## **Short Communication**

# Correlation Between the SARS-CoV-2 Seroprevalence and the Theoretical Occupational Risk (TOR) and COVID-19 Morbidity Score (MBS) Among Local Public Workers in the Centre-Val de Loire Region – CovidOr Study

Ali Mroueh<sup>1</sup>, Cyril Marbois<sup>2</sup>, Roomila Naeck<sup>3</sup>, Thierry Prazuck<sup>4</sup>, Ammar Amirouche<sup>5,6</sup>, Olivier Vernay<sup>7</sup>, Amine Benyamina<sup>5,6</sup>, Raphaël Serreau<sup>8,9</sup>

1. Méthodologie et Statistiques en Recherche Biomédicale, Université Paris-Saclay, CEA, List, France; 2. Public Health School, Université Paris-Saclay, CEA, List, France; 3. Novatech SA, France; 4. Infectious Diseases Department, Centre Hospitalier Régional d'Orléans, Orléans, France; 5. Psycomadd, CERTA, Université Paris-Saclay, CEA, List, France; 6. Psycomadd, CERTA, Assistance Publique — Hôpitaux de Paris, Paris, France; 7. Communauté de Communes Terres du Val de Loire (CCTVL), France; 8. Addictology, EPSM Georges DAUMEZON, France; 9. NEURRIT CBM, CNRS, University of Orléans, Orléans, France

Objective: To examine whether SARS-CoV-2 seroprevalence among local public workers in Centre–Val de Loire (France) was associated with a theoretical occupational risk (TOR) score and with a COVID-19 morbidity score (MBS).

Design, setting, and participants: CovidOr was a multicentre cross-sectional study conducted before widespread vaccination (August–December 2020) across Orléans Métropole, the Centre–Val de Loire Region, and the Communes of Terres du Val de Loire (CCTVL). A total of 3,602 municipal and regional employees (18–84 years) underwent rapid serological testing (COVID PRESTO®).

Exposure and measures: TOR summarised three job-related dimensions (daily exposure to disease/infection, daily public contact, and physical proximity; 0-3 points, grouped as low, moderate, high risk). MBS quantified higher-risk comorbidities for severe COVID-19 (0-5 points). A multivariable logistic regression modelled seropositivity (dependent variable) with age, sex, TOR, known COVID-19 contact, symptoms, centre, and MBS as covariates. Bonferroni correction set  $\alpha$ =0.625%.

Results: Seropositivity was detected in 182/3,570 analysable participants (overall seroprevalence 5.1%). Mean age was 46.4 years; 66.6% were women. Neither age (OR 1.008; 95% CI 0.988-1.029; p=0.415) nor

sex (OR 1.153; 0.731-1.819; p=0.541) was associated with seropositivity. Seroprevalence by TOR category was 0.08% (low), 2.28% (moderate), and 2.76% (high). Although TOR showed an unadjusted association (OR 1.70; 1.146-2.549; p=0.009), it was not significant after multiplicity correction ( $\alpha$ =0.625%). Seropositive participants had a lower MBS (OR 0.752; 0.582-0.971; p=0.029), but this also lost significance after correction. Asymptomatic infections represented 31.9% of seropositive cases. Results were robust to adjustment for centre.

Conclusions: In this large pre-vaccination cohort of local public workers (the "CovidOr Study"), neither occupational risk as captured by TOR nor comorbidity burden (MBS) was independently associated with SARS-CoV-2 seropositivity after correction for multiple testing. These findings suggest that, in this setting, workplace contact intensity and aggregated comorbidity risk did not drive infection risk, underscoring the potential predominance of non-occupational exposures and the importance of universal prevention measures.

Corresponding author: Pr Raphael Serreau (PU-PH), raphael.serreau@epsm-loiret.fr

# Introduction

Back in 2019, the SARS-CoV-2 virus, causing atypical pneumonia, appeared in Wuhan Province, in China [1]. The COVID-19 disease, caused by the SARS-CoV-2 virus, is potentially lethal and remains a major global public health concern [2]. On 11 March 2020, it was declared the first pandemic caused by a coronavirus by the WHO (World Health Organisation) [3]. The SARS-CoV-2 virus has caused more than 7 million deaths worldwide, including 168,142 in France (data from the World Health Organisation as assessed on 7 January 2024) [4].

Screening strategies were put in place and the scientific community became interested in understanding how the virus was transmitted within the population. Interest was shown in populations regularly exposed to multiple human contacts, for example in their working environment. In this context, a clinical study (CovidOr) was conducted between August and December 2020, before vaccination was widely available. Our study was the first to evaluate the SARS-CoV-2 seroprevalence among public workers in Centre-Val de Loire (France), depending on their occupation and potential interaction with the public. A descriptive analysis of the results was previously published in 2023 and suggested that no significant interaction could be observed between the workers' contact with the public during their job and SARS-

CoV-2 seroprevalence <sup>[5]</sup>. Nevertheless, a significant difference in seroprevalence was observed between the different investigating centres, in correlation with the degree of urbanisation, with a higher prevalence in more urban areas.

In this short report, we aimed to establish a correlation between a proven COVID-19 case and the participant's corresponding theoretical occupation risk (TOR), with adjustment based on their COVID-19 morbidity score (MBS).

# Methods

All the methods used to carry out the CovidOr study have been described previously in <sup>[5]</sup>. We describe here only the new statistical analyses.

#### Ethical concerns

This study represents a secondary analysis of the CovidOr dataset previously described by Hanane et al. (BMJ Open 2023;13:e066504). Whereas the earlier publication presented a descriptive epidemiological overview of SARS-CoV-2 seroprevalence by occupation and contact with the public, the present analysis introduces two new composite indices—the theoretical occupational risk (TOR) and the COVID-19 morbidity score (MBS)—to explore potential correlates of seropositivity using multivariable modelling. This clarification ensures transparency and distinguishes this analysis as a methodologically distinct secondary study, consistent with COPE and ICMJE publication ethics.

The URC PARADICT-O was the sponsor of the CovidOr study (Registered under ID RCB: 2020–A01414–35), approved by the Dijon Est I ethics committee on 30 July 2020, and written informed consent was obtained for each participant. The management and processing of the data was carried out by the Data Protection Officer (DPO) of Orléans City Council, and according to GDPR requirements.

## Statistical analyses

In addition to the descriptive analysis previously published <sup>[5]</sup>, an inferential analysis was performed. The objective was to study the correlation between the SARS-CoV-2 seroprevalence and the TOR of jobs held by public workers in the Orléans Metropole, the Region "Centre-Val de Loire", and the "Communes of Terres Du Val De Loire" (CCTVL).

The TOR was calculated on the basis of the three job-related criteria suggested by the literature: daily exposure to disease and infection, daily interaction with the public during work and daily physical proximity  $\frac{[6]}{}$ . The presence of each of these three criteria accounts for one point. The total TOR score is the sum of the individual sub-scores. LOW RISK (SCORE = 0), MODERATE RISK (SCORE = 1), HIGH RISK (SCORE  $\geq$  2)

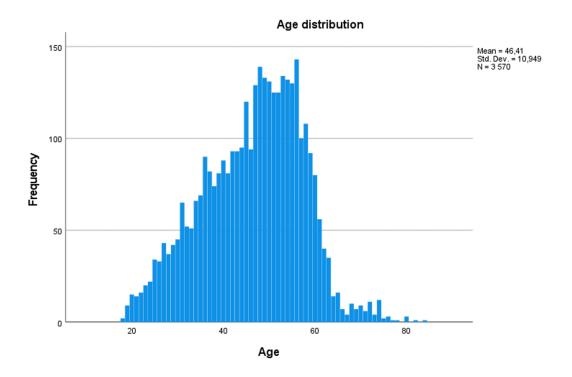
Jobs having none of these criteria have a TOR score of zero and are classified as low COVID-19 risk occupations. Those having one criterion have a TOR score of one and were classified as moderate-risk occupations. Finally, jobs having at least two of these criteria are classified as high-risk occupations.

A multivariate binary logistic regression model was created to perform the statistical analysis. The dependent variable was "seropositivity". The relevant independent variables were "age", "sex", "TOR", "COVID-19 contact exposure", and "COVID-19 signs and symptoms". The variable "centre" was also introduced in the model to adjust for possible variability of SARS-CoV-2 seropositivity among different centres. It was also necessary to adjust for corresponding associated comorbidities so as to reduce bias from possible confounding factors. Therefore, the variable "morbidity score" was introduced to the model.

Tests were performed at the 95% confidence level corresponding to an alpha risk of 5%. However, due to the multiple statistical tests performed and the resulting risk of inflation of the alpha risk, an adjustment of the latter was mandatory. We chose the Bonferroni method for this purpose. Therefore, the adjusted alpha risk was 0.625%.

### Sample size

A total of 3,602 volunteers agreed to participate in the study by signing the written informed consent. This is an increased sample size compared to the previous article as 374 more public workers were added to the database.


### Patient and public involvement

No patients or members of the public were involved in setting the research questions or the outcome measures, nor were they involved in the design and implementation of this study. There are no plans to involve patients in the dissemination of the results; however, the results of the study will be communicated to the participants.

# **Results**

Overall, out of 17,000 eligible local authority workers in the three investigating centres (Orléans Metropole, the region "Centre-Val de Loire", and the "Communes of Terres Du Val De Loire" (CCTVL)), 3,602 workers were included in the study. However, data were missing for 32 participants. A rapid serological test (COVID PRESTO®) was performed on all participants; 182 workers were seropositive, *i.e.*, an estimated overall SARS-CoV-2 seroprevalence of 5.1%.

The age distribution of the participants is represented in Figure 1. The minimum age was 18 years and the maximum age was 84 years. The mean age was 46.41 years. There was no significant correlation between age and seropositivity (OR=1.008, CI= [0.988:1.029], p=0.415). The gender ratio was unbalanced, with a majority of women included (n=2,397, *i.e.*, 66.55%) in Figure 2. The distribution of seropositivity pourcentage by center was illustrated in Figure 3. The SARS-CoV-2 seroprevalence was 3.49% and 1.63% for females and males, respectively, but no statistically significant difference was observed (OR=1.153, CI= [0.731:1.819], p=0.541).



**Figure 1.** Age distribution of study participants.

CCTVL = Communes of Terres Du Val De Loire; CI = Confidence Interval; HIV = human immunodeficiency virus;

MBS = morbidity score; N = number of participants; OR = Odds Ratio; SD = Standard Deviation.

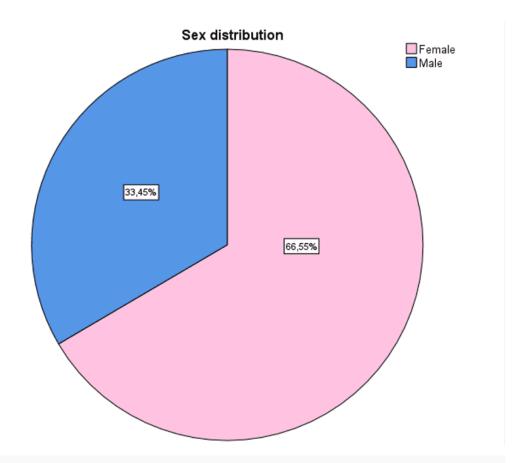



Figure 2. Sex distribution of study participants.

6

# Seropositivity distribution by Center

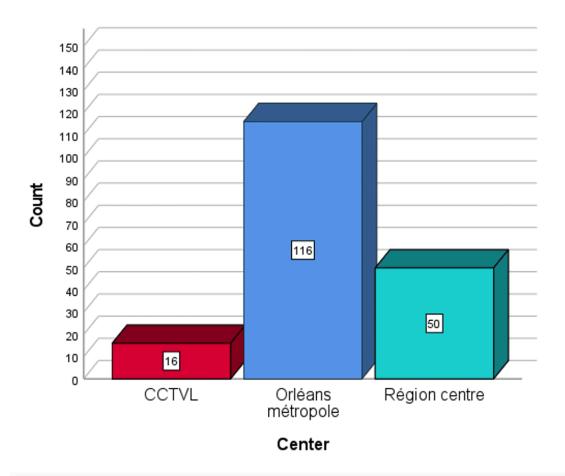



Figure 3. Seropositivity distribution by center

To adjust for possible confounding factors related to the comorbidities of the workers and to reduce selection bias, an MBS variable was introduced in the model. The Covid-19 MBS quantifies the comorbidities of the participants and their associated level of risk concerning SARS-CoV-2 infection. These risk factors are represented in Table 2 and are detailed in [7]. The Covid-19 MBS is the sum of each higher-risk comorbidity, with each one accounting for 1 point. Subjects were classified from null Covid-19 morbidity to high morbidity depending on their MBS value (Table 1). The mean MBS was 0.73. Compared to seronegative participants, seropositive participants had around a 25% decrease in their MBS (OR=0.752, CI= [0.582:0.971], p=0.029). However, after adjusting the risk alpha for multiple tests (adjusted alpha=0.625%), this decrease in MBS turned out to be statistically insignificant.

The occupations and corresponding TOR scores of the local authority workers participating in the study are reported in Table 1. Among subjects with low, moderate and high TOR scores, seroprevalence was 0.08% (n=3), 2.28% (n=81) and 2.76% (n=98), respectively. There was no significant association between SARS-CoV-2 seroprevalence and the overall TOR score for an adjusted risk alpha of 0.625% (OR=1.7, CI= [1.146:2.549], p=0.009) (Table 4).

| LOW RISK (SCORE=0)     | MODERATE RISK (SCORE=1)            | HIGH RISK (SCORE≥2)      |  |
|------------------------|------------------------------------|--------------------------|--|
| Administrative manager | Agent                              | Public Buyer             |  |
| Carpenter              | Reception officer                  | Assistant                |  |
| Plumber                | Library assistant                  | Agent                    |  |
|                        | Animal keeper                      | Children's care          |  |
|                        | Office assistant                   | Maintenance work         |  |
|                        | Archaeologist                      | Cleaning agent           |  |
|                        | Archivist                          | Care assistant           |  |
|                        | Assistant                          | Animator                 |  |
|                        | Executive assistant                | Administrative assistant |  |
|                        | Volunteer                          | Nursery assistant        |  |
|                        | Receptionist                       | ATSEM                    |  |
|                        | Business manager                   | Press attaché            |  |
|                        | Prevention and safety officer      | Nursery assistant        |  |
|                        | Project manager                    | Librarian                |  |
|                        | Project manager                    | Driver                   |  |
|                        | Team manager                       | Accountant               |  |
|                        | Project manager                    | Advisor                  |  |
|                        | Cabinet assistant                  | Curator                  |  |
|                        | Technical assistant                | Educator                 |  |
|                        | Coordinator                        | Sewage worker            |  |
|                        | Correspondent                      | G.P.M                    |  |
|                        | Cook                               | Receptionist             |  |
|                        | Design decision-maker              | Nurse                    |  |
|                        | Apprenticeship developer           | Gardener                 |  |
|                        | DGS - Director General of Services | Mauger                   |  |

| LOW RISK (SCORE=0) | MODERATE RISK (SCORE=1)           | HIGH RISK (SCORE≥2)               |
|--------------------|-----------------------------------|-----------------------------------|
|                    | Director                          | Lifeguard                         |
|                    | Documentalist                     | Doctor                            |
|                    | Pruner                            | Cultural mediator                 |
|                    | Electrician                       | Media librarian                   |
|                    | Electromechanic                   | Extracurricular                   |
|                    | Elected                           | Pre-instructor                    |
|                    | Investigator                      | Nursery nurse                     |
|                    | Fountain technician               | Head of department                |
|                    | Caretaker                         | Private secretary mayor-president |
|                    | Geomatician for territorial poles | Works supervisor                  |
|                    | Graphic designer                  | Social worker                     |
|                    | Engineer                          | AEC users advisor                 |
|                    | Instructor                        |                                   |
|                    | Lawyer                            |                                   |
|                    | Laboratory technician             |                                   |
|                    | Mason                             |                                   |
|                    | Storekeeper                       |                                   |
|                    | Operator                          |                                   |
|                    | Local patrol unit                 |                                   |
|                    | Painter                           |                                   |
|                    | Police officer                    |                                   |
|                    | Teacher                           |                                   |
|                    | Referent                          |                                   |
|                    | Stage manager                     |                                   |
|                    | Administrative manager            |                                   |

| LOW RISK (SCORE=0) | MODERATE RISK (SCORE=1) | HIGH RISK (SCORE≥2) |  |
|--------------------|-------------------------|---------------------|--|
|                    | Department manager      |                     |  |
|                    | Job manager             |                     |  |
|                    | Shooter                 |                     |  |
|                    | General secretary       |                     |  |
|                    | Locksmith               |                     |  |
|                    | Technician              |                     |  |
|                    | Traffic technician      |                     |  |

**Table 1.** TOR scores and corresponding occupations

| Condition |                                              | Evidence of Impact on COVID-19<br>Severity |
|-----------|----------------------------------------------|--------------------------------------------|
|           | Asthma                                       | CDC Systematic Review                      |
|           |                                              | CDC Systematic Review                      |
|           | Cancer                                       | Meta-Analysis/Systematic Review            |
|           | Haematologic Malignancies                    | Cohort Study                               |
|           | 0 0                                          | Case Series                                |
|           |                                              | Case-Control Study                         |
|           |                                              | Meta-Analysis                              |
|           | Cerebrovascular disease                      | Synthesis of Evidence                      |
|           |                                              | Cohort Study                               |
|           | Chronic kidney disease                       | Meta-Analysis                              |
|           |                                              | Cohort Studies                             |
|           | People receiving dialysis                    | Case Series                                |
|           | Chronic lung diseases limited to:            |                                            |
| -         | Bronchiectasis                               |                                            |
| =         | COPD (Chronic obstructive pulmonary disease) | CDC Systematic Review                      |
| =         | Interstitial lung disease                    |                                            |
| •         | Pulmonary embolism                           |                                            |
| -         | Pulmonary hypertension                       |                                            |
|           | Chronic liver diseases limited to:           |                                            |
| -         | Cirrhosis                                    |                                            |
| -         | Non-alcoholic fatty liver disease            | CDC Systematic Review                      |
| •         | Alcoholic liver disease                      |                                            |
| •         | Autoimmune hepatitis                         |                                            |
|           | Cystic fibrosis                              | CDC Systematic Review                      |
|           | Diabetes mellitus, type 1                    | Meta-Analysis                              |
| I         |                                              |                                            |

| Condition                                                                                          | Evidence of Impact on COVID-19<br>Severity                                                                         |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                    | Case Series<br>Cohort Study                                                                                        |  |
| Diabetes mellitus, type 2                                                                          | Meta-Analysis Systematic Review Gestational Diabetes Systematic Review Case Series Longitudinal Study Cohort Study |  |
| Disabilities, including Down syndrome                                                              | CDC Systematic Review                                                                                              |  |
| Heart conditions (such as heart failure, coronary artery disease, or cardiomyopathies)             | Meta-Analysis<br>Cohort Study                                                                                      |  |
| HIV (Human immunodeficiency virus)                                                                 | Meta-Analysis/Systematic Review  Cohort Study  Case Series                                                         |  |
| Mental health conditions limited to:                                                               |                                                                                                                    |  |
| <ul> <li>Mood disorders, including depression</li> <li>Schizophrenia spectrum disorders</li> </ul> | Meta-Analysis/Systematic Review                                                                                    |  |
| Neurologic conditions limited to dementia                                                          | Meta-Analysis/Systematic Review  Cross-Sectional Study  Cohort Study                                               |  |
| Obesity (BMI >30 kg/m2 or >95th percentile in children)                                            | Meta-Analysis<br>Systematic Review<br>Cohort Study                                                                 |  |
| Physical inactivity                                                                                | CDC Systematic Review                                                                                              |  |

| Condition                                                     | Evidence of Impact on COVID-19 Severity                                     |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Pregnancy and recent pregnancy                                | Meta-Analysis/Systematic Review  Case-Control  Case Series  Cohort Study    |  |
| Primary immunodeficiencies                                    | CDC Systematic Review                                                       |  |
| Smoking, current and former                                   | Meta-Analysis                                                               |  |
| Solid organ or blood stem cell transplantation                | Meta-Analysis<br>Case Series<br>Cohort Study                                |  |
| Tuberculosis                                                  | CDC Systematic Review                                                       |  |
| Use of corticosteroids or other immunosuppressive medications | Meta-Analysis/Systematic Review  Cohort Study  Cross-Sectional  Case Series |  |

Table 2. COVID-19 Risk Factors

| Clinical characteristics   |                         | Number of cases | Prevalence |
|----------------------------|-------------------------|-----------------|------------|
|                            | - Asymptomatic          | 58              | 31.87%     |
|                            | - Symptomatic           | 124             | 68.13%     |
|                            | Main symptoms           |                 |            |
|                            | Excessive fatigue       | 78              | 42.86%     |
|                            | Fever > 37.8°C          | 66              | 36.26%     |
|                            | Anosmia                 | 60              | 32.97%     |
|                            | Ageusia                 | 55              | 30.22%     |
|                            | Cough                   | 51              | 28.02%     |
| Symptomatology             | Sore throat             | 21              | 11.54%     |
|                            | Rhinorrhoea             | 16              | 8.79%      |
|                            | Dyspnoea                | 16              | 8.79%      |
|                            | Digestive symptoms      | 20              | 10.99%     |
|                            | Thoracic pain           | 7               | 3.85%      |
|                            | Dermatological symptoms | 4               | 2.2%       |
|                            | Earache                 | 3               | 1.65%      |
|                            | - Confirmed contact     | 84              | 46.15%     |
| Contact with positive case | - No contact            | 55              | 30.22%     |

**Table 3.** Seroprevalence and symptomatology of SARS-CoV-2 depending on clinical and biological characteristics reported in the seropositive group

Asymptomatic (no symptoms) and symptomatic (anosmia or ageusia, or at least three of the following symptoms: fever; chills; severe fatigue, sore throat, cough, shortness of breath, headache or nausea, vomiting or diarrhoea).

|                           | Statistics |        |                |        |
|---------------------------|------------|--------|----------------|--------|
|                           |            |        | 95% C.I.for OR |        |
| Variable                  | p-value    | OR     | Lower          | Upper  |
| Age                       | ,415       | 1,008  | ,988           | 1,029  |
| Sex (Male)                | ,541       | 1,153  | ,731           | 1,819  |
| Theorical occupation risk | ,009       | 1,709  | 1,146          | 2,549  |
| Center                    | ,000       |        |                |        |
| - Orléans métropole       | ,000       | 4,928  | 2,333          | 10,409 |
| - Région centre           | ,034       | 2,391  | 1,070          | 5,342  |
| Morbidity score           | ,029       | ,752   | ,582           | ,971   |
| Exposure (yes)            | ,000       | 8,003  | 5,191          | 12,337 |
| Signs/symptoms (yes)      | ,000       | 27,131 | 14,692         | 50,099 |

Table 4. Model results

# **Discussion**

In this new analysis, we introduced the notions of "theoretical occupational risk" and "morbidity score" as they relate to SARS-CoV-2 infection. The TOR allowed the classification of the 97 jobs observed in the participants into three categories: low-, moderate- and high-risk occupations, which allowed for an improved statistical power of the study without a significant loss of information. However, this analysis did not reveal any significant correlation between occupational TOR and seroprevalence (with an adjusted alpha of 0.625%) (Tables 1 & 3).

The MBS aimed to take into account the medical history of the participants as it relates to SARS-CoV-2 infection. It allowed for the quantification of a participant's associated level of risk concerning SARS-CoV-2 infection. This further enhanced the statistical power of the study; however, the analysis did not show a significant correlation between MBS and seroprevalence. There is an observed tendency for a decrease in MBS in the seropositive participants. This could be explained by biased sampling, as 84.8% of participants had an MBS of 0 (51.7%) or 1 (32.9%), since people who had higher-risk comorbidities applied stricter protective measures. In our study, asymptomatic cases represent 31.87% of all SARS-CoV-2 infections, which remains in line with what was observed in other studies, with a range of 4% to 41% [8].

contracting COVID-19. This does not seem to be the case. We assumed the same thing for the risk factors

of COVID-19 before calculating the MBS. We had no choice but to accept this bias since there were no data from the literature to compare the intrinsic effect of each of these criteria and risk factors two by two.

The various epidemiological studies carried out in Europe during the first wave of COVID-19 showed a lower seroprevalence of SARS-CoV-2 in healthcare workers than in the general population <sup>[9]</sup>. The most significant indicator correlated with seropositivity in healthcare workers was contact with a symptomatic or non-symptomatic COVID-19 patient, without any means of prevention. However, there was no significant association between SARS-CoV-2 seroprevalence and the COVID-19 occupation risk in our study, even when taking into account the infection risk associated with specific comorbidities (Table 2).

# **Statements and Declarations**

## Funding

The study was funded by the City Council of Orléans.

## **Conflicts of Interest**

None declared.

#### **Authors Contribution**

Conceived and designed the experiments: RS, AA, TP and AB. Recruited the participants and conducted the study: RS. Analysed the data: AA, AB, AM and RS. Wrote the manuscript: AM and RS. Manuscript review: AB, CM, RN and RS. Coordination with CCTVL: OV. Guarantor: RS.

## **Acknowledgements**

We acknowledge the City Council of Orléans, for their financial support of the CovidOr study and the creation of the PARADICT-O research unit. Furthermore, the authors thank Célia Vaslin of Clinact, France for providing medical writing support/editorial support in accordance with Good Publication Practice (GPP3) guidelines.

# References

^Zhu N, Zhang D, Wang W, et al. (2020). "A Novel Coronavirus From Patients With Pneumonia In China, 201
 N Engl J Med. 382:727–33. doi:10.1056/NEJMoa2001017.

2. ≜Mambelli F, de Araujo ACV, Farias JP, et al. (2025). "An Update On Anti-COVID-19 Vaccines And The Challe

nges To Protect Against New SARS-CoV-2 Variants." Pathogens. 14:23.

3. \(^\text{World Health Organization (2020). "WHO Director-General's Opening Remarks At The Media Briefing On

COVID-19 - 11 March 2020." World Health Organization. https://www.who.int/director-general/speeches/de

tail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

4. ≜World Health Organization (2025). "COVID-19 Deaths | WHO COVID-19 Dashboard." World Health Organiz

ation. https://data.who.int/dashboards/covid19/cases.

5. a. b. Lanane G, Amine Z, Roomila N, et al. (2023). "COVID-19 Seroprevalence Among Local Authority Worke

rs From Orléans Métropole, The Community Of Communes Of The Terres Du Val De Loire, The Local Public

Service Management Centre Of The Loiret Department And The Region Centre Val De Loire: A Prospective

Epidemiological Study." BMJ Open. 13:e066504.

6. <sup>△</sup>Covid-19 Communication Network (2025). "The Front Line: Visualizing The Occupations With The Highest

COVID-19 Risk." Covid-19 Communication Network. https://covid19.healthcoms.org/en/resource/the-front-li

<u>ne-visualizing-the-occupations-with-the-highest-covid-19-risk/.</u>

7. <sup>△</sup>CDC (2025). "Underlying Conditions And The Higher Risk For Severe COVID-19." CDC. <u>https://www.cdc.go</u>

v/covid/hcp/clinical-care/underlying-conditions.html.

8. AByambasuren O, Cardona M, Bell K, et al. (2020). "Estimating The Extent Of Asymptomatic COVID-19 And

Its Potential For Community Transmission: Systematic Review And Meta-Analysis." Off J Assoc Med Microb

iol Infect Dis Can. 5:223-34. doi:10.3138/jammi-2020-0030.

9. <sup>△</sup>Dzinamarira T, Murewanhema G, Mhango M, et al. (2021). "COVID-19 Prevalence Among Healthcare Work

ers. A Systematic Review And Meta-Analysis." Int J Environ Res Public Health. 19:146.

**Declarations** 

Funding: The study was funded by the City Council of Orléans.

**Potential competing interests:** No potential competing interests to declare.