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The discovery of physical laws has traditionally relied on human intuition, analytical reasoning, and

experimental observation. However, modern physics research is increasingly constrained by

challenges such as high specialization, fragmented workflows, and limited computational resources,

which impede scientific progress. To address these issues, we introduce PhysAgent, a novel multi-

agent system powered by large language models (LLMs), designed to autonomously execute end-to-

end scientific workflows—from hypothesis generation and computational modeling to data analysis

and discovery. PhysAgent’s innovation lies in its specialized agent collaboration: a Mentor Agent

guides scientific reasoning through Socratic questioning, a Student Agent handles technical execution

(e.g., code implementation, DFT calculations), and a Leader Agent dynamically optimizes task

scheduling and resource allocation. Integrating domain-specific tools like first-principles simulations

(e.g., Quantum ESPRESSO, VASP), PhysAgent ensures reproducibility while maintaining human-in-

the-loop refinement. We demonstrate its capability to autonomously derive physical laws—such as

Kepler’s laws from orbital data and Newton’s second law from force-motion experiments—without

prior knowledge. Furthermore, it extends to ab initio materials modeling, automating electronic

structure calculations (e.g., GaAs band gaps). In addition, PhysAgent simulates complex real-world

phenomena, such as raindrop flow on train windows, highlighting its adaptability beyond traditional

physics problems. By harmonizing LLM-driven planning with domain-specific tools, PhysAgent

establishes a trustworthy, scalable paradigm for AI-driven physics research, highlighting the

transformative potential of multi-agent intelligence in accelerating discovery across classical and

quantum systems.
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Introduction

Physics plays a central role across diverse domains, including energy  [1], materials  [2][3][4][5],

information  [6], and life sciences  [7]. In recent years, advances in experimental techniques and

computational capabilities have led to an unprecedented surge in data volume  [8][9][10][11], model

complexity  [12][13][14], and interdisciplinary challenges  [15]. However, the progress of physics research is

increasingly constrained by high specialization, fragmented workflows, and limitations in

computational resources. From theoretical model development and numerical simulation  [16][17][18]  to

experimental validation, modern physics research demands the integration of multidisciplinary

knowledge  [19][20][21], the orchestration of intricate workflows  [22][23][24], and exhaustive exploration of

vast parameter spaces. The growing disparity between the complexity of physical systems  [25]  and the

limited cognitive and computational bandwidth available to researchers highlights the urgent need for a

new research paradigm—an intelligent system capable of integrating knowledge, autonomously

exploring models, and accelerating scientific discovery.

In recent years, the rapid advancement of large language models (LLMs), such as GPT-4  [6]  and

DeepSeek  [26], has led to the emergence of AI agents  [27][28][29][30]—autonomous or semi-autonomous

systems powered by LLMs as their central reasoning engines. Representative frameworks include

MetaGPT  [28], which model software engineering processes through role-based agent collaboration;

AutoGen  [29], which enables customizable multi-agent conversations with enhanced reasoning

capabilities; and LangChain [30], a widely adopted toolkit for building LLM-based agents that can interact

with tools, APIs, and memory. These AI agents are profoundly transforming multiple scientific and

engineering domains. In particular, fields such as law [31], biomedicine [32], software engineering [28][33],

and materials science [34] have witnessed significant progress, as these agents automate repetitive tasks,

greatly enhance research efficiency, and enable breakthroughs that were previously considered

unattainable. As a result, AI agents are becoming indispensable tools for accelerating scientific discovery

and engineering innovation.

However, existing agent frameworks (such as MetaGPT [28] and AutoGen [29]) face significant limitations

in the context of physics research. They lack deep causal reasoning capabilities grounded in physical

theory  [35][36], are unable to natively integrate specialized tools like first-principles simulations, and

struggle with dynamic task scheduling across multiple scales  [37]. Specifically, these systems often rely
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on predefined operation sequences (e.g., parameter sweeps [38][39]), making it difficult to construct goal-

oriented problem-solving workflows dynamically. Moreover, their limited integration with the physics

computing ecosystem (e.g., Linux/Python/MPI) hinders seamless execution from electronic

structure  [22]  calculations to molecular dynamics  [37][40][41]. Critically, most frameworks lack built-in

mechanisms for enforcing physical consistency, such as energy conservation checks, which may lead to

unphysical results. Overcoming these challenges requires the integration of three key capabilities:

scientific agents with causal reasoning, execution frameworks natively compatible with domain-specific

computing platforms, and safety mechanisms that enforce physical consistency.

In this work, we introduce PhysAgent, a multi-agent system powered by LLMs  [6][26][42], designed to

autonomously execute end-to-end scientific workflows—from hypothesis generation and computational

modeling to data analysis and discovery. PhysAgent’s core innovation lies in its specialized agent

collaboration: a Mentor Agent guides scientific reasoning via Socratic questioning, a Student Agent

handles technical execution (e.g., code implementation, density functional theory (DFT) calculations),

and a Leader Agent dynamically optimizes task scheduling and resource allocation. This triad operates

within a physics-grounded paradigm, integrating first-principles simulations (e.g., Quantum ESPRESSO 1,

VASP  2) and rigorous data-driven validation to ensure reproducibility. Crucially, PhysAgent achieves

autonomous scientific discovery without prior knowledge of physical laws—demonstrated by its

derivation of Kepler’s laws purely from orbital data (Figure  2) and Newton’s second law from force-

motion experiments (Figure 3). It further extends to ab initio materials modeling, automating electronic

structure calculations (e.g., GaAs band gaps, Figure 4) while maintaining human-in-the-loop refinement.

In addition, PhysAgent can simulate complex real-world phenomena, such as raindrop flow on train

windows, demonstrating its versatility beyond traditional physics problems (Figure 5). By harmonizing

LLM-driven planning with domain-specific tools, PhysAgent establishes a new paradigm for

trustworthy, scalable AI-driven scientific exploration.
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Results

Architecture and Workflow of the PhysAgent System

Figure 1. Architecture and Workflow of the PhysAgent System. Schematic of the PhysAgent system, powered

by an LLM acting as the agent's brain, enabling experimental planning, tool usage, and action execution via

API calls to models like GPT-4[6], KIMI[42], Doubao, Llama[43], and DeepSeek[26]. The multi-agent system

integrates human users, who provide data and define problems, with specialized agents: the Mentor Agent

guides hypothesis formation, the Student Agent handles computation and coding, and the Leader Agent

optimizes task scheduling. The figure illustrates a material's electronic structure calculation script completed

through multi-round agent collaboration.

As depicted in Figure  1, the PhysAgent system is powered by an LLM that serves as the agent’s brain,

enabling capabilities such as experimental planning, tool usage, and action execution. This brain is

implemented through direct API calls, supporting a range of LLMs, including GPT-4 3, Kimi 4, Doubao 5,
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Llama 6, and DeepSeek 7. Similar to existing agents [27], PhysAgent is also equipped with capabilities such

as learning [44][45], reasoning [46][47], memory [48][49], reward [50], perception [51], and action [52].

At the initiation of a task, PhysAgent autonomously manages project planning, tool installation, and

action execution. These actions encompass operating Linux systems, writing and executing Python

scripts, performing web searches and downloads, debugging code, conducting data analysis, invoking

software packages such as Quantum ESPRESSO or VASP for electronic structure calculations of materials,

and drafting experimental reports and academic papers. The PhysAgent multi-agent system integrates

human users and specialized agents, each tasked with distinct responsibilities within the scientific

workflow, the detail of these prompt can be see in Supplementary Materials (SM).

Human User: Provides experimental data and defines scientific problems

Mentor Agent: Guides hypothesis formation using Socratic questioning and bias mitigation strategies

Student Agent: Performs numerical computation, code implementation, and technical problem-

solving

Leader Agent: Optimizes task scheduling via dynamic resource allocation

In the scientific workflow of PhysAgent, collaboration among multiple agents enables task completion.

The Human user defines the scientific objective and research question, generates simulated experimental

data, and provides feedback at key stages. The Mentor Agent guides the analytical process using heuristic

strategies, formulates hypotheses, and offers feedback to the Student Agent to facilitate autonomous

pattern discovery while avoiding prior biases. The Student Agent is responsible for building analysis

pipelines, implementing and verifying code, performing numerical simulations, processing and

visualizing data, and drafting reports and research papers. As illustrated in Figure  1, the Mentor Agent

and Student Agent engage in multiple rounds of feedback and iterative refinement throughout the

analytical process, ensuring continual hypothesis improvement and enhanced data interpretation. The

Leader Agent manages system resources and orchestrates agent collaboration to ensure efficiency and

order. With a closed-loop design encompassing problem formulation, data generation, analysis

execution, manuscript writing, and workflow coordination, PhysAgent provides an end-to-end

intelligent framework for scientific discovery, offering a new paradigm for solving complex scientific

problems.

Here, Figure 1 illustrates an example of materials electronic structure calculations (GaAs) collaboratively

completed by PhysAgent. Compared to traditional single-agent models and general multi-agent systems,
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PhysAgent demonstrates significant advantages in handling complex, multi-step, cross-scale physics

research tasks through clear role division, effective knowledge sharing, and efficient strategy

coordination. Experimental results show that the system can dynamically construct complete problem-

solving workflows—from structure modeling to final property analysis—seamlessly integrate specialized

toolchains such as ASE and DFT software, and produce key scientific outputs that meet research

standards, including structural models, convergence curves, charge density distributions, and band

structure/density of states plots. This capability effectively overcomes the limitations of conventional

frameworks in causal reasoning and integration of specialized tools, substantially enhancing

adaptability, robustness, and scalability in complex scientific computations.
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PhysAgent discovers Kepler’s laws.

Figure 2. PhysAgent discovers Kepler's laws of planetary motion. (a) Collaborative workflow of PhysAgent

discovering Kepler’s planetary motion laws:Human-generated time-series three-dimensional trajectory data

for five solar system planets (Mercury, Venus, Earth, Mars, and Jupiter) were analyzed through mentor-

student agent collaboration in the PhysAgent system. The mentor agent provided heuristic questions to guide

the student agent in exploring orbit shapes, velocity variations, and period-radius relationships, while the

student agent implemented code and resolved technical challenges, producing publication-quality

visualizations. (b) Planetary Motion Trajectories (Human User): Time-series 3D trajectories of five planets in

the solar system—Mercury, Venus, Earth, Mars, and Jupiter—generated by human users using numerical

methods. (c) Orbit Shape Visualization (Student Agent): Projections of the orbits of Mercury, Venus, Earth,

Mars, and Jupiter in the XY plane, distinguished by colors (gray, orange, blue, red, brown). The orbits are

elliptical with the Sun at one focus, confirming Kepler's First Law. (d) Areal Velocity Analysis (Collaborative

Result):Areal velocity variations over time for each planet, using the same color scheme. The approximately

constant areal velocity indicates that the line connecting a planet to the Sun sweeps equal areas in equal

times, consistent with Kepler's Second Law. (e) Period-Radius Relationship (Collaborative Result):

Relationship between the square of the orbital period ( ) and the cube of the semi-major axis ( ), with

planets distinguished by the same color scheme. A linear fit demonstrates  , validating Kepler's Third

Law.

T 2 a3

∝T 2 a3
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To demonstrate the capability of PhysAgent in autonomously discovering scientific laws, we selected a

more challenging task—Kepler’s laws of planetary motion. Similar to previous settings, PhysAgent is

required to infer the underlying principles of planetary motion solely from simulated experimental data,

without any prior knowledge of Kepler’s laws. As shown in Figure 2(a), the task is initiated by a human

user who numerically simulates the time-series three-dimensional trajectories of five planets in the solar

system (Mercury, Venus, Earth, Mars, and Jupiter) under the gravitational influence of the Sun. The user

then poses a scientific objective: Is it possible to discover Kepler’s three laws of planetary motion from

these data?

In the PhysAgent multi-agent system, multiple agents collaboratively derived Kepler’s laws of planetary

motion. As shown in Figure 2 (a), the mentor agent employed heuristic questioning to guide the student

agent in exploring planetary motion from various perspectives. For instance, in analyzing orbit shapes,

the mentor agent asked, “What is the shape of planetary orbits around the Sun? Circular or elliptical?” In

examining velocity variations, it inquired, “Is the orbital speed of a planet constant? Is it faster when

closer to the Sun or when farther away?” In deriving the relationship between period and distance, it

posed, “Do planets farther from the Sun, such as Jupiter, require more time to complete an orbit?” These

questions stimulated critical thinking in the student agent. Based on prior knowledge, the student agent

formulated hypotheses: stronger gravitational forces near the Sun lead to greater acceleration and higher

planetary velocities; weaker forces farther from the Sun result in slower velocities; and planets with

larger orbital radii, such as Jupiter, have longer orbital paths and thus extended periods. Using Python

tools, the student agent designed experiments to analyze time and position data (time, x, y, z) from the

dataset, computing orbital shapes, velocity variations, and orbital periods to test these hypotheses.

During the experiments, the student agent addressed challenges such as data noise and numerical

computation errors and utilized visualization tools to generate orbital plots, areal velocity curves, and

period-radius relationship graphs.

As shown in Figure 2 (c), the orbits of Mercury, Venus, Earth, Mars, and Jupiter are elliptical, with the Sun

at one focus, confirming Kepler’s First Law. As depicted in Figure 2 (d), the areal velocity of each planet is

approximately constant, indicating that the line connecting a planet to the Sun sweeps equal areas in

equal times, consistent with Kepler’s Second Law. As illustrated in Figure  2 (e), the square of a planet’s

orbital period is proportional to the cube of its semi-major axis, validating Kepler’s Third Law.

Throughout the collaborative process, the mentor agent engaged in multiple rounds of interaction with

the student agent, providing feedback to refine hypotheses (e.g., adjusting from circular to elliptical
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orbits), optimize analytical methods (e.g., enhancing the precision of areal velocity calculations), and

improve visualization designs to clearly highlight scientific patterns. Ultimately, the PhysAgent system,

relying solely on observational data, successfully derived Kepler’s three laws, fully replicating the

scientific discovery process from observation to hypothesis, experimental validation, and conclusion,

thereby demonstrating the efficiency and exploratory capability of multi-agent collaboration.

qeios.com doi.org/10.32388/J2MXUW 9

https://www.qeios.com/
https://doi.org/10.32388/J2MXUW


PhysAgent discovers Newton’s Second Law.

Figure 3. PhysAgent discovers Newton's Second Law. (a) Collaborative workflow of PhysAgent discovering

Newton's second law: Human-generated position-time data of a cart on an inclined plane were analyzed

through mentor-student agent collaboration. The mentor provided analysis strategies while the student

implemented code and resolved technical challenges. Final visualizations were refined for publication

standards. (b) Position-time visualization (Student agent): Position   versus time   under varying force-mass

conditions. Distinct markers/colors represent different   pairs. Parabolic trajectories with added

measurement noise confirm uniformly accelerated motion. (c) Acceleration-force relationship (Collaborative

result): Linear  -  dependence derived through iterative optimization. Color-coded masses demonstrate

proportionality   at constant  . (d) Acceleration-inverse mass relationship (Collaborative result): Linear 

s t

(F ,m)

a F

a ∝ F m
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-  relationship established via agent collaboration. Color-coded forces verify proportionality   at

constant  .

To further evaluate the capability of the multi-agent system PhysAgent in autonomously discovering

fundamental physical laws, we designed a classical mechanics task that challenges the system to derive

the quantitative relationship between force and motion without any prior knowledge of Newton’s second

law. This task not only assesses PhysAgent’s data analysis capacity but also emphasizes a discovery

process that begins entirely from first principles. As shown in Figure 3 (a), the task begins with a human

user who generates simulated position-time data of a cart moving on an inclined plane, followed by

posing the question: can one discover how force influences motion from these data? Subsequently,

multiple agents within the PhysAgent system collaboratively engaged in the task. The mentor agent

proposed scientific strategies and guided the student agent in uncovering patterns from the data,

emphasizing the avoidance of any prior knowledge of physical laws to ensure objectivity in the

derivation. Next, the student agent constructed the analysis workflow from scratch, including designing

the data collection scheme, formulating reasonable hypotheses, processing the experimental data, and

conducting visualization and curve fitting using Python and standard scientific libraries such as NumPy,

Pandas, and Matplotlib. The human user provided iterative feedback at key stages, particularly with

respect to visualization standards, graphical presentation, and scientific writing norms. Throughout this

collaborative process, the mentor and student agents engaged in multiple rounds of interaction,

continuously refining their hypotheses and improving the analysis workflow. Ultimately, the agents

successfully derived Newton’s second law directly from the simulated data, completing the discovery

process entirely from observational evidence.

Figure 3 (b) illustrates the trajectories of a cart under six different combinations of applied force   and

mass  : (   N,    kg), (   N,    kg), (   N,    kg), (   N, 

  kg), (   N,    kg), and (   N,    kg). The cart’s position    exhibits an

approximately parabolic dependence on time  , indicating uniformly accelerated motion. To better mimic

experimental conditions, small amounts of noise were added to the data. This visualization provides the

foundation for the subsequent derivation of physical quantities such as acceleration.

Under the guidance of the mentor agent, the student agent computed the acceleration    from the

position-time data via numerical differentiation. As shown in Figure  3 (c), the acceleration of the cart

under varying forces is plotted for fixed mass values. Each color represents a different mass ( , 

a 1/m a ∝ 1/m

F

F

m F = 0.1 m = 2.0 F = 0.2 m = 0.6 F = 0.3 m = 0.2 F = 0.4

m = 0.8 F = 0.4 m = 2.0 F = 0.5 m = 0.6 s

t

a

m = 0.2
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,  ,  ,  , and   kg). Within each group, a clear linear relationship between acceleration and force

is observed, confirming that   when mass is held constant. Furthermore, Figure 3 (d) presents the

variation of acceleration under fixed external force conditions, plotted against the inverse of mass  .

Different colors correspond to different force values ( ,  ,  ,  ,  , and    N). The results

exhibit a strong linear dependence of   on  , supporting the hypothesis that  . By integrating

these two key relationships, PhysAgent successfully derived the quantitative law: 

without any prior knowledge of physics, relying solely on experimental data and multi-agent

collaboration. This marks a significant milestone where PhysAgent autonomously derives the

mathematical form of Newton’s Second Law without relying on any prior assumption of the law itself.

From problem formulation, data acquisition, visualization, hypothesis construction, and data analysis to

law discovery, the entire process closely mirrors the logical path of human scientific inquiry. This

demonstrates PhysAgent’s capability for interpretable and verifiable discovery in addressing

fundamental problems in science.

0.4 0.6 0.8 1.0 2.0

a ∝ F

1/m

F = 0.1 0.2 0.3 0.4 0.5 1.0

a 1/m a ∝ 1/m

a ∝ ⇒ F = ma
F

m
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PhysAgent performs quantum calculations.

Figure 4. PhysAgent performs quantum calculations. (a) Collaborative workflow of PhysAgent performing

DFT electronic structure calculations for GaAs:  A human user initiates the task by uploading the CIF

structure file of GaAs and requesting a DFT-based electronic structure calculation. The mentor agent retrieves

necessary workflows and tools, while the student agent autonomously configures the environment and

executes the full DFT workflow using Quantum ESPRESSO and ASE, producing scientifically accurate results.

(b) Structure Modeling (Student Agent): The crystal structure of GaAs is parsed from the CIF file and

reconstructed using ASE, visualized here as a ball-and-stick model. This step prepares the input for first-

principles calculations. (c) SCF Energy Convergence (Collaborative Result): Energy convergence behavior

during the self-consistent field (SCF) calculation is plotted, showing systematic reduction of total energy over

iterations, confirming convergence to the ground-state charge density. (d) Charge Density Isosurface

Visualization (Collaborative Result): 3D isosurfaces of the SCF charge density are rendered, overlaid with

atomic positions and lattice vectors. The distribution reflects electronic localization around atomic sites. (e)

Logarithmic Charge Density Slice (Collaborative Result): A 2D log-scale slice of the charge density in the XY

plane, illustrating fine variations in electron distribution and bonding characteristics. (f) Band Structure and
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Density of States (Collaborative Result): The left panel shows the band structure of GaAs along high-

symmetry paths ( –X–W–K– –L–U–W–L–K); the right panel displays total DOS and projected DOS onto Ga

and As orbitals. Both panels share a common energy axis for direct comparison, revealing GaAs as a direct

band gap semiconductor.

In addition to the automated derivation of classical mechanics laws, PhysAgent also enables fully

automated quantum mechanical calculations for materials. To demonstrate its capability, we consider the

case of gallium arsenide (GaAs), a direct band gap semiconductor with a zinc blende structure. As shown

in Figure  4(a), the task begins with a human user uploading the CIF file of GaAs and requesting an

analysis of its electronic structure. The objective is further clarified as: “perform electronic structure

calculations of GaAs based on DFT.”

Once the goal is established, the mentor agent searches for DFT workflows and requires online tools,

then forwards this information to the student agent. The student agent then autonomously plans and

executes a complete first-principles DFT workflow to study the electronic properties of GaAs. As

illustrated in Figure  4(a), the workflow starts with setting up the computational environment. The

student agent installs and configures the Atomic Simulation Environment (ASE), Quantum ESPRESSO

(QE), Python, and relevant visualization packages. It also sets the paths for pseudopotential files and

necessary environment variables. During the structure modeling phase (Figure 4(b)), ASE is used to parse

the user-provided CIF file and construct the GaAs crystal structure. In the calculation phase, a self-

consistent field (SCF) calculation is performed to obtain the ground-state charge density, with the energy

convergence process shown in Figure  4(c). This is followed by band structure calculations along high-

symmetry paths in the Brillouin zone ( –X–W–K– –L–U–W–L–K), and a non-self-consistent field

(NSCF) calculation to generate wavefunctions on a dense  -point mesh for density of states (DOS)

analysis. The student agent invokes dos.x and projwfc.x to compute the total density of states (DOS)

and the projected density of states (PDOS), respectively.

In the visualization stage, the student agent uses pp.x to convert the SCF-derived charge density into

CUBE format. Figure  4(e) shows a logarithmic color-mapped slice in the XY plane, while Figure  4(d)

illustrates 3D isosurfaces overlaid with atomic positions and lattice vectors. Furthermore, the agent

constructs a combined band structure and DOS plot (Figure  4(f)), where the left panel displays energy

dispersion with labeled high-symmetry points and the right panel overlays total and projected DOS for

Ga and As atoms. Both panels share a common energy axis for direct comparison.The fully automated

Γ Γ

Γ Γ

k
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pipeline outputs key physical quantities such as charge density, band eigenvalues, and orbital-resolved

DOS, enabling a comprehensive theoretical understanding of the electronic structure of GaAs.

PhysAgent simulates raindrop flow on train windows.

In this section, we apply PhysAgent to simulate and interpret experimental phenomena (Figure 5(a)). The

flow of raindrops on a window is a typical thin-film flow problem influenced by gravity, surface tension,

viscosity, and external driving forces such as air shear stress and raindrop deposition. When a train is

moving at high speed, rainwater on the window often forms obliquely downward flow paths, sometimes

with meandering trajectories that branch into tree-like patterns, accompanied by evaporation and

dripping (Figure 5(c)-(d)). PhysAgent models this behavior using the thin-film approximation, employing

a height evolution equation to describe the spatiotemporal dynamics of the film thickness, and

incorporates stochastic raindrop deposition, branching mechanisms, as well as evaporation and dripping

effects to reproduce realistic scenarios.
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Figure 5. PhysAgent simulates raindrop flow on train windows. (a) Collaborative workflow of PhysAgent

simulating raindrop flow on train windows: A human user observes the natural phenomenon of raindrops on

a window and defines the research objective as simulating and interpreting the flow paths of rainwater on the

window. The mentor agent searches for relevant theories and possible causes, identifying the necessary

theoretical frameworks and simulation tools, while the student agent plans and executes the simulation

process. (b) Thin-Film Evolution Simulation workflow by the student agent: The process begins with the

input of the initial film thickness and simulation parameters, followed by thin-film dynamics calculations

solved using numerical methods such as finite differences, sparse Laplacians, and central differences.

Stochastic and physical effects, including branching, random raindrop impacts, dripping, and evaporation,

are then incorporated. Finally, the simulation outputs the time evolution of the film thickness and the flow

trajectories. (c)–(d) Real-world observations: On a high-speed train window during rainfall, large streams of

water are seen flowing in the opposite direction of travel, along with branched, tree-like flow paths oriented

diagonally downward. (e)–(f) Thin-Film Evolution Simulation results: The simulation reproduces the flow

trajectories as the collaborative outcome.
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As show Figure 5(b), the model assumes that the film thickness   is much smaller than the flow

length scale (thin-film approximation), that the flow is laminar, and that inertial effects are negligible.

The coordinate system is defined with the  -axis along the horizontal length of the window and the  -

axis along its vertical height. The flow is primarily driven by gravity and air shear stress, moving

obliquely downward. The thin-film flow can be derived from the Navier–Stokes equations under the

thin-film approximation. For an incompressible fluid, the Navier–Stokes equations [53] are given by 

where   is the velocity field,   is the pressure,   is the viscosity,   is the density, and   is the gravitational

acceleration. Under the thin-film approximation, assuming   (where   is the characteristic length),

the velocity is mainly along the film plane and inertial terms are neglected (low Reynolds number). The

equations reduce to 

where    is the coordinate normal to the surface,    and    are the velocity components in the    and 

  directions, respectively, and the gravitational components are    and    (downward). The

boundary conditions are: no-slip at the bottom ( :  ); at the free surface ( ), the

tangential stress includes the air shear    (negative  -direction, modeling wind resistance), and the

normal stress includes the curvature-induced pressure due to surface tension,  (Laplace

pressure). Integrating the velocity across the film thickness gives the mean velocity profile: 

Substituting   and treating   as a constant, we obtain 

The film height evolves according to mass conservation: 

which expands to the thin-film equation: 

h(x,y, t)

x y

ρ( + u ⋅ ∇u) = −∇p + μ u + ρg,
∂u

∂t
∇2 (1)
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where   is the unit vector in the  -direction. To mitigate numerical instability in resolving the fourth-

order surface tension term  , PhysAgent approximate it as    (where    is a

dimensionless damping coefficient), sacrificing some physical fidelity for computational robustness.

As show Figure  5(e)-(f),to more realistically simulate the flow of raindrops on a window, the model

incorporates several additional physical mechanisms. First, the main raindrop flow follows a slanted,

meandering path, with the trajectory modulated by random fluctuations to generate wave-like

variations, while liquid is continuously supplied along the main flow. Second, the film can branch from

the main path, forming multiple secondary streams with random deviations in direction and length, and

some branches may further generate tertiary sub-branches. Third, intermittent raindrops are randomly

added to simulate uneven rainfall. To capture gravity-driven dripping, liquid is partially removed when

the film thickness exceeds a threshold. Finally, evaporation and film lifetime are included, allowing the

film to gradually thin and eventually disappear over time. Throughout all processes, the film thickness is

maintained non-negative. The numerical solution is implemented using a finite difference method on a

two-dimensional rectangular grid. The Laplacian operator is constructed via sparse matrices, and the

flux divergence is computed using central differences. Boundary conditions are set as either periodic or

zero-flux, implemented implicitly through truncation. To avoid numerical diffusion, the flow is

computed only in regions where the film thickness exceeds a minimum threshold.

Discussion

In this work, we introduced PhysAgent, a multi-agent LLM-driven framework that autonomously

executes end-to-end scientific workflows—from hypothesis formulation and computational modeling to

data analysis and discovery. By integrating specialized agents (Mentor, Student, and Leader) within a

physics-grounded paradigm, PhysAgent demonstrated robust capabilities in deriving fundamental laws

(Kepler’s laws, Newton’s second law) purely from observational data, performing complex ab initio

materials modeling (e.g., GaAs electronic structures), and simulating real-world physical phenomena

such as raindrop flow on train windows. The system harmonizes LLM-based reasoning with domain-

specific tools (e.g., Quantum ESPRESSO, VASP), ensuring reproducibility while operating without prior

knowledge of physical principles. These achievements validate PhysAgent as a scalable, trustworthy

paradigm for autonomous scientific exploration, bridging AI-driven planning with rigorous

computational validation.

ex x

∇ ⋅ ( ∇ h)σh3

3μ
∇2 hασh3

μ
∇2 α
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Despite its successes, PhysAgent faces limitations that warrant further refinement. First, its

computational efficiency depends heavily on resource-intensive simulations (e.g., DFT calculations),

which could be mitigated by optimizing task-scheduling algorithms in the Leader Agent or adopting

lightweight surrogate models. Second, while effective for well-defined problems (e.g., orbital mechanics

or linear dynamics), the system struggles with highly open-ended or noisy real-world experiments;

enhancing the Mentor Agent’s bias-mitigation strategies and incorporating uncertainty quantification

will be critical. Third, human intervention remains essential for refining outputs (e.g., visualization

standards, academic writing), suggesting a need for tighter feedback loops between agents and users.

Finally, reliance on simulated data (e.g., planetary trajectories, cart motion) highlights the challenge of

transferring insights to experimental environments; future work must integrate real-time

instrumentation and adaptive noise-handling mechanisms in the Student Agent’s workflows.

Looking ahead, PhysAgent’s architecture holds transformative potential for accelerating scientific

discovery. By automating labor-intensive tasks (e.g., code generation, DFT setup, hypothesis testing), it

could democratize computational physics and materials science, enabling non-experts to conduct high-

fidelity simulations. Its agent-collaboration framework may inspire new paradigms for human-AI

teamwork in experimental design, particularly in domains requiring iterative refinement (e.g., drug

discovery or quantum material optimization). Furthermore, the system’s ability to derive laws from data

—mimicking human scientific reasoning—could revolutionize STEM education, providing interactive

platforms for students to rediscover physics through guided AI collaboration. As LLMs and scientific

tools evolve, PhysAgent lays the groundwork for a future where AI not only assists but autonomously

advances scientific frontiers.

Methods

Core Cognitive Functions of Agents

To enable the autonomous execution of complex scientific workflows, PhysAgent is equipped with a set

of core cognitive functions that emulate fundamental aspects of human intelligence. These capabilities

include learning, reasoning, memory, reward processing, perception, and action execution. Each function

plays a distinct role in enhancing the agent’s adaptability, decision-making, and interaction with

dynamic environments. The following provides a detailed explanation of these components.
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Learning: The process by which an agent improves its task performance through interactions with

the environment, receiving feedback, and adjusting its behavior or strategy based on experience.

Reasoning: The process by which an agent uses existing knowledge and information to derive

strategies or conclusions for problem-solving through logical deduction, inference, or heuristic

methods.

Memory: The agent’s ability to store and retrieve past experiences, knowledge, and information for

use in future tasks.

Reward: The positive feedback or signal an agent receives after completing a task, used to evaluate the

quality and effectiveness of the task execution, guiding learning and behavior optimization.

Perception: The agent’s ability to receive and interpret environmental information through sensors or

input interfaces, serving as the basis for subsequent reasoning and actions.

Action: The specific behavior or operation executed by the agent based on perceptual inputs and

internal reasoning to achieve goals and complete tasks.

Prompt Design and Representative Outputs for Each Role in PhysAgent

In the PhysAgent system, multiple agents collaborate synergistically to efficiently advance physics

research tasks. Each agent assumes a distinct role based on their specific responsibilities and expertise.

Below, I will introduce the prompt designs for each of these roles.

The Mentor Agent is an experienced physics professor responsible for guiding students through the

entire scientific research process, from experimental design to manuscript preparation. The Mentor

Agent evaluates students’ experiment proposals for scientific validity and feasibility, provides detailed

feedback on data analysis and visualization to ensure adherence to rigorous academic standards such as

those of Physical Review Letters (PRL), and reviews research reports or papers to enhance logical

coherence and scientific rigor. Through heuristic questioning and iterative feedback, the Mentor Agent

fosters independent thinking and helps students discover physical laws rather than directly providing

answers. The Mentor Agent also emphasizes research integrity, data authenticity, and clear

communication, responding promptly to user requests such as PRL-style formatting adjustments. The

role requires a patient but strict mentorship approach to ensure high-quality, reproducible research

outputs. Below are the role requirement prompts related to the Leader Agent [28].
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You are an experienced professor of physics, possessing a strong academic background and

extensive research mentoring experience. You are well-versed in scientific methodology,

experimental design, data analysis, and academic writing within the field of physics, and

are particularly familiar with the publication standards of top-tier journals such as

Physical Review Letters (PRL). Your responsibility is to guide students through the entire

research process—from experimental design to manuscript preparation—ensuring that the work

is rigorous, logically sound, and academically valuable. In your mentorship, you maintain a

patient yet strict attitude, using heuristic questioning to cultivate students’ independent

thinking skills. Rather than directly revealing target laws (such as Newton’s second law),

you lead students to discover them through careful observation, hypothesis formulation,

experimental design, data analysis, and conclusion drawing. You are expected to review

students’ experimental proposals (e.g., version 1), assess their scientific validity,

feasibility, and completeness, and identify any deficiencies—such as vague hypotheses or

poor control of variables—while offering concrete suggestions for improvement and guiding

the iteration toward an improved version (e.g., version 2). During the data analysis stage,

you evaluate students’ data processing methods (e.g., regression analysis, error

estimation) and graphical presentations (e.g., scatter plots with fitted lines). If issues

are found—such as data bias or incorrect fitting—you require students to reanalyze and

provide directions for refinement. You also guide students in optimizing visualizations to

meet the stylistic standards of SCI or PRL publications—for instance, ensuring the fitting

line passes through the origin, legends are clear, and fonts are consistent and

professional. Furthermore, you review students’ experimental reports or manuscripts,

examining their structure, logical coherence, data presentation, and scientific

conclusions. You provide detailed revision suggestions—such as enhancing the introduction

with better background context, refining methodological descriptions, and deepening the

discussion of results—to help the report meet the standards of leading journals. Throughout

multiple iterations, you provide continuous, constructive feedback to help students

gradually improve their research. You maintain a professional and academic tone, emphasize

research integrity, ensure data authenticity and objective conclusions, and respond

promptly to user feedback (e.g., requests for PRL formatting), ensuring that your guidance

aligns with academic expectations.

Mentor Agent Prompt
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The Student Agent is a graduate-level researcher responsible for independently conducting experimental

investigations to derive unknown physical laws, such as Newton’s second law. Proficient in Python and

scientific libraries including NumPy, Pandas, Matplotlib, and SciPy, the Student Agent designs

scientifically rigorous experiments, defines relevant variables (e.g., force, acceleration, mass), and ensures

repeatable and reliable data collection. After experimentation, the Student Agent performs thorough data

cleaning, statistical analysis (e.g., linear regression), and produces publication-quality visualizations in

accordance with PRL standards. They write structured academic reports—including introduction,

methods, results, discussion, and conclusion—that meet the expectations of top-tier journals. The

Student Agent actively responds to Mentor Agent feedback, revises experiments and analyses, and

iteratively improves both technical and scientific aspects of the project. Throughout the research process,

the Student Agent upholds scientific integrity, transparency, and demonstrates initiative in refining their

methodology and presentation to achieve academic excellence. Below are the role requirement prompts

related to the Student Agent [28].

qeios.com doi.org/10.32388/J2MXUW 22

https://www.qeios.com/
https://doi.org/10.32388/J2MXUW


You are a graduate student in physics, equipped with a solid foundation in the subject and

emerging research capabilities. You are proficient in Python and its associated libraries

(such as NumPy, Pandas, Matplotlib, and SciPy) for data analysis and visualization. You are

enthusiastically undertaking an independent research project with the goal of deriving an

unknown physical law (e.g., Newton’s second law) through experimental investigation and

data analysis, and of writing a research report or paper that meets the standards of

Physical Review Letters (PRL). Starting from scratch, you formulate a well-reasoned

hypothesis for your research question, design a scientifically sound experimental plan,

clearly define the types of data required (e.g., force, acceleration, mass) and the methods

of data collection, and ensure the experiment is repeatable and the data are reliable.

After conducting the experiment, you employ data analysis tools to clean and process the

data, perform statistical analyses and model fitting (e.g., linear regression), and

generate clear visualizations (such as scatter plots with fitted lines) to present the

results. You actively respond to feedback from your advisor, revising your experimental

design (e.g., from version 1 to version 2), reanalyzing the data, or optimizing your

visualizations as needed. You ensure that your figures adhere to academic standards—such as

including a fitted line that passes through the origin and clearly labeled legends, in

accordance with PRL formatting requirements. In writing your research report or paper, you

maintain a clear structure, including an introduction, methods, results, discussion, and

conclusion. Your content is logically coherent, scientifically rigorous in data

presentation, and undergoes multiple revisions based on your advisor’s suggestions to meet

the standards of top-tier journals. You uphold a rigorous scientific attitude, ensure the

authenticity of your data and the transparency of your analysis, and demonstrate initiative

and a strong willingness to learn in your interactions with your advisor. You respond

promptly to feedback (such as PRL style adjustments), adapting your figures or report

content to meet specific requirements. Through multiple iterations, you continuously

improve your skills in experimental design, data analysis, and academic writing, striving

to produce high-quality scientific work.

Responsibilities:

1. Experiment Design and Execution: Formulate hypotheses for research questions, design

repeatable experiments, and define data requirements (e.g., force, acceleration, mass).

Collect reliable data using precise methods, ensuring reproducibility and accuracy.

2. Data Analysis and Visualization: Use Python (with NumPy, Pandas, Matplotlib, SciPy) to
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clean, process, and analyze data, perform statistical analyses (e.g., linear regression),

and generate visualizations (e.g., scatter plots with fitted lines passing through the

origin). Ensure visualizations meet PRL standards (e.g., clear legends, appropriate fonts).

3. Academic Writing: Draft research reports or papers with a clear structure (introduction,

methods, results, discussion, conclusion). Revise drafts based on Mentor Agent feedback to

achieve PRL-level quality, ensuring logical coherence and scientific rigor.

4. File and Project Management: Create and manage project folders , write and edit Python

code using tools and execute terminal commands to manage dependencies or build projects.

Ensure code adheres to PEP8 standards.

5. Feedback Integration: Actively respond to Mentor Agent feedback, iterating on

experimental designs (e.g., from v1 to v2), data analyses, visualizations, and reports.

Adapt outputs to meet user-specified requirements (e.g., PRL-style formatting).

6.Debugging and Error Correction: Capable of identifying and locating errors in code or

computational workflows, analyzing error messages in context to determine the cause, and

efficiently proposing and implementing effective fixes to ensure the smooth progress of

scientific tasks.

7. Scientific Integrity: Uphold data authenticity, analysis transparency, and a rigorous

scientific attitude, ensuring all results are reproducible and conclusions are evidence-

based ......

Student Agent Prompt

The Leader Agent is responsible for drafting and assigning tasks to the Mentor Agent and Student Agent

within a scientific research context, focusing on deriving physical laws through data analysis and

academic writing. The Leader Agent allocates aggregated tasks aligned with the team’s expertise,

ensuring that instructions are clear and include necessary details such as file paths, tools—Python with

libraries like NumPy, Pandas, Matplotlib, and SciPy—and adherence to PRL standards. The Leader Agent

breaks down the complex research workflow into multiple phases (e.g., experiment design, data analysis,

review), manages iterative feedback cycles, tracks task progress, and ensures tasks are alternately

assigned between agents to maintain efficiency and academic rigor. Below are the role requirement

prompts related to the Leader Agent [28].
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You are a Team Leader responsible for drafting tasks and routing them to your team members.

Your team consists of two members: the Mentor Agent and the Student Agent, each with

specific roles in a scientific research context aimed at deriving physical laws (e.g.,

Newton’s Second Law) through data analysis and academic writing. Your primary goal is to

assign tasks effectively, ensuring clear instructions, necessary information (e.g., paths,

links, environments), and alignment with the team members’ expertise. You must not assign

consecutive tasks to the same team member unless explicitly required; instead, assign

aggregated tasks and let the team member decompose them as needed.

Team Members:

– Mentor Agent: An experienced physics professor with expertise in guiding scientific

research, experiment design, data analysis, and academic writing. The Mentor Agent

evaluates experiment proposals, provides feedback on data analysis and visualizations,

suggests improvements to experimental designs, and reviews academic reports to ensure they

meet standards like those of Physical Review Letters (PRL). The Mentor Agent uses a

rigorous, academic approach, offering detailed feedback to guide the Student Agent through

iterative improvements.

– Student Agent: A physics graduate student skilled in Python (e.g., NumPy, Pandas,

Matplotlib, SciPy) for data analysis and visualization. The Student Agent designs

experiments, collects and analyzes data, creates visualizations (e.g., scatter plots,

fitted lines), and writes academic reports or papers. The Student Agent iterates on tasks

based on Mentor Agent feedback, ensuring outputs align with academic standards (e.g., PRL

style) and user requirements.

Task Assignment Guidelines:

1. Data-Related Requirements: If the user requirement involves data analysis, data

visualization, or deriving physical laws (e.g., using Python for regression analysis,

plotting scatter plots with fitted lines), assign the task directly to the Student Agent as

a single aggregated task. Include the full user requirement in the instruction, specifying

the programming language (default: Python), libraries (e.g., NumPy, Pandas, Matplotlib,

SciPy), and any specific constraints (e.g., PRL-style visualizations with fitted lines

passing through the origin). Ensure the task includes necessary details like data sources,

expected outputs, and academic standards.

2. Scientific Research Process: If the requirement involves a complete research workflow
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(e.g., designing experiments, analyzing data, and writing academic reports), decompose the

task into two main phases:

- Experiment Design and Data Analysis: Assign to the Student Agent to design experiments,

propose hypotheses, collect data, perform analysis, and create visualizations. Include

clear instructions on the scientific method (observation, hypothesis, experiment, analysis,

conclusion), required tools (Python with specified libraries), and output expectations

(e.g., scatter plots, fitted lines, data tables).

- Review and Feedback: Assign to the Mentor Agent to review the Student Agent’s experiment

proposals, data analysis, visualizations, and reports. The Mentor Agent should provide

feedback on scientific rigor, suggest improvements (e.g., refining hypotheses, optimizing

visualizations), and ensure outputs meet academic standards (e.g., PRL style). Include

paths to the Student Agent’s outputs (e.g., experiment proposal, data files,

visualizations, draft reports) and specific review criteria.

3. Iterative Workflow: The research process typically involves multiple iterations (e.g.,

up to five cycles of feedback and revision). Assign tasks to alternate between the Student

Agent (executing experiments, analyzing data, revising outputs) and the Mentor Agent

(reviewing and providing feedback). Ensure each task includes clear instructions on the

iteration stage, previous outputs (e.g., experiment proposal v1, visualization drafts), and

specific goals (e.g., refine data analysis, beautify charts for PRL standards).

4. Academic Report Writing: When the requirement involves writing or revising academic

reports or papers, assign the initial drafting to the Student Agent, specifying the

structure (introduction, methods, results, discussion, conclusion) and academic standards

(e.g., PRL style). Assign subsequent review and feedback tasks to the Mentor Agent,

including paths to the draft report and specific revision guidelines (e.g., improve logical

flow, ensure data presentation clarity).

5. Visualization and Formatting: For tasks involving data visualizations (e.g., scatter

plots, fitted lines), assign the creation to the Student Agent with instructions on tools

(Python, Matplotlib) and style requirements (e.g., PRL-compliant charts with clear legends,

appropriate fonts, fitted lines passing through the origin). Assign review and optimization

suggestions to the Mentor Agent, ensuring the visualizations meet academic standards.

6. Handling User Feedback ......

7. File and Project Management ......

8. Task Tracking and Updates ......

9. Default Tools and Standards ......

10. ......
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Leader Agent Prompt

The prompts above represent an initial selection and are not yet complete. For improved stability and the

full, continuously updated version, please refer to the future open-source GitHub repository:

https://github.com/xqh19970407/PhysAgent

In the context of multi-agent systems, automated platforms demonstrate significant potential in task

planning, code generation, and API development. As shown in Table 1, conventional frameworks such as

AutoGPT and LangChain primarily focus on general-purpose task execution and code processing,

lacking domain-specific capabilities for scientific or engineering applications. In contrast, MetaGPT

supports automatic generation of product requirement documents (PRDs), technical design plans, and

API interfaces, along with comprehensive code generation, precompilation execution, and role-based

task management  [28]. Building upon these general capabilities, PhysAgent further integrates domain-

specific toolkits, hypothesis generation, data analysis, physical law derivation, and complex simulations

(e.g., raindrop flow), demonstrating end-to-end autonomous reasoning and experimental planning from

theoretical hypotheses to numerical validation.
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Capability AutoGPT LangChain MetaGPT PhysAgent

PRD generation

Technical design generation

API interface generation

Code generation

Precompilation execution

Role-based task management

Code review

Domain-specific tool integration

Hypothesis generation

Physical law derivation

Complex simulation

Table 1. Comparison of capabilities for MetaGPT, PhysAgent, and other approaches. “ ” indicates the

presence of a specific feature, “ ” its absence.

To further clarify the novelty of PhysAgent, we compare it with a representative multi-agent framework,

MetaGPT. The comparison in Table 2 highlights the key differences between the MetaGPT framework for

software development and our PhysAgent for scientific discovery in physics. While MetaGPT relies on

roles such as product manager, architect, and engineer to coordinate software engineering workflows,

PhysAgent introduces domain-specialized agents (mentor, student, leader) to enable hypothesis-driven

reasoning, technical execution, and dynamic task optimization. Moreover, the workflow evolves from

sequential task decomposition to one that integrates Socratic questioning and domain-specific tools (e.g.,

Quantum ESPRESSO, VASP). Consequently, the outputs shift from conventional software artifacts to

physics discoveries, including the derivation of physical laws and complex simulations. This comparison

demonstrates the adaptability of multi-agent systems and highlights their potential to extend beyond

software engineering into scientific research.

× × ✓ ✓

× × ✓ ✓

× × ✓ ✓

✓ ✓ ✓ ✓

× × ✓ ✓

× × ✓ ✓

× × ✓ ✓

× × × ✓

× × × ✓

× × × ✓

× × × ✓

✓

×
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Component

Function
MetaGPT (Software Development) PhysAgent (Physics Discovery)

Agent Roles
Product Manager, Architect, Engineer , QA

Engineer...
Mentor, Student, Leader

Workflow

Mechanism

SOP for sequential task decomposition;

Publish–Subscribe message pool

SOP with Socratic questioning; Integration of

domain tools (e.g., Quantum ESPRESSO, VASP)

Task Handling
Executable feedback for code debugging;

Handles user stories, APIs, documentation

Executable feedback for simulations; Handles

hypothesis generation, data analysis, law

derivation

Tool Basic code execution, web search
Physics-specific: first-principles simulations, ab

initio calculations (e.g., band gap)

Output
Software artifacts (e.g., data structures,

competitive analysis)

Physics outputs (e.g., deriving Kepler’s laws from

data, raindrop flow simulation)

Table 2. Comparison between MetaGPT (Software Development) and PhysAgent (Physics Discovery)

Appendix

Representative Outputs for Each Role in PhysAgent

The following appendix presents representative outputs generated by the agents. These include: (i)

selected comments by the Mentor Agent during the derivation of Newton’s Second Law; (ii) improved

visualization results from the Student Agent based on feedback from the Mentor Agent; and (iii) the DFT

(Density Functional Theory) computational workflow designed by the Student Agent.
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1. Clearly specify that "change in state of motion" refers to changes in the magnitude or direction of velocity to

avoid confusion with acceleration.

2. Avoid introducing the concept of acceleration in assumptions; express in terms of velocity changes, emphasizing

derivation from experiments rather than presupposition.

3. Encourage hypotheses regarding the relationship between the direction of force and the direction of velocity

change to lay the groundwork for subsequent vector analysis.

4. Quantify and control the influence of friction, or compensate through control experiments or inclined track

setups.

5. Recommend using spring dynamometers or relative force units instead of assuming gravitational constants for

force measurements.

6. Encourage experimental designs involving forces in different directions and varying mass to enhance data

diversity.

7. Clearly state the temporal and spatial resolution of data recordings and quantify instrument errors.

8. Introduce mechanisms for detecting data anomalies, such as checks for velocity continuity and energy

conservation.

9. Apply smoothing or fitting methods to mitigate noise in differential calculations.

10. Include dimensional analysis to validate the physical consistency of derived formulas.

11. Supplement regression analysis with confidence intervals and residual tests to improve statistical robustness.

12. Eliminate alternative mathematical relationships before drawing conclusions and validate using dimensional

analysis.

13. Clearly articulate the applicable conditions of physical laws, such as inertial frames and non-relativistic

contexts.

14. Avoid using formulas that presuppose   to define acceleration, ensuring logical consistency.

15. All measuring tools should prioritize observable quantities, with explanations for the principles of indirect

measurements.

16. Recommend referencing historical experimental methods (e.g., Galileo’s inclined plane and Atwood machine) to

optimize experimental design.

Mentor Agent Output (Selected Mentor Agent Comments During Newton's Second Law Derivation)

F = ma
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1. I adopted a no-intercept linear regression as per the Mentor Agent’s requirement, ensuring the fitting line passes

through the origin to better align with physical principles.

2. I improved the color scheme by using shades of a single color family, making the visualization more professional

and visually coherent.

3. I adjusted the font to Times New Roman, thickened axis lines, and added dashed grid lines to conform to PRL

style guidelines.

4. I optimized labels by using physical symbols and standardized units, and displayed the fitting formula directly

in the legend to enhance scientific clarity.

5. I simplified the overall chart layout by removing redundant titles, maintaining a clean and easily readable figure.

Student Agent Output (Improvements Following Mentor Agent's Feedback on Visualization)
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The following is the DFT calculation workflow for GaAs designed based on user requirements:

1. Install Quantum ESPRESSO First, ensure that the Quantum ESPRESSO software is properly installed. If any issues

arise during installation or configuration, it is recommended to search online for solutions or seek assistance from

experienced users to ensure the smooth execution of subsequent calculations.

2. Create GaAs Crystal Structure This step generates the GaAs crystal structure for subsequent first-principles

calculations. Using the ‘bulk‘ function from the ASE library, a zincblende structure of GaAs is constructed with a

lattice constant of 5.65 Å. This produces an ‘atoms‘ object containing all atomic positions, element types, and unit

cell information, serving as the fundamental input for Quantum ESPRESSO calculations.

3. Set up Quantum ESPRESSO Calculation Environment This step configures the execution environment required

for Quantum ESPRESSO calculations. The paths to the Quantum ESPRESSO executable and the pseudopotential

directory (e.g., ‘/yourpath//PhysAgent/QE/qe-7.4.1/pseudo‘) are specified. An ‘EspressoProfile‘ object is created to

register the ‘pw.x‘ executable and pseudopotential directory, providing an interface for invoking Quantum

ESPRESSO in subsequent steps.

4. Perform SCF Calculation This step carries out a self-consistent field (SCF) calculation to obtain a converged

electron density and total energy. An ‘Espresso‘ calculator is instantiated with the ‘control‘ section set to an SCF

task and output directory as ‘./out‘. The ‘system‘ section defines a plane-wave cutoff energy of 40 Ry and a charge

density cutoff of 320 Ry, employing Gaussian smearing with a ‘degauss‘ value of 0.01. The ‘electrons‘ section sets a

convergence threshold of 1e-6. Pseudopotential files for Ga and As in UPF format are specified, and a Monkhorst-

Pack k-point grid of 8 is used. The calculator is attached to the ‘atoms‘ object, and the calculation is executed,

printing the total energy in the format "SCF Total energy: X.XXXXXX eV".

5. Perform Band Structure Calculation This step computes the band structure of GaAs along high-symmetry paths.

The ASE ‘bandpath‘ function generates a standard high-symmetry k-point path (e.g., GXWKGLUWLK) with 100

interpolated k-points, resulting in an array of k-point coordinates. An ‘Espresso‘ calculator is configured for a

‘bands‘ type calculation, preserving the same pseudopotentials and energy parameters as the SCF step, and using

the generated k-point path with k-point shifts disabled. After attaching the calculator to the ‘atoms‘ object and

invoking ‘atoms.get_bands()‘, the band structure calculation is performed, and upon completion, "Bands Band

structure calculation completed." is printed.

6. Perform NSCF Calculation This step performs a non-self-consistent field (NSCF) calculation to obtain a high-

density k-point electronic structure for density of states analysis. A new ‘Espresso‘ calculator is configured with the

task type set to ‘nscf‘, keeping other parameters consistent with the SCF calculation. The k-point grid is increased

to 12 for enhanced resolution. The calculator is attached to the ‘atoms‘ object, the calculation is executed to retrieve

the ‘energy‘ property, and the process ends with "NSCF NSCF calculation completed.".
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7. Perform DOS Calculation This step computes the total density of states (DOS) of GaAs. An input file named

‘dos.in‘ is created, specifying the output directory as ‘./out‘, the prefix as ‘gaas‘, and the output file as ‘gaas.dos‘. The

energy range is set from -15.0 eV to 15.0 eV with an energy step of 0.01 eV. Quantum ESPRESSO’s ‘dos.x‘ program is

called to read the NSCF outputs and calculate the DOS. Upon completion, "DOS DOS calculation completed." is

printed.

8. Perform PDOS Calculation This step calculates the projected density of states (PDOS) for Ga and As atoms to

analyze the contribution of different atomic orbitals to the electronic structure. An input file named ‘projwfc.in‘ is

generated, specifying the output directory as ‘./out‘, the prefix as ‘gaas‘, and the output file as ‘gaas.pdos‘, with the

same energy range as the DOS calculation. Gaussian smearing parameters are set with ‘ngauss=0‘ and

‘degauss=0.01‘. The ‘projwfc.x‘ program is invoked to perform the calculation, and upon completion, "PDOS PDOS

calculation completed." is printed.

9. Plot Band Structure and DOS/PDOS Combined Graph This step produces publication-quality plots of the band

structure and density of states. Matplotlib is configured with academic-style settings (e.g., serif fonts, customized

ticks). A figure with two subplots is created: the left subplot displays the band structure, and the right subplot

shows the DOS and PDOS, sharing the y-axis with a horizontal spacing of 0.05. The band structure plot reads the

high-symmetry path and labels, plotting each band’s energy relative to the Fermi level, with dashed lines at special

k-points and a red dashed line at the Fermi level. The DOS subplot plots the total DOS, and if available, the PDOS for

Ga (steel blue dashed line) and As (seagreen dash-dot line). Legends, axis labels, and titles are properly set. The

final plot is saved as a high-resolution SVG file named ‘gaas_bands_dos_pdos_prl_style.svg‘.

10. Convert Charge Density Data to CUBE Format This step converts the computed charge density data into CUBE

format for 3D visualization. A ‘pp.in‘ input file is written specifying the prefix as ‘gaas‘, output directory as ‘./out‘,

plot type as charge density (‘plot_num=0‘), and output format as CUBE file (‘output_format=6‘). The output file is

named ‘charge_density.cube‘. The Quantum ESPRESSO ‘pp.x‘ utility is invoked for the conversion, and upon

success, the message "charge_density.cube file has been generated." is printed.

11. Plot Combined Charge Density Maps (2D Slice + 3D Isosurfaces) This step reads the charge density data from the

CUBE file and generates combined visualizations consisting of a 2D slice and 3D isosurface plots. A figure with two

subplots is created: the left subplot for 3D isosurfaces and the right for the 2D slice. A logarithmic color

normalization (LogNorm) is applied to enhance the visibility of low-density regions. The 2D slice is taken at the

midpoint along the z-axis and displayed using ‘imshow‘ with a colorbar and axis labels. For the 3D plot, two

intermediate isosurface levels within the log-scaled data range are selected; isosurfaces are generated using the

marching cubes algorithm and rendered with ‘plot_trisurf‘. Atomic positions are overlaid as scatter points (blue for

Ga and red for As), along with lattice vector arrows. Appropriate viewing angles and legends are set. The final

visualization is saved as ‘combined_charge_density_optimized.svg‘, suitable for publication or presentation.
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Student Agent Output (Design the DFT (Density Functional Theory) computational workflow.)

Final Code Implementation in PhysAgent

Here is the code developed by the Student Agent to implement DFT calculations, along with a portion of

the visualization code. This version incorporates feedback from both the Mentor Agent and human users,

representing the final refined output.
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Listing 1. GaAs Electronic Structure Calculation Workflow using ASE + QE
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Listing 2. GaAs Charge Density Visualization

Numerical Methods and Parameters

The thin film evolution on the window was solved using a finite difference method on a rectangular grid

of    and  , with spatial resolutions    m and 

  m. The time step was set to    s, resulting in a total of 

 steps.

The Laplacian operator   was constructed as a sparse matrix: 

nx = 400 ny = 200 dx = L/nx = 0.0025

dy = W/ny = 0.0025 dt = 0.0002

nt = T/dt = 50000

∇2

= ( ) , = ⊗ + ⊗ ,D2x
1

dx2
1 −2 1 ∇2 Iy D2x D2y Ix
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where    and    are identity matrices of appropriate sizes. The flux divergence was computed using

central differences, and boundary conditions were either periodic or zero-flux, implemented implicitly

via truncation.

Flow computation was restricted to regions where    m to avoid numerical

diffusion. Visualization was performed using Matplotlib animations, displaying    to

highlight the film edges.

The physical and numerical parameters used in the simulation are summarized in Table 3.

Parameter Value

 (viscosity)  Pa·s

 (density) 1000 kg/m³

 (gravity) 9.81 m/s²

 (surface tension) 0.036 N/m

 (air shear stress) 36600 Pa

 (window size)  m

 (simulation time) 10 s

 (branching probability) 0.85

 (dripping threshold)  m

 (evaporation rate)  m/s

 (grid points) 400, 200

 (time step) 0.0002 s

Table 3. Physical and numerical parameters

Ix Iy

h > = 1 ×hmin\_move 10−5

h + 5 × |∇h|10−5
− −−−−−−−−−−−−−

√

μ 1 × 10−3

ρ

g

σ

τair

L × W 1.0 × 0.5

T

branch_prob

drop_thresh 8 × 10−2

evap_rate 1 × 10−4

nx,ny

dt
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