, it is possible to decrease the dependence on cloud computing resources and enhance

response speed. For example, in[241], a compiler-aware pruning search framework was proposed,

which enables real-time 3D object detection on resource-limited mobile devices for autonomous

driving. This approach allows for faster and more accurate detection of objects in the environment,

improving the safety and e�ciency of autonomous vehicles. In the future, we can expect to see more

edge AI technologies developed and applied to empower autonomous driving on local devices.

E. Public Safety

The introduction of edge AI technology into public safety has signi�cant potential for providing faster,

more accurate, and reliable responses to public safety incidents. For example, Wang et al.

qeios.com doi.org/10.32388/IZOHCH 59

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

[242] proposed the Surveiledge system, which enables real-time queries of large-scale surveillance

video streams through a collaborative cloud-edge approach, balancing load among di�erent

computing nodes and achieving a latency-accuracy tradeo�. Experiments show that Surveiledge

signi�cantly reduces bandwidth costs and query response times compared to cloud-only solutions

while improving query accuracy and speed compared to edge-only approaches. Trinh et al.

[243] investigated techniques for detecting urban anomalies by utilizing mobile tra�c monitoring,

where they proposed the use of the mobile network as an additional sensing platform to monitor

crowded events for potential risks to public safety. In addition, methods for improving performance

by combining various techniques have also been proposed. For instance, in[244], the proposed

Metropolitan Intelligent Surveillance System (MISS) combines IoT, cloud computing, edge

computing, and big data to enable a uni�ed approach for implementing an ISS at an urban scale,

increasing performance and security levels. These applications of edge AI in public safety demonstrate

the potential for improving the response time and accuracy of public safety incidents, enhancing

situational awareness, and ultimately improving public safety.

F. Agriculture

Edge AI technology has shown promising potential for applications in the agriculture sector. For

example, Menshchikov et al.[245] presented an approach for fast and accurate detection of the harmful

and fast-growing Hogweed of Sosnowskyi using an unmanned aerial vehicle with an embedded

system running Fully CNNs. The proposed approach achieves high accuracy in segmentation and

processing speed for individual plants and leaves, which can provide comprehensive and relevant data

to control the expansion of this plant. In addition, there are interesting applications in the agricultural

sector, such as real-time strawberry detection[246] and pest management[247]. These applications

leverage edge AI technology to provide real-time data analysis, enabling farmers to make informed

decisions and optimize their crop yields. For example, real-time strawberry detection can help

farmers quickly identify and harvest ripe fruit, while pest management can help to reduce the use of

harmful chemicals by targeting pests more precisely.

G. Retail

Smart retail is a new retail mode that improves the e�ciency and experience of retail through

intelligent technology and data analysis. Retailers are increasingly leveraging edge AI to analyze data

qeios.com doi.org/10.32388/IZOHCH 60

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

from in-store cameras and sensors to create intelligent stores[248]. One practical application of edge

AI in smart retail is to alert store employees when shelf inventory levels are low, reducing the impact

of stockouts. Another use case is the automated checkout system in unmanned supermarkets that

utilizes edge AI algorithms and sensors to identify user and product information for automatic

checkout. With the help of edge AI, intelligent customer service can also be achieved to better serve

customers. In addition, edge AI can be utilized to analyze inventory loss caused by theft, errors, fraud,

waste, and damage. By analyzing data from cameras and sensors, retailers can identify patterns and

potential issues, allowing them to take proactive measures to reduce losses and improve pro�tability.

Overall, the use of edge AI in smart retail has the potential to revolutionize the way we approach retail,

providing retailers with the tools and capabilities needed to optimize their operations, reduce losses,

and enhance customer experience.

H. Energy Management

Edge AI has been widely applied in the �eld of energy management[249], including energy monitoring,

intelligent control, energy optimization, and smart device management. By real-time monitoring

energy usage and collecting data, edge AI can assist energy managers in understanding energy

consumption status and providing energy e�ciency improvement suggestions through data analysis

and prediction[250]. Furthermore, edge AI can achieve automated energy control, optimize energy

consumption, improve energy e�ciency, and reduce energy costs. For example, an edge AI-based

intelligent control system can adjust the HVAC system automatically based on occupancy patterns and

environmental conditions to reduce energy waste. Similarly, edge AI can optimize the operation of

distributed energy resources, such as solar panels and wind turbines, to maximize energy production

and minimize costs. In addition, edge AI can enable smart device management, allowing energy

managers to remotely monitor and control energy consumption in real-time. By using edge AI to

analyze data from smart devices, energy managers can identify potential issues and take proactive

measures to prevent energy waste and reduce costs.

I. Logistics

Logistics automation has the potential to signi�cantly boost production capacity. By incorporating

intelligent systems, productivity can be improved, human error reduced, and work e�ciency

enhanced. In particular, edge AI has emerged as a key technology for enabling intelligent logistics

qeios.com doi.org/10.32388/IZOHCH 61

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

systems. Through the deployment of edge AI at the unit-level of logistics terminals, such as

intelligent sorting robots, unmanned aerial vehicles for express delivery, and logistics distribution

robots, these terminals can be imbued with higher levels of intelligence. By utilizing edge AI

algorithms, these intelligent terminals can learn from data, adapt to changes in their environment,

and optimize their operations in real-time. For example, edge AI can enable intelligent sorting robots

to rapidly sort packages based on weight, size, and destination, reducing the time required for manual

sorting and increasing e�ciency. In addition, edge AI can enable unmanned aerial vehicles for express

delivery to autonomously navigate through complex environments, such as urban areas, and identify

the optimal delivery routes, reducing delivery times and costs. Furthermore, edge AI-powered

logistics distribution robots can autonomously navigate through warehouses and distribution centers,

reducing the need for human intervention and increasing productivity.

VII. Challenges

Compared to server devices, edge devices are resource-constrained in multiple aspects, including

their computational power, storage capacity, energy resources, and communication bandwidth. These

limitations pose signi�cant challenges for deploying AI models on edge devices.

A. Limited Computing Power

Edge devices typically deploy low-power processors with limited computational capabilities, often

unable to handle the large and complex computations required by AI models. To enable e�ective AI on

resource-constrained edge devices, several optimization techniques can be employed. One approach is

to optimize algorithms to reduce unnecessary computation and improve computational e�ciency.

This can be achieved by designing lightweight models (such as MobileNets series[75][76][77]) or

through NAS[111][113], model compression (pruning[137][125], quantization[150][157], parameter

sharing[142][143], knowledge distillation[162][165], etc.), which reduce the size and complexity of AI

models without compromising their accuracy and performance.

Another approach is to enhance the hardware performance of edge devices. This can be achieved

through the use of specialized hardware, such as GPUs[213], FPGAs[186][214][215] or ASICs[151][216][219],

which can accelerate computational tasks and improve performance. In addition, cloud-edge/edge-

edge collaboration can be used to augment the computational capabilities of edge devices[251][252][253]

[16].

qeios.com doi.org/10.32388/IZOHCH 62

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

Overall, a combination of optimization techniques, hardware enhancements, and cloud-edge/edge-

edge collaboration can be used to overcome the limitations of edge devices and enable more

sophisticated AI applications on these devices. By leveraging these techniques, edge devices can

perform complex computational tasks while conserving energy and maintaining computational

accuracy and performance.

B. Limited Memory

Edge AI aims to deploy AI models directly on resource-constrained edge devices rather than in the

cloud. However, edge devices have highly limited storage capacity compared to the cloud, posing

challenges for edge AI implementation. For instance, state-of-the-art deep learning models can

require hundreds of megabytes to over a gigabyte of storage, which exceeds the storage limits of many

edge devices. As such, minimizing storage demands and avoiding large model and data storage

requirements is critical for making edge AI feasible. To address this challenge, several methods have

been adopted. As previously mentioned, model compression is an e�ective way to reduce the model

size and storage demands in edge AI[137][153][157]. This technique reduces the storage requirements of

AI models, enabling them to be deployed on edge devices with limited storage capacity. In addition,

incremental learning can be used to dynamically update models on edge devices by learning from new

data, avoiding the need to store large amounts of historical data[254]. This approach reduces the

storage requirements of edge devices by only storing the most recent data and models. Furthermore,

storing data and models in a distributed manner across multiple edge devices can alleviate the limited

storage capacity of individual devices[255]. This approach enables edge devices to leverage the storage

capacity of other devices, reducing the storage requirements of individual devices. Edge caching

technology can also be utilized to cache data and models between edge devices and the cloud, reducing

storage demands and communication costs[256][257][258]. This approach enables frequently used data

and models to be stored locally on edge devices, reducing the need to access the cloud for every

request. Overall, these techniques enable the deployment of AI on edge devices with limited storage

capacity.

C. Power Consumption

Edge devices are often battery-powered with limited energy budgets, while AI models can have high

computational demands. This mismatch between the energy limitations of edge devices and the

qeios.com doi.org/10.32388/IZOHCH 63

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

intensive computations of AI models poses a key challenge for practical edge AI deployment.

Balancing computational e�ciency and energy consumption presents a challenging task,

necessitating the adoption of energy-e�cient algorithms and hardware that can e�ectively minimize

energy consumption while preserving computational accuracy and performance. One solution to

address energy limitations is software design, as demonstrated by the development of energy-

e�cient algorithms such as PhiNets[259]. These algorithms are designed to minimize computational

requirements, enabling them to run e�ciently on edge devices with limited energy resources.

Hardware design is another approach to address energy limitations. Researchers have developed

energy-e�cient hardware, such as[260][186][261], that reduces energy consumption and improves

computational e�ciency. In addition, hardware and software co-design, such as[262], can optimize

both hardware and software for energy e�ciency. Energy management is another solution to address

energy limitations. Researchers have proposed energy management techniques, such as the use of AI-

based controllers[263][264], to optimize energy consumption in edge devices.

Overall, the adoption of energy-e�cient algorithms and hardware, as well as energy management

techniques, can e�ectively minimize energy consumption while preserving computational accuracy

and performance in edge devices. As the technology continues to advance, we can expect to see even

more innovative solutions for addressing the energy limitations of edge devices.

D. Limited Communication Bandwidth

Compared to servers, edge devices typically have limited communication bandwidth, making it

challenging to transfer large amounts of data between the edge device and the cloud. The limited

connectivity poses challenges for transmitting large volumes of data between devices and the cloud,

which many AI models require. To minimize communication costs, it is necessary to reduce the

amount of data transmitted. One approach to reducing data transmission is through data

preprocessing algorithms, which reduce the amount of data that needs to be transmitted during

communication[36][38]. These algorithms can be used to �lter and compress data, enabling only

relevant information to be transmitted. Edge caching technology is another approach that can be

utilized to store data and models on edge devices, reducing the frequency of communication with the

cloud and minimizing the amount of data transmitted[265]. This approach enables frequently used

data and models to be stored locally on edge devices, reducing the need to access the cloud for every

request. On-device computation is another technique that can be used to enable real-time response at

qeios.com doi.org/10.32388/IZOHCH 64

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

the edge[266][267][268]. By performing computation on the edge device, only relevant data needs to be

transmitted to the cloud, reducing communication costs and enabling faster response times. Overall,

these techniques can be used to minimize the amount of data transmitted between edge devices and

the cloud, enabling e�cient communication and reducing communication costs.

E. Security and Privacy

Deploying AI models on edge devices poses signi�cant security and privacy challenges due to the

distributed nature of edge computing and the processing of sensitive data on devices outside the

control of data owners. To address these challenges, several techniques have been proposed, including

data anonymization[269], trusted execution environment technology[270][271], homomorphic

encryption[272][273] and secure multi-party computation[274].

Federated learning has become a research hotspot, enabling AI models to be trained on a distributed

network of edge devices while preserving data privacy and security[275][276][277][278]. Recently, hybrid

approaches have been proposed that combine multiple techniques to address the challenges of edge

computing. For example, StarFL is a new hybrid Federated Learning architecture that combines a

trusted execution environment, secure multi-party computation, and beidou satellites to address

communication-heavy, high-frequent, and asynchronous data in urban computing scenarios[279].

F. Model Management and Scheduling

Due to the limited resources in edge computing and the mobility of users and devices, it is necessary to

perform e�cient model management and scheduling when deploying AI models to the edge. Model

scheduling can primarily be divided into model placement, model migration, and elastic scaling of

models.

During model placement, the �rst challenge to address is designing e�ective feature extraction

methods to extract features from the edge environment and user tasks due to the heterogeneity of AI

model requests and the edge environment[280]. Second, given the complex request and restriction

relationships between user tasks and models, considering various restriction conditions such as task

dependency, deadline restrictions, bandwidth limitations, etc., to carry out model placement is the

second challenge[281][282][283]. Lastly, in light of the latency requirements for edge AI model

deployment, another issue to solve is how to schedule by further mining the dependency relationships

between the model’s image layers to reduce the cold start time of the AI model[284][285][286].

qeios.com doi.org/10.32388/IZOHCH 65

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

After model placement, due to the mobility of users or devices, the AI model needs to be further

migrated[287]. Firstly, how to migrate the AI model requested by the user to the appropriate new edge

node to achieve better Quality of Service (QoS) considering user mobility is the �rst challenge[288][289]

[290]. Secondly, during the migration process, considering the storage structure characteristics of the

AI model and the limited computing resources in edge computing to further optimize the migration

cost is another pressing challenge to solve[291][292].

Finally, to cope with the common scenarios of a sudden large number of AI model requests or peak

period requests in the edge environment, in the phase of elastic scaling of the AI model, the �rst

challenge is how to e�ciently and accurately predict the resource utilization rate of di�erent edge

nodes and reasonably price the resources[293][294][295]. Secondly, in view of the geographic

distribution characteristics of edge computing, designing innovative elastic scaling strategies to meet

the requests of users in di�erent regions is another challenge to address[296][297].

VIII. Conclusion and Future Directions

In conclusion, enabling AI on the edge has numerous bene�ts, including faster inference, improved

privacy, and reduced latency. However, this approach also presents numerous challenges, such as

limited computational resources, memory, and power availability. To address these challenges, a

range of techniques can be used to optimize AI on the edge, including data optimization, model

optimization, and system optimization. These techniques have been successfully applied in a range of

use cases, including smart homes, industrial automation, autonomous vehicles, agriculture, retail and

healthcare and medical applications. As the �eld of AI on the edge continues to evolve, new hardware

and software developments will also play an important role, as well as integration with 5G networks

and edge-to-cloud orchestration. By leveraging these techniques and advancements, we can continue

to enable AI on the edge and unlock the potential bene�ts of this approach to computing.

In the future, edge AI is expected to have even broader applications, and several key development

trends can be identi�ed:

More intelligent: With the advancement of AI chip technology and edge computing capabilities, the

development of more intelligent edge devices is expected. These devices will be capable of

processing increasingly complex data and tasks, resulting in the deployment of more complex and

high-performance AI models on edge devices. This will enable them to perform more sophisticated

qeios.com doi.org/10.32388/IZOHCH 66

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

data processing and decision-making tasks, providing users with more personalized and e�cient

services. Furthermore, the level of automated processing and adaptability of edge AI for di�erent

tasks will also be improved, leading to even more e�cient and e�ective processing of data at the

edge.

More �exible: As the computing capabilities of edge AI devices improve and edge AI algorithms

continue to develop, edge AI technology will evolve from serving speci�c scenarios to becoming

more universal and �exible. This will enable edge AI to better adapt to di�erent application

scenarios, providing more versatile and adaptable solutions to a wider range of use cases. This

increased �exibility will allow edge AI to be deployed in various industries and domains, making it

a more ubiquitous and reliable technology for processing and analyzing data at the edge.

More secure: In addition to enhancing e�ciency and enabling autonomous decision-making, edge

AI has an important role in improving user privacy and data security. In the future, edge AI is

expected to continue to enhance security by adopting technologies such as blockchain to enable

secure and decentralized data sharing and analysis. By using blockchain, edge AI can ensure that

data remains secure and private, avoiding issues such as user data leakage. As edge AI becomes

more widespread, ensuring user privacy and data security will become increasingly important, and

the adoption of technologies such as blockchain will be critical in achieving this goal.

More collaborative: As individual edge devices have limited resources, more complex tasks will be

achieved through collaboration between edge devices and through cloud-edge collaboration. This

collaboration will enable edge devices to work together to process and analyze data, providing

more robust and e�cient solutions. Meanwhile, scenarios such as intelligent transportation

urgently require improved collaboration and greater intelligence in edge AI to ensure the safety and

e�ciency of transportation systems. By using collaboration and leveraging the strengths of both

edge and cloud computing, edge AI can be used to address increasingly complex problems and

provide more e�ective solutions in a wide range of applications.

More e�cient: E�ciency is a critical factor in edge AI, and more e�cient algorithms and

hardware, along with optimization for di�erent scenarios, will help edge AI to have more e�cient

processing capabilities. By continually improving algorithms and hardware, edge AI devices can

process data more quickly and accurately, while using fewer resources. Additionally, optimizing

edge AI for di�erent scenarios will enable it to be more e�ective in speci�c use cases, such as

industrial automation or healthcare. These improvements in e�ciency will enable edge AI to

qeios.com doi.org/10.32388/IZOHCH 67

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

become more widely adopted and provide more e�cient and e�ective solutions for processing and

analyzing data at the edge.

Overall, the future of edge AI is promising, and continued advancements in hardware, software, and

collaboration will enable it to unlock its full potential in a wide range of applications.

Footnotes

1 We list the explanations for the main abbreviations used throughout the paper in Table 2.

References

1. ^Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam et al. (2020). "L

anguage models are few-shot learners." Advances in Neural Information Processing Systems. 33: 1877-

-1901.

2. a, b, cDeng S, Zhao H, Fang W, Yin J, Dustdar S, Zomaya AY (2020). "Edge intelligence: The con�uence of

edge computing and arti�cial intelligence". IEEE Internet of Things Journal. 7 (8): 7457–7469.

3. ^Gill B, Rao S. Technology insight: Edge computing in support of the internet of things. Gartner Researc

h Report. 2017.

4. a, bTaleb T, Dutta S, Ksentini A, Iqbal M, Flinck H (2017). "Mobile edge computing potential in making c

ities smarter". IEEE Communications Magazine. 55 (3): 38--43.

5. a, b, cLiu S, Liu L, Tang J, Yu B, Wang Y, Shi W (2019). "Edge computing for autonomous driving: Opport

unities and challenges." Proceedings of the IEEE. 107 (8): 1697–1716.

6. ^Garcia Lopez P, Montresor A, Epema D, Datta A, Higashino T, Iamnitchi A, Barcellos M, Felber P, Rivier

e E (2015). "Edge-centric computing: Vision and challenges." ACM SIGCOMM Computer Communicatio

n Review. 45 (5): 37--42.

7. a, b, c, dShi W, Cao J, Zhang Q, Li Y, Xu L (2016). "Edge computing: Vision and challenges." IEEE Internet

of Things Journal. 3(5): 637–646.

8. a, b, cZhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019). "Edge intelligence: Paving the last mile of artif

icial intelligence with edge computing". Proceedings of the IEEE. 107 (8): 1738–1762.

9. ^Bai C, Dallasega P, Orzes G, Sarkis J (2020). "Industry 4.0 technologies assessment: A sustainability per

spective". International Journal of Production Economics. 229: 107776.

qeios.com doi.org/10.32388/IZOHCH 68

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

10. ^Wang W, Li R, Chen Y, Diekel ZM, Jia Y (2018). "Facilitating human--robot collaborative tasks by teac

hing-learning-collaboration from human demonstrations." IEEE Transactions on Automation Science

and Engineering. 16(2): 640--653.

11. ^LeCun Y, Bengio Y, Hinton G (2015). "Deep learning". Nature. 521 (7553): 436–444.

12. a, bShi Y, Yang K, Jiang T, Zhang J, Letaief KB (2020). "Communication-e�cient edge AI: Algorithms an

d systems". IEEE Communications Surveys & Tutorials. 22 (4): 2167–2191.

13. a, bChen J, Ran X (2019). "Deep learning with edge computing: A review." Proceedings of the IEEE. 107

(8): 1655–1674.

14. a, bLetaief KB, Shi Y, Lu J, Lu J (2021). "Edge arti�cial intelligence for 6G: Vision, enabling technologies,

and applications." IEEE Journal on Selected Areas in Communications. 40 (1): 5–36.

15. a, bXu D, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P (2020). "Edge intelligence: Architecture

s, challenges, and applications." arXiv preprint arXiv:2003.12172.

16. a, bYao J, Zhang S, Yao Y, et al. "Edge-cloud polarization and collaboration: A comprehensive survey for

AI." IEEE Transactions on Knowledge and Data Engineering. 2022.

17. a, bMurshed MG, Murphy C, Hou D, Khan N, Ananthanarayanan G, Hussain F (2021). "Machine learnin

g at the network edge: A survey". ACM Computing Surveys (CSUR). 54 (8): 1–37.

18. a, bPark J, Samarakoon S, Bennis M, Debbah M (2019). "Wireless network intelligence at the edge". Proc

eedings of the IEEE. 107 (11): 2204–2239.

19. a, b, cWang X, Han Y, Leung VC, Niyato D, Yan X, Chen X (2020). "Convergence of edge computing and d

eep learning: A comprehensive survey." IEEE Communications Surveys & Tutorials. 22 (2): 869--904.

20. ^Dai Y, Zhang K, Maharjan S, Zhang Y (2020). "Edge intelligence for energy-e�cient computation o�

oading and resource allocation in 5G beyond". IEEE Transactions on Vehicular Technology. 69 (10): 121

75–12186.

21. ^Zhang J, Letaief KB (2019). "Mobile edge intelligence and computing for the internet of vehicles". Proc

eedings of the IEEE. 108 (2): 246–261.

22. ^Xu D, Li T, Li Y, Su X, Tarkoma S, Jiang T, Crowcroft J, Hui P (2021). "Edge intelligence: Empowering in

telligence to the edge of network". Proceedings of the IEEE. 109 (11): 1778–1837.

23. ^Hua H, Li Y, Wang T, Dong N, Li W, Cao J (2023). "Edge Computing with Arti�cial Intelligence: A Machi

ne Learning Perspective." ACM Computing Surveys. 55 (9): 1–35.

24. ^Cheng Y, Wang D, Zhou P, Zhang T (2017). "A survey of model compression and acceleration for deep n

eural networks". arXiv preprint arXiv:1710.09282. Available from: https://arxiv.org/abs/1710.09282.

qeios.com doi.org/10.32388/IZOHCH 69

https://arxiv.org/abs/1710.09282
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

25. ^Deng L, Li G, Han S, Shi L, Xie Y (2020). "Model compression and hardware acceleration for neural net

works: A comprehensive survey". Proceedings of the IEEE. 108 (4): 485--532.

26. ^Armbrust M, Fox A, Gri�th R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et

al. (2010). "A view of cloud computing." Communications of the ACM. 53 (4): 50–58.

27. ^Jamsa K. Cloud computing. Burlington, MA: Jones & Bartlett Learning; 2022.

28. ^Gai K, Wu Y, Zhu L, Xu L, Zhang Y (2019). "Permissioned blockchain and edge computing empowered

privacy-preserving smart grid networks." IEEE Internet of Things Journal. 6(5): 7992–8004.

29. ^Satyanarayanan M. "The emergence of edge computing." Computer. 50(1): 30–39, 2017.

30. ^Premsankar G, Di Francesco M, Taleb T (2018). "Edge computing for the Internet of Things: A case stud

y". IEEE Internet of Things Journal. 5 (2): 1275--1284.

31. ^Huang P, Zeng L, Chen X, Luo K, Zhou Z, Yu S (2022). "Edge Robotics: Edge-Computing-Accelerated

Multi-Robot Simultaneous Localization and Mapping". IEEE Internet of Things Journal. 2022.

32. ^Ding AY, Peltonen E, Meuser T, Aral A, Becker C, Dustdar S, Hiessl T, Kranzlm\u00fcller D, Liyanage M,

Maghsudi S, et al. "Roadmap for edge AI: a Dagstuhl perspective." ACM SIGCOMM Computer Communic

ation Review. 52 (1): 28--33, 2022. ACM New York, NY, USA.

33. ^Zha D, Bhat ZP, Lai KH, Yang F, Jiang Z, Zhong S, Hu X (2023). "Data-centric arti�cial intelligence: A s

urvey". arXiv preprint arXiv:2303.10158. Available from: https://arxiv.org/abs/2303.10158.

34. ^Bernhardt M, Castro DC, Tanno R, Schwaighofer A, Tezcan KC, Monteiro M, Bannur S, Lungren et al. A

ctive label cleaning for improved dataset quality under resource constraints. Nature Communications. 1

3(1):1161, 2022.

35. ^Mishra R, Gupta A, Gupta HP (2021). "Locomotion mode recognition using sensory data with noisy lab

els: A deep learning approach". IEEE Transactions on Mobile Computing. 2021.

36. a, bWang T, Ke H, Zheng X, Wang K, Sangaiah AK, Liu A (2019). "Big data cleaning based on mobile edg

e computing in industrial sensor-cloud". IEEE Transactions on Industrial Informatics. 16 (2): 1321–132

9.

37. ^Ma L, Pei Q, Zhou L, Zhu H, Wang L, Ji Y (2020). "Federated data cleaning: Collaborative and privacy-

preserving data cleaning for edge intelligence". IEEE Internet of Things Journal. 8 (8): 6757–6770.

38. a, bSun D, Xue S, Wu H, Wu J (2021). "A data stream cleaning system using edge intelligence for smart cit

y industrial environments". IEEE Transactions on Industrial Informatics. 18 (2): 1165–1174.

39. ^Sun D, Wu J, Yang J, Wu H (2021). "Intelligent data collaboration in heterogeneous-device IoT platfor

ms". ACM Transactions on Sensor Networks (TOSN). 17 (3): 1–17.

qeios.com doi.org/10.32388/IZOHCH 70

https://arxiv.org/abs/2303.10158
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

40. ^Gupta C, Suggala AS, Goyal A, Simhadri HV, Paranjape B, Kumar A, Goyal S, Udupa R, Varma M, Jain P.

"Protonn: Compressed and accurate knn for resource-scarce devices." In: International Conference on

Machine Learning. PMLR; 2017. p. 1331-1340.

41. ^Van Der Maaten L, Postma E, Van den Herik J, et al. Dimensionality reduction: a comparative. J Mach L

earn Res. 10(66-71):13, 2009.

42. ^Kratsios A, Hyndman C (2021). "Neu: A meta-algorithm for universal uap-invariant feature represent

ation". The Journal of Machine Learning Research. 22 (1): 4102–4152.

43. ^Cunningham JP, Ghahramani Z (2015). "Linear dimensionality reduction: Survey, insights, and genera

lizations." The Journal of Machine Learning Research. 16 (1): 2859--2900.

44. ^Do TT, Hoang T, Pomponiu V, Zhou Y, Chen Z, Cheung NM, et al. (2018). "Accessible melanoma detecti

on using smartphones and mobile image analysis". IEEE Transactions on Multimedia. 20 (10): 2849–2

864.

45. ^Haider F, Pollak S, Albert P, Luz S (2021). "Emotion recognition in low-resource settings: An evaluatio

n of automatic feature selection methods". Computer Speech & Language. 65: 101119.

46. ^Summerville DH, Zach KM, Chen Y. "Ultra-lightweight deep packet anomaly detection for Internet of T

hings devices." In: 2015 IEEE 34th international performance computing and communications conferen

ce (IPCCC). IEEE; 2015. p. 1-8.

47. ^Sudhakar SRV, Kayastha N, Sha K (2021). "ActID: An e�cient framework for activity sensor based user

identi�cation". Computers & Security. 108: 102319.

48. ^Laddha P, Omer OJ, Kalsi GS, Mandal DK, Subramoney S. "Descriptor Scoring for Feature Selection in R

eal-Time Visual Slam." In: 2020 IEEE International Conference on Image Processing (ICIP). IEEE; 2020.

p. 2601--2605.

49. ^Masud M, Singh P, Gaba GS, Kaur A, Alroobaea R, Alrashoud M, Alqahtani SA (2021). "CROWD: crow s

earch and deep learning based feature extractor for classi�cation of Parkinson’s disease." ACM Transact

ions on Internet Technology (TOIT). 21 (3): 1–18.

50. ^Chen J, Zheng Y, Liang Y, Zhan Z, Jiang M, Zhang X, da Silva DS, Wu W, de Albuquerque VHC. "Edge2A

nalysis: a novel AIoT platform for atrial �brillation recognition and detection." IEEE Journal of Biomedi

cal and Health Informatics. 26 (12): 5772–5782, 2022.

51. a, bLi T, Fong S, Li X, Lu Z, Gandomi AH (2019). "Swarm decision table and ensemble search methods in

fog computing environment: case of day-ahead prediction of building energy demands using IoT sensor

s". IEEE Internet of Things Journal. 7 (3): 2321–2342.

qeios.com doi.org/10.32388/IZOHCH 71

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

52. ^Marino R, Wisultschew C, Otero A, Lanza-Gutierrez JM, Portilla J, de la Torre E (2020). "A machine-le

arning-based distributed system for fault diagnosis with scalable detection quality in industrial IoT". IE

EE Internet of Things Journal. 8 (6): 4339--4352.

53. a, b, cShen C, Zhang K, Tang J (2021). "A covid-19 detection algorithm using deep features and discrete s

ocial learning particle swarm optimization for edge computing devices". ACM Transactions on Internet

Technology (TOIT). 22 (3): 1–17.

54. ^Matsubara Y, Yang R, Levorato M, Mandt S. "Supervised compression for resource-constrained edge co

mputing systems." In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Visi

on; 2022. p. 2685-2695.

55. ^Chen D, Cao X, Wen F, Sun J. "Blessing of dimensionality: High-dimensional feature and its e�cient co

mpression for face veri�cation." In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition; 2013. p. 3025--3032.

56. ^Chen Z, Fan K, Wang S, Duan L, Lin W, Kot AC (2019). "Toward intelligent sensing: Intermediate deep f

eature compression". IEEE Transactions on Image Processing. 29: 2230–2243.

57. ^Liu C, Li X, Chen H, Modolo D, Tighe J (2021). "Selective feature compression for e�cient activity recog

nition inference." In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

p. 13628-13637.

58. ^Shao J, Zhang J (2020). "Communication-computation trade-o� in resource-constrained edge infere

nce". IEEE Communications Magazine. 58 (12): 20–26.

59. ^Abdellatif AA, Emam A, Chiasserini CF, et al. "Edge-based compression and classi�cation for smart he

althcare systems: Concept, implementation and evaluation." Expert Systems with Applications. 117: 1–1

4, 2019.

60. ^Zhou S, Van Le D, Yang JQ, Tan R, Ho D. "EFCam: Con�guration-adaptive fog-assisted wireless camer

as with reinforcement learning." In: 2021 18th Annual IEEE International Conference on Sensing, Com

munication, and Networking (SECON). IEEE; 2021. p. 1-9.

61. ^Abdellatif AA, Mohamed A, Chiasserini CF, Tlili M, Erbad A (2019). "Edge computing for smart health:

Context-aware approaches, opportunities, and challenges." IEEE Network. 33 (3): 196--203.

62. ^Moreno-Rodenas AM, Duinmeijer A, Clemens FH (2021). "Deep-learning based monitoring of FOG lay

er dynamics in wastewater pumping stations". Water Research. 202: 117482.

63. ^Guo Y, Zou B, Ren J, Liu Q, Zhang D, Zhang Y (2019). "Distributed and e�cient object detection via inte

ractions among devices, edge, and cloud". IEEE Transactions on Multimedia. 21 (11): 2903–2915.

qeios.com doi.org/10.32388/IZOHCH 72

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

64. ^Shorten C, Khoshgoftaar TM (2019). "A survey on image data augmentation for deep learning". Journ

al of Big Data. 6 (1): 1–48.

65. ^Ma W, Lou R, Zhang K, Wang L, Vosoughi S (2021). "GradTS: A Gradient-Based Automatic Auxiliary Ta

sk Selection Method Based on Transformer Networks". In: Proceedings of EMNLP 2021. pp. 5621–5632.

66. ^Feng SY, Gangal V, Wei J, Chandar S, Vosoughi S, Mitamura T, Hovy E (2021). "A survey of data augme

ntation approaches for NLP". arXiv preprint arXiv:2105.03075. 2021.

67. ^Wang Z, Hu J, Min G, Zhao Z, Wang J (2020). "Data-augmentation-based cellular tra�c prediction in

edge-computing-enabled smart city". IEEE Transactions on Industrial Informatics. 17 (6): 4179–4187.

68. ^Liao RF, Wen H, Chen S, Xie F, Pan F, Tang J, Song H (2019). "Multiuser physical layer authentication i

n internet of things with data augmentation". IEEE Internet of Things Journal. 7 (3): 2077–2088.

69. ^Liu X, Deng Z (2018). "Segmentation of drivable road using deep fully convolutional residual network

with pyramid pooling". Cognitive Computation. 10: 272–281.

70. ^Jiao Z, Huang K, Jia G, Lei H, Cai Y, Zhong Z (2022). "An e�ective litchi detection method based on edg

e devices in a complex scene". Biosystems Engineering. 222: 15–28.

71. ^Gu G, Ko B, Go S, Lee S-H, Lee J, Shin M (2022). "Towards light-weight and real-time line segment de

tection." In: Proceedings of the AAAI Conference on Arti�cial Intelligence. 36(1): 726–734.

72. ^Liu C, Antypenko R, Sushko I, Zakharchenko O (2022). "Intrusion Detection System After Data Augmen

tation Schemes Based on the VAE and CVAE". IEEE Transactions on Reliability. 71 (2): 1000--1010.

73. ^Pan H, Chen Y-C, Ye Q, Xue G (2021). "Magicinput: Training-free multi-lingual �nger input system us

ing data augmentation based on mnists." In: Proceedings of the 20th International Conference on Infor

mation Processing in Sensor Networks. 2021. pp. 119–131.

74. ^Zhou Y, Chen S, Wang Y, Huan W. "Review of research on lightweight convolutional neural networks."

In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE; 20

20. p. 1713-1720.

75. a, b, cHoward AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017). "M

obilenets: E�cient convolutional neural networks for mobile vision applications". arXiv preprint arXiv:1

704.04861.

76. a, b, cSandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. "Mobilenetv2: Inverted residuals and linea

r bottlenecks." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 201

8. p. 4510-4520.

qeios.com doi.org/10.32388/IZOHCH 73

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

77. a, b, cHoward A, Sandler M, Chu G, Chen L-C, Chen B, Tan M, Wang W, Zhu Y, et al. Searching for mobile

netv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. p. 1314–132

4.

78. a, bZhou D, Hou Q, Chen Y, Feng J, Yan S. "Rethinking bottleneck structure for e�cient mobile network d

esign." In: Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 202

0, Proceedings, Part III 16. Springer; 2020. p. 680--697.

79. a, bTan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A, Le QV. "Mnasnet: Platform-aware neur

al architecture search for mobile." In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition; 2019. p. 2820–2828.

80. a, bZhang X, Zhou X, Lin M, Sun J (2018). "Shu�enet: An extremely e�cient convolutional neural netwo

rk for mobile devices." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognit

ion. pp. 6848–6856.

81. a, bMa N, Zhang X, Zheng HT, Sun J (2018). "Shu�enet v2: Practical guidelines for e�cient cnn architec

ture design." In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 116–131.

82. a, bGuo Z, Zhang X, Mu H, et al. Single path one-shot neural architecture search with uniform sampling.

In: Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proc

eedings, Part XVI 16. Springer; 2020. p. 544--560.

83. a, bIandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016). "SqueezeNet: AlexNet-leve

l accuracy with 50x fewer parameters and< 0.5 MB model size". arXiv preprint arXiv:1602.07360.

84. a, bGholami A, Kwon K, Wu B, Tai Z, Yue X, Jin P, et al. "Squeezenext: Hardware-aware neural network

design." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop

s; 2018. p. 1638–1647.

85. a, bHan K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2020). "Ghostnet: More features from cheap operations." I

n: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020. pp. 1580

–1589.

86. a, b, cTan M, Le Q (2019). "E�cientnet: Rethinking model scaling for convolutional neural networks." I

n: International Conference on Machine Learning. PMLR. pp. 6105–6114.

87. a, b, cTan M, Le Q (2021). "E�cientNetV2: Smaller Models and Faster Training." In: International Confe

rence on Machine Learning. PMLR. pp. 10096–10106.

88. a, b, cTan M, Pang R, Le QV (2020). "E�cientdet: Scalable and e�cient object detection." In: Proceeding

s of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10781–10790.

qeios.com doi.org/10.32388/IZOHCH 74

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

89. a, bHuang G, Liu S, Van der Maaten L, Weinberger KQ (2018). "Condensenet: An e�cient densenet using

learned group convolutions." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Re

cognition. 2018. p. 2752–2761.

90. a, bYang L, Jiang H, Cai R, Wang Y, Song S, Huang G, Tian Q. "Condensenet v2: Sparse feature reactivatio

n for deep networks." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Reco

gnition; 2021. p. 3569–3578.

91. a, bMehta S, Rastegari M, Caspi A, Shapiro L, Hajishirzi H. "Espnet: E�cient spatial pyramid of dilated c

onvolutions for semantic segmentation." In: Proceedings of the European Conference on Computer Visio

n (ECCV); 2018. p. 552–568.

92. a, bMehta S, Rastegari M, Shapiro L, et al. "Espnetv2: A light-weight, power e�cient, and general purpo

se convolutional neural network." In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition; 2019. p. 9190–9200.

93. a, bWu B, Dai X, Zhang P, et al. "Fbnet: Hardware-aware e�cient convnet design via di�erentiable neur

al architecture search." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rec

ognition. 2019. p. 10734-10742.

94. a, bWan A, Dai X, Zhang P, et al. Fbnetv2: Di�erentiable neural architecture search for spatial and chann

el dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio

n. 2020. p. 12965-12974.

95. a, bDai X, Wan A, Zhang P, Wu B, He Z, Wei Z, et al. Fbnetv3: Joint architecture-recipe search using predi

ctor pretraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogniti

on. 2021. p. 16276-16285.

96. a, bWang RJ, Li X, Ling CX (2018). "Pelee: A real-time object detection system on mobile devices". Advan

ces in Neural Information Processing Systems. 31.

97. a, bSzegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. "Going deeper with convolutions." In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. p. 1–9.

98. a, bIo�e S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal cov

ariate shift. In: International Conference on Machine Learning. pmlr; 2015. p. 448–456.

99. a, bSzegedy C, Vanhoucke V, Io�e S, Shlens J, Wojna Z (2016). "Rethinking the inception architecture for

computer vision." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

pp. 2818–2826.

qeios.com doi.org/10.32388/IZOHCH 75

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

100. a, bSzegedy C, Io�e S, Vanhoucke V, Alemi A (2017). "Inception-v4, inception-resnet and the impact of r

esidual connections on learning." In: Proceedings of the AAAI conference on Arti�cial Intelligence. 31(1).

101. a, bChollet F. "Xception: Deep learning with depthwise separable convolutions." In: Proceedings of the IE

EE Conference on Computer Vision and Pattern Recognition. 2017. p. 1251-1258.

102. a, bMehta S, Rastegari M (2021). "Mobilevit: light-weight, general-purpose, and mobile-friendly vision

transformer." International Conference on Learning Representations.

103. a, bWu Z, Liu Z, Lin J, Lin Y, Han S (2020). "Lite transformer with long-short range attention." Internati

onal Conference on Learning Representations.

104. a, bHou Q, Zhou D, Feng J (2021). "Coordinate attention for e�cient mobile network design." In: Procee

dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13713–13722.

105. a, bWang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q (2020). "ECA-Net: E�cient channel attention for deep conv

olutional neural networks." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Patter

n Recognition. pp. 11534–11542.

106. a, bZhang QL, Yang YB. "Sa-net: Shu�e attention for deep convolutional neural networks." In: ICASSP 2

021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 20

21. p. 2235-2239.

107. a, bMisra D, Nalamada T, Arasanipalai AU, Hou Q (2021). "Rotate to attend: Convolutional triplet attent

ion module." In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp.

3139--3148.

108. a, bZhang H, Wu C, Zhang Z, Zhu Y, Lin H, Zhang Z, Sun Y, He T, Mueller J, Manmatha R, et al. "Resnest:

Split-attention networks." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition; 2022. p. 2736-2746.

109. ^Lu H, Du M, He X, Qian K, Chen J, Sun Y, Wang K (2021). "An adaptive neural architecture search desig

n for collaborative edge-cloud computing". IEEE Network. 35 (5): 83–89.

110. ^Lyu B, Wen S, Shi K, Huang T (2021). "Multiobjective reinforcement learning-based neural architectur

e search for e�cient portrait parsing". IEEE Transactions on Cybernetics. 2021. Published by IEEE.

111. a, bChen H, Zhuo L, Zhang B, Zheng X, Liu J, Ji R, Doermann D, Guo G (2021). "Binarized neural architect

ure search for e�cient object recognition". International Journal of Computer Vision. 129: 501–516.

112. ^Mendis HR, Kang C-K, Hsiu P-c (2021). "Intermittent-aware neural architecture search". ACM Transa

ctions on Embedded Computing Systems (TECS). 20 (5s): 1–27.

qeios.com doi.org/10.32388/IZOHCH 76

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

113. a, bNing X, Ge G, Li W, Zhu Z, Zheng Y, Chen X, et al. FTT-NAS: Discovering fault-tolerant convolutional

neural architecture. ACM Transactions on Design Automation of Electronic Systems (TODAES). 26(6):1–

24, 2021.

114. ^Liu Z, Tang H, Zhao S, Shao K, Han S (2021). "Pvnas: 3D neural architecture search with point-voxel co

nvolution". IEEE Transactions on Pattern Analysis and Machine Intelligence. 44 (11): 8552--8568.

115. ^Donegan C, Yous H, Sinha S, Byrne J. "VPU speci�c CNNs through neural architecture search." In: 2020

25th International Conference on Pattern Recognition (ICPR). IEEE; 2021. p. 9772–9779.

116. ^Nayman N, A�alo Y, Noy A, Zelnik L (2021). "Hardcore-nas: Hard constrained di�erentiable neural ar

chitecture search." In: International Conference on Machine Learning. PMLR. pp. 7979–7990.

117. ^Liu P, Wu B, Ma H, Seok M. "MemNAS: Memory-e�cient neural architecture search with grow-trim le

arning." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 202

0. p. 2108–2116.

118. ^Zhang C, Yuan X, Zhang Q, Zhu G, Cheng L, Zhang N (2022). "Toward tailored models on private aiot d

evices: Federated direct neural architecture search". IEEE Internet of Things Journal. 9 (18): 17309–1732

2.

119. ^Han S, Mao H, Dally WJ (2016). "Deep Compression: Compressing Deep Neural Networks with Pruning,

Trained Quantization and Hu�man Coding". International Conference on Learning Representations (IC

LR).

120. ^Xu Z, Yu F, Qin Z, et al. Directx: Dynamic resource-aware cnn recon�guration framework for real-time

mobile applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

2020;40(2):246–259.

121. ^Ahmad H, Arif T, Hanif MA, Ha�z R, Sha�que M (2020). "SuperSlash: A uni�ed design space explorati

on and model compression methodology for design of deep learning accelerators with reduced o�-chip

memory access volume". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Syste

ms. 39 (11): 4191--4204.

122. ^Tan CMJ, Motani M. "Dropnet: Reducing neural network complexity via iterative pruning." In: Internat

ional Conference on Machine Learning. PMLR; 2020. p. 9356-9366.

123. ^Li Z, Wallace E, Shen S, Lin K, Keutzer K, Klein D, Gonzalez J (2020). "Train big, then compress: Rethin

king model size for e�cient training and inference of transformers." In: International Conference on M

achine Learning. PMLR. pp. 5958–5968.

qeios.com doi.org/10.32388/IZOHCH 77

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

124. ^Ma W, Zhang K, Lou R, Wang L, Vosoughi S. Contributions of Transformer Attention Heads in Multi- a

nd Cross-lingual Tasks. In: Proceedings of ACL-IJCNLP 2021; 2021.

125. a, bGao S, Huang F, Pei J, Huang H (2020). "Discrete model compression with resource constraint for de

ep neural networks." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog

nition. pp. 1899--1908.

126. ^Wu C, Cui Y, Ji C, Kuo TW, Xue CJ (2020). "Pruning deep reinforcement learning for dual user experienc

e and storage lifetime improvement on mobile devices". IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems. 39 (11): 3993–4005.

127. ^Zhou X, Jia Q, et al. "NestFL: e�cient federated learning through progressive model pruning in heterog

eneous edge computing." In: Proceedings of the 28th Annual International Conference on Mobile Comp

uting And Networking, 2022, pp. 817–819.

128. a, bGeng T, Li A, Wang T, Wu C, et al. O3BNN-R: An out-of-order architecture for high-performance an

d regularized BNN inference. IEEE Transactions on Parallel and Distributed Systems. 32(1):199–213, 20

20.

129. ^Li G, Ma X, Wang X, Liu L, et al. (2020). "Fusion-catalyzed pruning for optimizing deep learning on in

telligent edge devices." IEEE Transactions on Computer-Aided Design of Integrated Circuits and System

s. 39 (11): 3614–3626.

130. ^Gu J, Feng C, Zhao Z, Ying Z, et al. E�cient on-chip learning for optical neural networks through powe

r-aware sparse zeroth-order optimization. Proceedings of the AAAI Conference on Arti�cial Intelligenc

e. 2021; 35(9): 7583–7591.

131. ^Kwon W, Kim S, Mahoney MW, Hassoun J, Keutzer K, Gholami A (2022). "A Fast Post-Training Prunin

g Framework for Transformers." Advances in Neural Information Processing Systems. 2022.

132. ^Lin M, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao L. "Hrank: Filter pruning using high-rank feature

map." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020.

p. 1529–1538.

133. ^Li S, Hanson E, Li H, Chen Y (2020). "Penni: Pruned kernel sharing for e�cient CNN inference." In: Int

ernational Conference on Machine Learning. PMLR. pp. 5863–5873.

134. ^Tung F, Mori G (2018). "Clip-q: Deep network compression learning by in-parallel pruning-quantizat

ion." In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7873–788

2.

qeios.com doi.org/10.32388/IZOHCH 78

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

135. ^Fedorov I, Adams RP, Mattina M, Whatmough P (2019). "Sparse: Sparse architecture search for cnns o

n resource-constrained microcontrollers". Advances in Neural Information Processing Systems. 32.

136. a, bKhaleghi B, Imani M, Rosing T. "Prive-hd: Privacy-preserved hyperdimensional computing." In: 20

20 57th ACM/IEEE Design Automation Conference (DAC). IEEE; 2020. p. 1-6.

137. a, b, cHuang Y, Qiao X, Tang J, Ren P, et al. Deepadapter: A collaborative deep learning framework for th

e mobile web using context-aware network pruning. In: IEEE INFOCOM 2020-IEEE Conference on Com

puter Communications. IEEE; 2020. p. 834–843.

138. a, bLiu Y, Shu Z, Li Y, Lin Z, Perazzi F, Kung S-Y. "Content-aware gan compression." In: Proceedings of t

he IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. p. 12156-12166.

139. ^Jian T, Gong Y, Zhan Z, Shi R, Soltani N, Wang Z, Dy J, Chowdhury K, Wang Y, Ioannidis S (2021). "Radi

o frequency �ngerprinting on the edge". IEEE Transactions on Mobile Computing. 21 (11): 4078–4093.

140. ^Wang L, Dong X, Wang Y, Ying X, et al. "Exploring sparsity in image super-resolution for e�cient infer

ence." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021.

p. 4917–4926.

141. ^Sun M, Zhao P, Gungor M, Pedram M, Leeser M, Lin X. "3D CNN acceleration on FPGA using hardware

-aware pruning." In: 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE; 2020. p. 1-6.

142. a, bWu J, Wang Y, Wu Z, et al. "Deep k-means: Re-training and parameter sharing with harder cluster a

ssignments for compressing deep convolutions." In: International Conference on Machine Learning. PM

LR; 2018. p. 5363–5372.

143. a, bObukhov A, Rakhuba M, Georgoulis S, Kanakis M, Dai D, Van Gool L. "T-basis: a compact representat

ion for neural networks." In: International Conference on Machine Learning. PMLR; 2020. p. 7392–740

4.

144. ^Ullrich K, Meeds E, Welling M (2017). "Soft weight-sharing for neural network compression". Internati

onal Conference on Learning Representations.

145. ^You H, Li B, Huihong S, Fu Y, Lin Y. "ShiftAddNAS: Hardware-inspired search for more accurate and ef

�cient neural networks." In: International Conference on Machine Learning. PMLR; 2022. p. 25566-255

80.

146. ^Hu S, Xie X, Cui M, Deng J, Liu S, Yu J, et al. "Neural architecture search for LF-MMI trained time delay

neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing. 30: 1093–1107,

2022.

qeios.com doi.org/10.32388/IZOHCH 79

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

147. ^Wang R, Wei Z, Duan H, Ji S, Long Y, Hong Z (2022). "E�cientTDNN: E�cient architecture search for s

peaker recognition". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 30: 2267–22

79.

148. ^Sun Y, Yuan F, Yang M, Wei G, et al. "A generic network compression framework for sequential recom

mender systems." In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Dev

elopment in Information Retrieval; 2020. p. 1299-1308.

149. ^Sindhwani V, Sainath T, Kumar S (2015). "Structured transforms for small-footprint deep learning". A

dvances in Neural Information Processing Systems. 28.

150. a, bFu Y, You H, Zhao Y, Wang Y, Li C, et al. (2020). "Fractrain: Fractionally squeezing bit savings both te

mporally and spatially for e�cient dnn training." Advances in Neural Information Processing Systems.

33: 12127–12139.

151. a, b, c, dTambe T, Hooper C, Pentecost L, et al. "Edgebert: Sentence-level energy optimizations for latenc

y-aware multi-task nlp inference." In: MICRO-54: 54th Annual IEEE/ACM International Symposium o

n Microarchitecture; 2021. p. 830-844.

152. ^Chikin V, Antiukh M (2022). "Data-Free Network Compression via Parametric Non-uniform Mixed Pr

ecision Quantization." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rec

ognition. pp. 450–459.

153. a, b, cBoo Y, Shin S, Choi J, Sung W (2021). "Stochastic precision ensemble: self-knowledge distillation fo

r quantized deep neural networks." In: Proceedings of the AAAI Conference on Arti�cial Intelligence. 35

(8): 6794–6802.

154. ^Cui Y, Wu S, Li Q, Chan AB, Kuo TW, Xue CJ (2022). "Bits-Ensemble: Toward Light-Weight Robust Dee

p Ensemble by Bits-Sharing". IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. 41 (11): 4397–4408.

155. ^Marchisio A, Bussolino B, Colucci A, Martina M, Masera G, Sha�que M. "Q-capsnets: A specialized fra

mework for quantizing capsule networks." In: 2020 57th ACM/IEEE Design Automation Conference (DA

C). IEEE; 2020. p. 1-6.

156. ^Putra RVW, et al. (2020). "Fspinn: An optimization framework for memory-e�cient and energy-e�ci

ent spiking neural networks." IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems. 39 (11): 3601–3613.

157. a, b, cZhou Q, Guo S, Qu Z, et al. "Octo: INT8 Training with Loss-aware Compensation and Backward Qu

antization for Tiny On-device Learning." In: USENIX Annual Technical Conference, 2021, pp. 177–191.

qeios.com doi.org/10.32388/IZOHCH 80

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

158. a, b, cWang K, Liu Z, Lin Y, Lin J, Han S (2019). "Haq: Hardware-aware automated quantization with mi

xed precision." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio

n. pp. 8612--8620.

159. ^Li B, Qu S, Wang Y (2021). "An automated quantization framework for high-utilization rram-based pi

m". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 41 (3): 583--596.

160. ^Simon WA, Ray V, Levisse A, Ansaloni G, Zapater M, Atienza D. "Exact neural networks from inexact m

ultipliers via �bonacci weight encoding." In: 2021 58th ACM/IEEE Design Automation Conference (DA

C). IEEE; 2021. p. 805-810.

161. ^Hinton G, Vinyals O, Dean J (2015). "Distilling the knowledge in a neural network". arXiv preprint arXi

v:1503.02531. Available from: https://arxiv.org/abs/1503.02531.

162. a, bZhang L, Song J, Gao A, et al. (2019). "Be your own teacher: Improve the performance of convolution

al neural networks via self distillation." In: Proceedings of the IEEE/CVF International Conference on Co

mputer Vision. pp. 3713–3722.

163. ^Hou L, Huang Z, Shang L, Jiang X, Chen X, Liu Q (2020). "Dynabert: Dynamic bert with adaptive width

and depth". Advances in Neural Information Processing Systems. 33: 9782–9793.

164. ^Zhang L, Tan Z, Song J, Chen J, Bao C, Ma K (2019). "Scan: A scalable neural networks framework towa

rds compact and e�cient models". Advances in Neural Information Processing Systems. 32.

165. a, bZhang Y, Yan Z, Sun X, Diao W, Fu K, Wang L (2021). "Learning e�cient and accurate detectors with

dynamic knowledge distillation in remote sensing imagery". IEEE Transactions on Geoscience and Rem

ote Sensing. 60: 1–19.

166. ^Hao Z, Luo Y, Wang Z, Hu H, An J (2022). "CDFKD-MFS: Collaborative Data-Free Knowledge Distillati

on via Multi-Level Feature Sharing". IEEE Transactions on Multimedia. 24: 4262–4274.

167. ^Hao Z, Guo J, Jia D, Han K, Tang Y, Zhang C, Hu H, Wang Y (2022). "Learning E�cient Vision Transfor

mers via Fine-Grained Manifold Distillation". Advances in Neural Information Processing Systems. 35:

9164–9175.

168. ^Zhang K, Tao C, Shen T, Xu C, Geng X, Jiao B, Jiang D (2023). "LED: Lexicon-Enlightened Dense Retrie

ver for Large-Scale Retrieval." In: Proceedings of WWW 2023. doi:10.1145/3543507.3583294.

169. ^Shen T, Geng X, Tao C, Xu C, Long G, Zhang K, Jiang D (2023). "Uni�eR: A Uni�ed Retriever for Large-

Scale Retrieval". arXiv. Available from: https://arxiv.org/abs/2205.11194.

170. ^Ni J, Sarbajna R, Liu Y, et al. "Cross-modal knowledge distillation for vision-to-sensor action recognit

ion." In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing

qeios.com doi.org/10.32388/IZOHCH 81

https://arxiv.org/abs/1503.02531
https://doi.org/10.1145/3543507.3583294
https://arxiv.org/abs/2205.11194
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

(ICASSP). IEEE; 2022. p. 4448-4452.

171. ^Jin H, Bai D, Yao D, Dai Y, Gu L, Yu C, Sun L (2022). "Personalized edge intelligence via federated self-

knowledge distillation". IEEE Transactions on Parallel and Distributed Systems. 34 (2): 567–580.

172. ^Li W, Wang J, Ren T, Li F, Zhang J, Wu Z (2022). "Learning Accurate, Speedy, Lightweight CNNs via Ins

tance-Speci�c Multi-Teacher Knowledge Distillation for Distracted Driver Posture Identi�cation". IEEE

Transactions on Intelligent Transportation Systems. 23 (10): 17922–17935.

173. ^Xia X, Yin H, Yu J, et al. "On-Device Next-Item Recommendation with Self-Supervised Knowledge Dist

illation." In: Proceedings of the 45th International ACM SIGIR Conference on Research and Developmen

t in Information Retrieval, 2022, pp. 546–555.

174. ^Xu Z, Hong Z, Ding C, Zhu Z, Han J, Liu J, Ding E (2022). "Mobilefaceswap: A lightweight framework fo

r video face swapping." Proceedings of the AAAI Conference on Arti�cial Intelligence. 36 (3): 2973–298

1.

175. ^Bai H, Mao H, Nair D. "Dynamically pruning segformer for e�cient semantic segmentation." In: ICASS

P 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE;

2022. p. 3298-3302.

176. ^Yang H, et al. "Learning low-rank deep neural networks via singular vector orthogonality regularizati

on and singular value sparsi�cation." In: Proceedings of the IEEE/CVF Conference on Computer Vision a

nd Pattern Recognition Workshops, 2020. p. 678–679.

177. ^Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N (2020). "MicroNet: Towards i

mage recognition with extremely low FLOPs". arXiv preprint arXiv:2011.12289. 2020. Available from: ht

tps://arxiv.org/abs/2011.12289.

178. ^Verma G, Gupta Y, Malik AM, Chapman B. "Performance evaluation of deep learning compilers for edg

e inference." In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IP

DPSW). IEEE; 2021. p. 858–865.

179. ^Microsoft (2019). "ONNX Runtime: cross-platform, high performance ML inferencing and training acc

elerator." GitHub repository. Available from: https://github.com/microsoft/onnxruntime.

180. ^Intel (2018). "$OpenVINO^{TM}$ Toolkit repository." GitHub repository. Available from: https://githu

b.com/openvinotoolkit/openvino.

181. ^Tencent (2017). "NCNN is a high-performance neural network inference framework optimized for the

mobile platform." GitHub repository. Available from: https://github.com/Tencent/ncnn.

182. ^Arm (2018). "Arm NN ML Software. https://github.com/ARM-software/armnn". GitHub repository.

qeios.com doi.org/10.32388/IZOHCH 82

https://arxiv.org/abs/2011.12289
https://arxiv.org/abs/2011.12289
https://github.com/microsoft/onnxruntime
https://github.com/openvinotoolkit/openvino
https://github.com/openvinotoolkit/openvino
https://github.com/Tencent/ncnn
https://github.com/ARM-software/armnn
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

183. ^Alibaba (2018). "MNN is a blazing fast, lightweight deep learning framework". GitHub repository. Avai

lable from: https://github.com/alibaba/MNN.

184. ^NVIDIA (2017). "$NVIDIA^{\circledR}$ $TensorRT^{TM}$, an SDK for high-performance deep learni

ng inference". GitHub repository. Available from: https://github.com/NVIDIA/TensorRT.

185. ^Apache (2018). "Open deep learning compiler stack for cpu, gpu and specialized accelerators." GitHub r

epository. Available from: https://github.com/apache/tvm.

186. a, b, c, d, e, fXia M, Huang Z, Tian L, Wang H, Chang V, Zhu Y, Feng S (2021). "SparkNoC: An energy-e�c

iency FPGA-based accelerator using optimized lightweight CNN for edge computing". Journal of System

s Architecture. 115: 101991.

187. a, bWang Y, Li H, Li X. "Re-architecting the on-chip memory sub-system of machine-learning accelerat

or for embedded devices." In: 2016 IEEE/ACM International Conference on Computer-Aided Design (IC

CAD). IEEE; 2016. p. 1–6.

188. a, bWang L, Chen Z, Liu Y, Wang Y, Zheng L, Li M, Wang Y. "A uni�ed optimization approach for cnn mo

del inference on integrated gpus." In: Proceedings of the 48th International Conference on Parallel Proc

essing; 2019. p. 1-10.

189. a, bWang S, Ananthanarayanan G, Zeng Y, et al. High-throughput cnn inference on embedded arm big. l

ittle multicore processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Syst

ems. 39(10):2254–2267, 2019.

190. a, bZhao L, Zhang Y, Yang J. "SCA: a secure CNN accelerator for both training and inference." In: 2020 57

th ACM/IEEE Design Automation Conference (DAC). IEEE; 2020. p. 1-6.

191. a, bHou X, Guan Y, Han T (2022). "NeuLens: spatial-based dynamic acceleration of convolutional neura

l networks on edge." In: Proceedings of the 28th Annual International Conference on Mobile Computing

And Networking. pp. 186--199.

192. a, bSrivastava A, Dutta O, Gupta J, et al. "A variational information bottleneck based method to compres

s sequential networks for human action recognition." In: Proceedings of the IEEE/CVF Winter Conferenc

e on Applications of Computer Vision; 2021. p. 2745-2754.

193. a, bGao C, Rios-Navarro A, Chen X, Liu S-C, Delbruck T (2020). "EdgeDRNN: Recurrent neural network

accelerator for edge inference". IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 1

0 (4): 419--432.

194. a, bWen L, Zhang X, Bai H, Xu Z (2020). "Structured pruning of recurrent neural networks through neur

on selection". Neural Networks. 123: 134–141.

qeios.com doi.org/10.32388/IZOHCH 83

https://github.com/alibaba/MNN
https://github.com/NVIDIA/TensorRT
https://github.com/apache/tvm
https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

195. a, bZhang J, Wang X, Li D, Wang Y. "Dynamically hierarchy revolution: dirnet for compressing recurrent

neural network on mobile devices." In: Proceedings of the 27th International Joint Conference on Arti�c

ial Intelligence; 2018. p. 3089-3096.

196. a, b, cDing Y, Yu CH, et al. "Hidet: Task-mapping programming paradigm for deep learning tensor progr

ams." In: Proceedings of the 28th ACM International Conference on Architectural Support for Programm

ing Languages and Operating Systems, Volume 2. 2023. p. 370–384.

197. ^Liu P, Qi B, Banerjee S. "Edgeeye: An edge service framework for real-time intelligent video analytics."

In: Proceedings of the 1st International Workshop on Edge Systems, Analytics and Networking; 2018. p. 1

–6.

198. a, bXie X, Kim KH. "Source compression with bounded dnn perception loss for iot edge computer vision."

In: The 25th Annual International Conference on Mobile Computing and Networking; 2019. p. 1-16.

199. a, bHuang Y, Qiao X, Ren P, Liu L, Pu C, Dustdar S, Chen J (2020). "A lightweight collaborative deep neur

al network for the mobile web in edge cloud". IEEE Transactions on Mobile Computing. 21 (7): 2289–23

05.

200. ^Farhadi M, Ghasemi M, Vrudhula S, Yang Y (2020). "Enabling incremental knowledge transfer for obj

ect detection at the edge." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops. pp. 396–397.

201. a, bYang L, Rakin AS, Fan D (2022). "DA3: Dynamic Additive Attention Adaption for Memory-E�cient O

n-Device Multi-Domain Learning." In: Proceedings of the IEEE/CVF Conference on Computer Vision an

d Pattern Recognition. 2022: 2619–2627.

202. a, bKosta AK, Anwar MA, et al. "RAPID-RL: A Recon�gurable Architecture with Preemptive-Exits for E�

cient Deep-Reinforcement Learning." In: 2022 International Conference on Robotics and Automation (I

CRA). IEEE; 2022. p. 7492–7498.

203. ^Susskind Z, Arora A, Miranda ID, Villon LA, Katopodis RF, de Araújo LS, Dutra DL, Lima PM, França F

M, Breternitz Jr M, et al. "Weightless neural networks for e�cient edge inference." In: Proceedings of th

e International Conference on Parallel Architectures and Compilation Techniques; 2022. p. 279–290.

204. ^He S, Meng H, Zhou Z, Liu Y, Huang K, Chen G (2021). "An e�cient GPU-accelerated inference engine f

or binary neural network on mobile phones". Journal of Systems Architecture. 117: 102156.

205. ^Zhang X, Jiang W, Hu J (2020). "Achieving full parallelism in LSTM via a uni�ed accelerator design." I

n: 2020 IEEE 38th International Conference on Computer Design (ICCD). IEEE. pp. 469–477.

qeios.com doi.org/10.32388/IZOHCH 84

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

206. ^Zhou Z, Liu J, Gu Z, Sun G (2022). "Energon: Toward E�cient Acceleration of Transformers Using Dyna

mic Sparse Attention". IEEE Transactions on Computer-Aided Design of Integrated Circuits and System

s. 42 (1): 136–149.

207. ^Zhou Z, Shi B, Zhang Z, Guan Y, Sun G, Luo G. "Blockgnn: Towards e�cient gnn acceleration using bloc

k-circulant weight matrices." In: 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE; 202

1. p. 1009-1014.

208. ^Kwon M, Gouk D, et al. Hardware/Software Co-Programmable Framework for Computational SSDs to

Accelerate Deep Learning Service on Large-Scale Graphs. In: 20th USENIX Conference on File and Stora

ge Technologies (FAST 22); 2022. p. 147-164.

209. ^Yang T, Li D, Ma F, Song Z, Zhao Y, Zhang J, Liu F, Jiang L (2022). "Pasgcn: An reram-based pim desig

n for gcn with adaptively sparsi�ed graphs." IEEE Transactions on Computer-Aided Design of Integrate

d Circuits and Systems. 42 (1): 150--163.

210. ^Xu H, Wang Y, Wang Y, Li J, Liu B, Han Y (2019). "ACG-engine: An inference accelerator for content ge

nerative neural networks." In: 2019 IEEE/ACM International Conference on Computer-Aided Design (IC

CAD). IEEE. pp. 1–7.

211. a, bNori AV, Bera R, et al. "Reduct: Keep it close, keep it cool!: E�cient scaling of dnn inference on multi-

core cpus with near-cache compute." In: 2021 ACM/IEEE 48th Annual International Symposium on Co

mputer Architecture (ISCA). IEEE; 2021. p. 167–180.

212. a, bJia T, Ju Y, et al. "Ncpu: An embedded neural cpu architecture on resource-constrained low power de

vices for real-time end-to-end performance." In: 2020 53rd Annual IEEE/ACM International Symposiu

m on Microarchitecture (MICRO). IEEE; 2020. p. 1097–1109.

213. a, b, cCapodieci N, Cavicchioli R, Bertogna M, Paramakuru A. "Deadline-based scheduling for GPU with

preemption support." In: 2018 IEEE Real-Time Systems Symposium (RTSS). IEEE; 2018. p. 119–130.

214. a, b, cChoudhury Z, Shrivastava S, Ramapantulu L, Purini S (2022). "An FPGA overlay for CNN inference

with �ne-grained �exible parallelism". ACM Transactions on Architecture and Code Optimization (TAC

O). 19 (3): 1–26.

215. a, b, cYu Y, Zhao T, Wang K, He L. "Light-OPU: An FPGA-based overlay processor for lightweight convol

utional neural networks." In: Proceedings of the 2020 ACM/SIGDA International Symposium on Field-P

rogrammable Gate Arrays; 2020. p. 122--132.

216. a, b, cRoohi A, Sheikhfaal S, Angizi S, Fan D, DeMara RF (2019). "Apgan: Approximate gan for robust lo

w energy learning from imprecise components". IEEE Transactions on Computers. 69 (3): 349--360.

qeios.com doi.org/10.32388/IZOHCH 85

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

217. a, bKouris A, Venieris SI, Laskaridis S, Lane ND (2022). "Fluid Batching: Exit-Aware Preemptive Serving

of Early-Exit Neural Networks on Edge NPUs". arXiv preprint arXiv:2209.13443. 2022.

218. a, bYang Q, Li H (2020). "BitSystolic: A 26.7 TOPS/W 2b~ 8b NPU with con�gurable data �ows for edge d

evices". IEEE Transactions on Circuits and Systems I: Regular Papers. 68 (3): 1134--1145.

219. a, b, cWang Y, Deng D, Liu L, et al. (2022). "PL-NPU: An Energy-E�cient Edge-Device DNN Training Pr

ocessor With Posit-Based Logarithm-Domain Computing". IEEE Transactions on Circuits and Systems

I: Regular Papers. 69 (10): 4042–4055.

220. a, bCho H, Lee J, Lee J (2021). "FARNN: FPGA-GPU hybrid acceleration platform for recurrent neural net

works". IEEE Transactions on Parallel and Distributed Systems. 33 (7): 1725–1738.

221. a, bXiang Y, Kim H. "Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference." I

n: 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE; 2019. p. 392–405.

222. ^Zhou S, Zhang L. "Smart home electricity demand forecasting system based on edge computing." In: 2

018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS). IEEE; 201

8. p. 164–167.

223. ^Zhan Y, Haddadi H (2019). "Towards automating smart homes: Contextual and temporal dynamics of

activity prediction." In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasi

ve and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable

Computers. 2019. p. 413–417.

224. ^Han T, Muhammad K, Hussain T, Lloret J, Baik SW (2020). "An e�cient deep learning framework for i

ntelligent energy management in IoT networks". IEEE Internet of Things Journal. 8 (5): 3170–3179.

225. ^Zhou W, Jia Y, Yao Y, Zhu L, Guan L, Mao Y, Liu P, Zhang Y (2019). "Discovering and understanding the

security hazards in the interactions between iot devices, mobile apps, and clouds on smart home platfor

ms." Proceedings of the 28th USENIX Conference on Security Symposium. pp. 1133–1150.

226. ^Li L, Ota K, Dong M (2018). "Deep learning for smart industry: E�cient manufacture inspection system

with fog computing". IEEE Transactions on Industrial Informatics. 14 (10): 4665–4673.

227. ^Chu Y, Feng D, Liu Z, Zhang L, Zhao Z, Wang Z, Feng Z, Xia XG. "A Fine-Grained Attention Model for Hi

gh Accuracy Operational Robot Guidance." IEEE Internet of Things Journal. 2022.

228. ^Tuli S, Basumatary N, Gill SS, et al. HealthFog: An ensemble deep learning based Smart Healthcare Sys

tem for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Futu

re Generation Computer Systems. 104: 187--200, 2020.

qeios.com doi.org/10.32388/IZOHCH 86

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

229. ^Verde L, Brancati N, De Pietro G, Frucci M, Sannino G (2021). "A deep learning approach for voice disor

der detection for smart connected living environments". ACM Transactions on Internet Technology (TOI

T). 22 (1): 1–16.

230. ^Rahman MA, Hossain MS, Alrajeh NA, Guizani N (2020). "B5G and explainable deep learning assisted

healthcare vertical at the edge: COVID-I9 perspective". IEEE Network. 34 (4): 98--105.

231. ^Kong X, Wang K, Wang S, Wang X, Jiang X, Guo Y, Shen G, Chen X, Ni Q (2021). "Real-time mask identi

�cation for COVID-19: An edge-computing-based deep learning framework". IEEE Internet of Things J

ournal. 8 (21): 15929–15938.

232. ^Hossain MS, Muhammad G (2020). "Deep learning based pathology detection for smart connected hea

lthcare". IEEE Network. 34 (6): 120–125.

233. ^Muhammad G, Alhamid MF, Long X (2019). "Computing and processing on the edge: Smart pathology

detection for connected healthcare". IEEE Network. 33 (6): 44–49.

234. ^Liu Y, Ma Z, Liu X, Ma S, Ren K (2019). "Privacy-preserving object detection for medical images with f

aster R-CNN." IEEE Transactions on Information Forensics and Security. 17: 69–84.

235. ^Luo Q, Li C, Luan TH, Shi W (2020). "Collaborative data scheduling for vehicular edge computing via d

eep reinforcement learning." IEEE Internet of Things Journal. 7 (10): 9637--9650.

236. ^Jiang X, Yu FR, Song T, Leung VC. "Intelligent resource allocation for video analytics in blockchain-ena

bled internet of autonomous vehicles with edge computing." IEEE Internet of Things Journal. 9(16):142

60-14272, 2020.

237. ^Liu Q, Han T, Xie JL, Kim B. "Livemap: Real-time dynamic map in automotive edge computing." In: IE

EE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE; 2021. p. 1-10.

238. ^Liang S, Wu H, Zhen L, et al. (2022). "Edge YOLO: Real-time intelligent object detection system based

on edge-cloud cooperation in autonomous vehicles". IEEE Transactions on Intelligent Transportation S

ystems. 23 (12): 25345–25360.

239. ^Malawade A, Odema M, Lajeunesse-DeGroot S, Al Faruque MA (2021). "Sage: A split-architecture met

hodology for e�cient end-to-end autonomous vehicle control". ACM Transactions on Embedded Comp

uting Systems (TECS). 20 (5s): 1–22.

240. ^Wang J, Ke H, Liu X, Wang H (2022). "Optimization for computational o�oading in multi-access edge

computing: A deep reinforcement learning scheme". Computer Networks. 204: 108690.

241. ^Zhao P, Niu W, Yuan G, et al. "Brief industry paper: Towards real-time 3D object detection for autono

mous vehicles with pruning search." In: 2021 IEEE 27th Real-Time and Embedded Technology and Appl

qeios.com doi.org/10.32388/IZOHCH 87

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

ications Symposium (RTAS). IEEE; 2021. p. 425–428.

242. ^Wang S, Yang S, Zhao C. "SurveilEdge: Real-time video query based on collaborative cloud-edge deep

learning." In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE; 2020. p. 251

9-2528.

243. ^Trinh HD, Giupponi L, Dini P (2019). "Urban anomaly detection by processing mobile tra�c traces wit

h LSTM neural networks." In: 2019 16th Annual IEEE International Conference on Sensing, Communica

tion, and Networking (SECON). IEEE. pp. 1–8.

244. ^Dautov R, Distefano S, Bruneo D, Longo F, Merlino G, Pulia�to A, Buyya R (2018). "Metropolitan intelli

gent surveillance systems for urban areas by harnessing IoT and edge computing paradigms". Software:

Practice and experience. 48 (8): 1475--1492.

245. ^Menshchikov A, Shadrin D, Prutyanov V, Lopatkin D, Sosnin S, et al. "Real-time detection of hogweed:

UAV platform empowered by deep learning." IEEE Transactions on Computers. 70 (8): 1175–1188, 2021.

246. ^Zhang Y, Yu J, Chen Y, Yang W, Zhang W, He Y (2022). "Real-time strawberry detection using deep neu

ral networks on embedded system (rtsd-net): An edge AI application". Computers and Electronics in Ag

riculture. 192: 106586.

247. ^Rustia DJA, Chiu L-Y, Lu C-Y, Wu Y-F, Chen S-K, et al. (2022). "Towards intelligent and integrated pe

st management through an AIoT-based monitoring system". Pest Management Science. 78 (10): 4288–

4302.

248. ^Liu X, Jiang Y, Jain P, Kim KH (2018). "TAR: Enabling �ne-grained targeted advertising in retail store

s." In: Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Se

rvices. pp. 323–336.

249. ^Liu Y, Yang C, Jiang L, Xie S, Zhang Y (2019). "Intelligent edge computing for IoT-based energy manag

ement in smart cities". IEEE Network. 33 (2): 111–117.

250. ^Alsalemi A, Himeur Y, Bensaali F, Amira A (2022). "An innovative edge-based internet of energy soluti

on for promoting energy saving in buildings". Sustainable Cities and Society. 78: 103571.

251. ^Li E, Zeng L, Zhou Z, Chen X (2019). "Edge AI: On-demand accelerating deep neural network inference

via edge computing". IEEE Transactions on Wireless Communications. 19 (1): 447–457.

252. ^Shlezinger N, Farhan E, Morgenstern H, Eldar YC. "Collaborative inference via ensembles on the edge."

In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASS

P). IEEE; 2021. p. 8478-8482.

qeios.com doi.org/10.32388/IZOHCH 88

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

253. ^Banitalebi-Dehkordi A, Vedula N, Pei J, Xia F, Wang L, Zhang Y (2021). "Auto-split: a general framewo

rk of collaborative edge-cloud ai." In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge D

iscovery & Data Mining. 2021. pp. 2543–2553.

254. ^Luo Y, Yu S (2021). "AILC: Accelerate on-chip incremental learning with compute-in-memory technol

ogy". IEEE Transactions on Computers. 70 (8): 1225–1238.

255. ^Lv Z, Qiao L, Verma S (2021). "AI-enabled IoT-edge data analytics for connected living". ACM Transac

tions on Internet Technology. 21 (4): 1–20.

256. ^Tran TX, Le DV, Yue G, Pompili D (2018). "Cooperative hierarchical caching and request scheduling in

a cloud radio access network". IEEE Transactions on Mobile Computing. 17 (12): 2729–2743.

257. ^Ning Z, Zhang K, Wang X, Guo L, et al. (2020). "Intelligent edge computing in internet of vehicles: a joi

nt computation o�oading and caching solution." IEEE Transactions on Intelligent Transportation Syste

ms. 22 (4): 2212–2225.

258. ^Ren Q, Abbasi O, Kurt GK, et al. Caching and computation o�oading in high altitude platform station

(HAPS) assisted intelligent transportation systems. IEEE Transactions on Wireless Communications. 21

(11):9010-9024, 2022.

259. ^Paissan F, Ancilotto A, Farella E (2022). "PhiNets: a scalable backbone for low-power AI at the edge".

ACM Transactions on Embedded Computing Systems. 21 (5): 1–18.

260. ^Moran A, Frasser CF, Roca M, Rossello JL (2019). "Energy-e�cient pattern recognition hardware with

elementary cellular automata". IEEE Transactions on Computers. 69 (3): 392--401.

261. ^Nunez-Yanez J, Howard N (2021). "Energy-e�cient neural networks with near-threshold processors

and hardware accelerators". Journal of Systems Architecture. 116: 102062.

262. ^Jayakodi NK, Doppa JR, Pande PP. "A general hardware and software co-design framework for energy

-e�cient edge AI." In: 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IE

EE; 2021. p. 1-7.

263. ^Sodhro AH, Pirbhulal S, De Albuquerque VHC (2019). "Arti�cial intelligence-driven mechanism for ed

ge computing-based industrial applications". IEEE Transactions on Industrial Informatics. 15 (7): 4235

–4243.

264. ^Tambe T, Yang E-Y, Ko GG, et al. A 16-nm SoC for Noise-Robust Speech and NLP Edge AI Inference Wi

th Bayesian Sound Source Separation and Attention-Based DNNs. IEEE Journal of Solid-State Circuits. 2

022.

qeios.com doi.org/10.32388/IZOHCH 89

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

265. ^Hao Y, Miao Y, Hu L, Hossain MS, Muhammad G, Amin SU (2019). "Smart-Edge-CoCaCo: AI-enabled

smart edge with joint computation, caching, and communication in heterogeneous IoT". IEEE Network.

33 (2): 58–64.

266. ^Ham M, Moon J, Lim G, et al. "NNStreamer: E�cient and Agile Development of On-Device AI System

s." In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP). IEEE; 2021. p. 198-207.

267. ^Ham M, Woo S, Jung J, Song W, et al. Toward among-device AI from on-device AI with stream pipeline

s. In: Proceedings of the 44th International Conference on Software Engineering: Software Engineering

in Practice; 2022. p. 285-294.

268. ^Chen W-H, Dou C, Li K-X, Lin W-Y, Li P-Y, Huang J-H, Wang J-H et al. (2019). "CMOS-integrated me

mristive non-volatile computing-in-memory for AI edge processors." Nature Electronics. 2 (9): 420–4

28.

269. ^Xiong J, Zhao M, Bhuiyan MZA, Chen L, Tian Y (2019). "An AI-enabled three-party game framework f

or guaranteed data privacy in mobile edge crowdsensing of IoT". IEEE Transactions on Industrial Infor

matics. 17 (2): 922--933.

270. ^Zhang Q, Zhong H, Shi W, Liu L (2021). "A trusted and collaborative framework for deep learning in Io

T". Computer Networks. 193: 108055.

271. ^Li Q, Ren J, Pan X, et al. "ENIGMA: Low-Latency and Privacy-Preserving Edge Inference on Heterogen

eous Neural Network Accelerators." In: 2022 IEEE 42nd International Conference on Distributed Compu

ting Systems (ICDCS). IEEE; 2022. p. 458–469.

272. ^Sinha S, Saha S, Alam M, et al. (2022). "Exploring Bitslicing Architectures for Enabling FHE-Assisted

Machine Learning". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 4

1 (11): 4004–4015.

273. ^Rahman MS, Khalil I, et al. (2020). "Towards privacy preserving AI based composition framework in e

dge networks using fully homomorphic encryption". Engineering Applications of Arti�cial Intelligence.

94: 103737.

274. ^Wang K, Xu SP, Chen CM, Islam SH, Hassan MM, et al. (2021). "A trusted consensus scheme for collabo

rative learning in the edge AI computing domain". IEEE Network. 35 (1): 204–210.

275. ^Song M, Wang Z, Zhang Z, Song Y, Wang Q, Ren J, Qi H (2020). "Analyzing user-level privacy attack ag

ainst federated learning". IEEE Journal on Selected Areas in Communications. 38 (10): 2430--2444.

qeios.com doi.org/10.32388/IZOHCH 90

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

276. ^Lim WYB, Ng JS, Xiong Z, Jin J, et al. Decentralized edge intelligence: A dynamic resource allocation fra

mework for hierarchical federated learning. IEEE Transactions on Parallel and Distributed Systems. 33

(3):536–550, 2021.

277. ^Yu S, Nguyen P, Abebe W, et al. SPATL: salient parameter aggregation and transfer learning for hetero

geneous federated learning. In: 2022 SC22: International Conference for High Performance Computing,

Networking, Storage and Analysis (SC). IEEE Computer Society; 2022. p. 495-508.

278. ^Guo J, Wu J, Liu A, Xiong NN (2021). "LightFed: An e�cient and secure federated edge learning system

on model splitting". IEEE Transactions on Parallel and Distributed Systems. 33 (11): 2701–2713.

279. ^Huang A, Liu Y, Chen T, Zhou Y, Sun Q, Chai H, Yang Q (2021). "Star�: Hybrid federated learning archit

ecture for smart urban computing." ACM Transactions on Intelligent Systems and Technology (TIST). 12

(4): 1–23.

280. ^Tang Z, Jia W, Zhou X, Yang W, You Y (2020). "Representation and reinforcement learning for task sch

eduling in edge computing". IEEE Transactions on Big Data. 8 (3): 795–808.

281. ^Lou J, Tang Z, Jia W, Zhao W, Li J (2023). "Startup-aware dependent task scheduling with bandwidth c

onstraints in edge computing". IEEE Transactions on Mobile Computing. 2023.

282. ^Lou J, Tang Z, Zhang S, Jia W, Zhao W, Li J (2022). "Cost-E�ective Scheduling for Dependent Tasks Wit

h Tight Deadline Constraints in Mobile Edge Computing". IEEE Transactions on Mobile Computing. IEE

E.

283. ^Zhang S, Jia W, Tang Z, Lou J, Zhao W (2022). "E�cient instance reuse approach for service function ch

ain placement in mobile edge computing". Computer Networks. 211: 109010.

284. ^Lou J, Luo H, Tang Z, Jia W, Zhao W (2022). "E�cient container assignment and layer sequencing in e

dge computing". IEEE Transactions on Services Computing. 2022.

285. ^Tang Z, Lou J, Jia W (2022). "Layer Dependency-aware Learning Scheduling Algorithms for Container

s in Mobile Edge Computing". IEEE Transactions on Mobile Computing. 2022.

286. ^Gu L, Zeng D, Hu J, Jin H, Guo S, Zomaya AY. "Exploring layered container structure for cost e�cient mi

croservice deployment." In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE;

2021. p. 1-9.

287. ^Lou J, Tang Z, Jia W (2022). "Energy-e�cient Joint Task Assignment and Migration in Data Centers: A

Deep Reinforcement Learning Approach". IEEE Transactions on Network and Service Management. 202

2. Published by IEEE.

qeios.com doi.org/10.32388/IZOHCH 91

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

288. ^Tang Z, Zhou X, Zhang F, Jia W, Zhao W (2018). "Migration modeling and learning algorithms for cont

ainers in fog computing". IEEE Transactions on Services Computing. 12 (5): 712–725.

289. ^Wang S, Urgaonkar R, Zafer M, He T, Chan K, Leung KK (2019). "Dynamic service migration in mobile

edge computing based on Markov decision process". IEEE/ACM Transactions on Networking. 27 (3): 127

2–1288.

290. ^Ma Y, Liang W, Li J, Jia X, Guo S (2020). "Mobility-aware and delay-sensitive service provisioning in

mobile edge-cloud networks". IEEE Transactions on Mobile Computing. 21 (1): 196–210.

291. ^Ma L, Yi S, Carter N, Li Q (2018). "E�cient live migration of edge services leveraging container layered

storage". IEEE Transactions on Mobile Computing. 18 (9): 2020–2033.

292. ^Benjaponpitak T, Karakate M, Sripanidkulchai K. "Enabling live migration of containerized applicatio

ns across clouds." In: Proceedings of 2020 IEEE Conference on Computer Communications (INFOCOM). I

EEE; 2020. p. 2529–2538.

293. ^Tang Z, Zhang F, Zhou X, Jia W, Zhao W (2022). "Pricing model for dynamic resource overbooking in e

dge computing". IEEE Transactions on Cloud Computing. IEEE.

294. ^Hu S, Shi W, Li G (2022). "CEC: A containerized edge computing framework for dynamic resource provi

sioning". IEEE Transactions on Mobile Computing. Published by IEEE.

295. ^Luo Z, Wu C, Li Z, Zhou W (2019). "Scaling geo-distributed network function chains: A prediction and l

earning framework". IEEE Journal on Selected Areas in Communications. 37 (8): 1838–1850.

296. ^Wang S, Ding Z, Jiang C (2020). "Elastic scheduling for microservice applications in clouds". IEEE Tran

sactions on Parallel and Distributed Systems. 32 (1): 98–115.

297. ^Lv W, Wang Q, Yang P, Ding Y, Yi B, Wang Z, Lin C (2022). "Microservice deployment in edge computin

g based on deep q learning". IEEE Transactions on Parallel and Distributed Systems. 33 (11): 2968–297

8.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/IZOHCH 92

https://www.qeios.com/
https://doi.org/10.32388/IZOHCH

