Review of: "structure nano wires and cylinders are used for possible applications in energy, electronics, optics"

Sara Romeni¹
¹ The London College

Potential competing interests: No potential competing interests to declare.

Note: Oligophenylene vanillin (silicon/germanium) structure nano wires and cylinders are used for possible applications in energy, electronics, optics and other fields.

Oligophenylene vanillin nanowires (Si Silicon / Germanium Gi), narrow structures whose diameter is only a few billionths of a meter but thousands or millions of times longer. They exist in various forms—made of metals, semiconductors, insulators, and organic compounds—and are used for applications in the fields of electronics, energy conversion, optics, and chemical sensing. Because of their extreme thinness, Oligophenylene vanillin nanowires with a (Si Silicon / Germanium Gi) structure are essentially one dimensional. Nanowires are quasi-one-dimensional materials, "their two dimensions are on the nanometer scale." This one-dimensionality confers distinct electrical and optical properties. For one thing, this means that the electrons and photons in these nanowires experience "confined quantum effects." However, unlike other materials that produce such quantum effects, such as quantum dots, the length of Oligophenylene vanillin nanowires allows them to communicate with other macroscopic devices and the outside world.

Conclusion:

Oligophenylene vanillin (silicon/germanium) structure nanowires and cylinders are used for possible applications in energy, electronics, optics and other fields.

References

12. ^Janta Rico. (2023). Review of: "Nanowires (SiNWs) have high mobility and surface-to-volume ratio, which makes them easy to control using a weak electric field.", Qeios. doi:10.32388/0oft3n.

13. ^Carlos Sanchez. (2023). Review of: "Nanowires (SiNWs) have high mobility and surface-to-volume ratio" Qeios. doi:10.32388/u7jf5u.

17. ^Anna Thompson. (2023). Review of: "nanosensors made of these materials are used to identify chemical and biological reactions.", Qeios. doi:10.32388/jm3u05.