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We introduce Z-SASLM, a Zero-Shot Style-Aligned SLI (Spherical Linear Interpolation) Blending Latent

Manipulation pipeline that overcomes the limitations of current multi-style blending methods.

Conventional approaches rely on linear blending, assuming a �at latent space leading to suboptimal

results when integrating multiple reference styles. In contrast, our framework leverages the non-

linear geometry of the latent space by using SLI Blending to combine weighted style representations.

By interpolating along the geodesic on the hypersphere, Z-SASLM preserves the intrinsic structure of

the latent space, ensuring high-�delity and coherent blending of diverse styles—all without the need

for �ne-tuning. We further propose a new metric, Weighted Multi-Style DINO VIT-B/8, designed to

quantitatively evaluate the consistency of the blended styles. While our primary focus is on the

theoretical and practical advantages of SLI Blending for style manipulation, we also demonstrate its

effectiveness in a multi-modal content fusion setting through comprehensive experimental studies.

Experimental results show that Z-SASLM achieves enhanced and robust style alignment. The

implementation code can be found at: https://github.com/alessioborgi/Z-SASLM.

Corresponding author: Alessio Borgi, borgi.1952442@studenti.uniroma1.com

1. Introduction

Text-to-image generation has advanced rapidly, moving from GANs[1] and its numerous variants[2][3][4][5]

[6][7] to powerful diffusion-based models[8][9]. The rapid development of large-scale text-to-image (T2I)

models such as DALL·E[10], MidJourney[11], Stable Diffusion[12]  and others[13][14][15]  has revolutionized

creative industries by enabling the generation of high-quality, diverse visual outputs from textual

descriptions. Despite these advances, achieving consistent Style Alignment—the ability to maintain a

coherent visual style across multiple generated images—remains a signi�cant challenge. For example, a
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designer aiming to blend the distinct aesthetics of cubism and baroque across visuals must often resort

to �ne-tuning models on speci�c styles. This approach limits the blending of the styles present in the

�ne-tuning dataset and con�nes current methods to single-style references.

Figure 1. Medieval-Cubism SLI Blending (2-styles)
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In this work, we propose a novel Z-SASLM architecture based on Spherical Linear Interpolation (SLI)

Blending approach for multi-reference style conditioning, a technique able to interpolate along the

geodesic on the hypersphere, preserving the image manifold’s geometric properties and ensuring

smooth, coherent blending between styles. Importantly, our method eliminates the need for �ne-tuning,

enabling zero-shot style alignment directly during generation.

Paper Contributions. Our main contributions are the following:

Z-SASLM architecure based on SLI Blending for Multi-Reference Style Conditioning: We introduce a

SLI-based blending technique that leverages the latent space’s non-linear geometry to combine

multiple reference-style images in a weighted manner. This approach overcomes the limitations of

linear blending and bypasses the need for �ne-tuning.

Weighted Multi-Style DINO VIT-B/8 Weighted Metric: We propose a new metric designed to evaluate

the consistency of the style in a set of generated images, effectively quantifying the contributions of

multiple blended styles.

Multi-Modal Content Fusion Ablation: We conduct comprehensive ablation studies using multi-

modal content fusion—integrating image, audio, and other modalities—to validate the improvements

in style alignment even in a multi-modal setting.

2. Related Work

Style Alignment in Text-to-Image Models. Despite signi�cant advances by models such as DALL·E[10],

Stable Diffusion[12], and Imagen[8], achieving consistent style alignment remains a challenging task.

Most state-of-the-art T2I models are designed for single-image generation and optimized for a single

style reference, often resulting in inconsistencies when generating a series of images. Early approaches to

style alignment can be broadly divided into Fine-Tuning-Based and Latent Space Manipulation methods.

Fine-tuning techniques, like StyleDrop[16]  and DreamBooth[17], require adapting the model to speci�c

styles, which is computationally intensive, restricts the range of achievable styles, and limits scalability.

Latent space manipulation methods, exempli�ed by StyleGAN[18] and Style-FiT[19], enable zero-shot style

transfer but are predominantly designed for single style adaptation and often struggle with content-style

disentanglement when blending multiple styles. In essence, while these methods generate individual

images conditioned on a style reference, they do not enforce uniform style consistency across a set of

generated images—as if they were all created by the same artist. Approaches such as StyleAligned[20] is

qeios.com doi.org/10.32388/JC1N8C 3

https://www.qeios.com/
https://doi.org/10.32388/JC1N8C


the most similar approach to our idea, using shared attention mechanisms to enforce style consistency in

a zero-shot manner; however, they remain con�ned to a single style reference and do not support

weighted blending of multiple styles.

Multi-Reference Style Blending. Traditional methods to blend multiple reference styles, such as those

employed in StyleGAN2-ADA[21], permit style mixing by directly manipulating the latent space. This

primarily relies on simple linear combinations designed for GAN-based architectures. This approach

suffers from several limitations: it assumes a �at (Euclidean) latent space that fails to capture the curved

geometry of high-dimensional representations, often resulting in abrupt transitions, artifacts, and

incoherent style mixtures. In contrast, our work introduces a multi-reference-weighted style blend

framework tailored to diffusion-based models, with at its core, SLI Blending, which interpolates along the

geodesic on the hypersphere. This approach preserves the intrinsic structure of the latent manifold,

ensuring that the weighted combination of style representations remains within a semantically

meaningful region. By overcoming the inherent limitations of conventional, linear-based methods, our

SLI Blending technique achieves a high-�delity, coherent fusion of diverse styles, enabling smooth and

consistent multi-style integration.

Multi-Style Consistency Evaluation. Evaluating the consistency of blended styles poses unique

challenges. While metrics such as DINO ViT[22]  have been successfully employed to assess style

consistency, they are typically tailored to single-style scenarios and do not account for the nuances of

weighted multi-style blending. To this end, we propose the Weighted Multi-Style DINO VIT-B/8 metric, an

enhanced evaluation tool that extends traditional DINO ViT metrics to effectively quantify the coherence

and contribution of multiple blended styles.

3. Method Overview

The Z-SASLM architecture, illustrated in Figure 2, consists of three primary modules—Reference Images

Encoding & Blending, Text Encoding, and the StyleAligned Image Generation process—augmented by an

optional Multi-Modal Content Fusion module. When this optional module is not employed, a simple

caption (denoted as Single-Content Textual prompt) indicating the desired scene we want to generate can

serve as a substitute. The Multi-Modal Content Fusion module, on the other hand, provides a Multi-

Content Textual Prompt that can aggregate diverse inputs such as images, audio, music, and weather data.

It utilizes T5-based rephrasing to merge these modalities into a uni�ed textual prompt, which is then

forwarded to the Text Encoding module. Here, the prompt (either coming from the Multi-Modal Content
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Fusion module or from a simple caption) is tokenized and encoded using CLIP, producing embeddings for

both positive and negative prompts. In parallel, the Reference Image Encoding & Blending module

extracts latent vectors from multiple reference styles via a VAE encoder. These latent vectors are blended

using our proposed SLI (Spherical Linear Interpolation) Blending approach. Finally, the uni�ed style

representation is combined with the textual embeddings and provided to the StyleAligned image

generation process, resulting in images that exhibit coherent and consistent style alignment.

Figure 2. Overview of the Z-SASLM Architecture.

3.1. Background

To achieve style alignment during generation without �ne-tuning, we adopt key components from

StyleAligned[20]: Adaptive Instance Normalization (AdaIN) and Shared Attention.

Adaptive Instance Normalization (AdaIN). AdaIN[23]  aligns the feature statistics of a generated image

with those of a reference style image. Let   and   be the feature maps for the generated

image and reference style, respectively, and de�ne    and    as the mean and standard deviation.

Then AdaIN is:

g = f(g) s = f(s)

μ(⋅) σ(⋅)
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Shared Attention. Shared Attention propagates style information across multiple images by computing

pairwise similarities. For a set  , with query  , key  , and value    features, the

attention weights are:

which update the style representation as:

In summary, queries and keys are �rst normalized via AdaIN using the reference style’s statistics:

The �nal style-aligned attention map is then computed by concatenating keys and values from both the

reference image and the current image:

By incorporating these mechanisms into our architecture, we enable zero-shot style alignment during

generation, eliminating the need for �ne-tuning.

3.2. Multi-Reference Weighted Style Blending

Inspired by the style-mixing approach of StyleGAN2-ADA[21], which linearly interpolates latent codes for

GAN-based models, we adapt a similar idea to diffusion-based models. However, because diffusion

models typically operate in a non-Euclidean latent space, naively applying linear interpolation can lead to

suboptimal or inconsistent style transitions. In this section, we �rst present linear blending as a baseline,

then introduce our Spherical Linear Interpolation (SLI) Blending to address the limitations of linear

mixing.

3.2.1. Linear Weighted Style Blending

Suppose we have   reference style images   mapped to latent vectors  , each

weighted by    with    A straightforward approach, similar to StyleGAN2-

ADA[21], is to form a linear combination of these style vectors:

AdaIN(g, s) = σ(s)( ) + μ(s)
g − μ(g)

σ(g)
(1)

{ , … , }x1 xn Q(⋅) K(⋅) V (⋅)

=Aij

exp(Q(f( )) ⋅ K(f( ) / )xi xj )⊤ d
−−

√

exp(Q(f( )) ⋅ K(f( ) / )∑n
k=1 xi xk )⊤ d

−−
√

(2)

f( = V (f( ))xi)
′ ∑

j=1

n

Aij xj (3)

= AdaIN( , ), = AdaIN( , )Q̂i Qi Qref K̂i Ki Kref (4)

Attention( , [ , ], [ , ])Q̂i Kref K̂i Vref Vi (5)

k { , , … , }s1 s2 sk { , , … , }z1 z2 zk

{ , , … , }w1 w2 wk = 1∑k
i=1 wi
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We then use   as a conditioning latent in the diffusion process. Although simple and intuitive, linear

interpolation assumes a �at (Euclidean) geometry; in the curved, high-dimensional latent spaces of

diffusion models, it can yield abrupt transitions or washed-out stylistic details. Consequently, by making

several experiments, we often observe noticeable artifacts in the generated images, as the number of

reference images augments, as illustrated in Figure 3. These artifacts arise because the linear path

between style vectors frequently falls off the meaningful regions of the latent manifold, causing a loss of

�ne-grained stylistic cues and reducing overall �delity.

Figure 3. Linear vs. SLI Blending with three styles. Linear interpolation can fall off the

meaningful latent manifold, introducing artifacts. On the other hand, SLERP always provides

robust results.

=zlinear
blend

∑
i=1

k

wizi (6)

zblend
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3.2.2. SLI Blending

We propose using Spherical Linear Interpolation (SLI) Blending to better preserve style �delity. The idea of

spherical interpolation was �rst introduced by Shoemake et al.[24] and consists in following the geodesic

on a hypersphere rather than a straight line in Euclidean space, as illustrated in Figure 4. By respecting

the manifold’s curvature, SLI produces smoother and more coherent blends of multiple styles compared

to linear interpolation. Linear blending computes the weighted sum which, even if    and    are unit

vectors, does not guarantee that   will also be of unit length. This deviation from the hypersphere

can push the result away from high-density regions of the latent space, resulting in abrupt transitions

and loss of �ne stylistic details. Mathematically, for two unit vectors with angular separation  , their

Euclidean (chord) distance is:

while the true geodesic (arc) distance on the hypersphere is:

Since   for  , linear interpolation underestimates the true separation between styles. In

contrast, SLI precisely follows the arc, ensuring that the interpolation accurately re�ects the perceptual

distance between the styles.

z1 z2

zlinear
blend

ω

= 2 sin( )dlinear
ω

2
(7)

= = ωdgeodesic dsli (8)

2 sin( ) < ωω

2
ω > 0
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Figure 4. 2-style Linear vs. SLI in the latent space Illustration. The chord (in red)

represents naive linear blending between two reference vectors   and  , yielding 

. In contrast, Spherical Linear Interpolation (in green) follows the geodesic on

the unit sphere, producing  . The angle   denotes the separation between 

 and  , with   on the unit circle.

De�nition. Starting with the simplest case in which we have two style vectors   and    with weights 

 and  , let

Assuming that the latent vectors are normalized ( ), SLI is de�ned as:

When  ,   yields an equal contribution; otherwise, the interpolation skews toward the style

with the higher weight.

For    styles, we can simply extend SLI blending by iteratively combining style vectors. However,

because SLI is a nonlinear operation de�ned on the hypersphere, its iterative application is not

associative; that is, the �nal blended vector can depend on the order in which the style vectors are

combined. To address this, we adopt a semantically meaningful ordering strategy by sorting the reference

styles in descending order of their weights. This way, the most dominant styles are incorporated �rst,

z1 z2

zlin
blend

zSLI
blend ω

z1 z2 <dlinear dsli

z1 z2

w1 w2

t = , ω = arccos( )
w2

+w1 w2

⋅z1 z2

∥ ∥∥ ∥z1 z2
(9)

∥ ∥ = ∥ ∥ = 1z1 z2

SLI(t, , ) = +z1 z2
sin((1 − t)ω)

sin(ω)
z1

sin(tω)

sin(ω)
z2 (10)

=w1 w2 t = 0.5

k > 2
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ensuring that their in�uence is robustly preserved in the cumulative blend, providing a stable,

reproducible blending sequence and mitigating potential artifacts due to arbitrary ordering. More

formally, let    be the latent style vectors sorted such that  . If 

 denotes the cumulative blend of the �rst   styles, we incorporate the  -th style with weight 

 as follows:

Repeating this process yields the �nal blended latent vector  .

3.2.3. Dynamic Style-Aligned Arguments Scaling

Even with SLI, certain styles can dominate the blending process due to their more pronounced activations

in the latent space. We refer to styles that tend to generate such strong responses as “famous,” while

those with standard activations are considered “normal.” In our approach, we discriminate between these

two categories by examining the norm of the latent key    for each style. Speci�cally, if    exceeds a

prede�ned threshold  , the style is classi�ed as famous. This criterion is well-justi�ed because the

dot product in the attention mechanism scales with the norms:

so a higher    directly results in disproportionately high attention scores, causing famous styles to

overshadow others. This issue was also observed in the StyleAligned paper[20]. To mitigate this

imbalance, we rescale the attention scores for each style reference by applying a style-dependent

normalization. Speci�cally, we adjust the original attention score   as:

where the shift   and scale   are determined by the style’s classi�cation (as proposed in[20]):

This normalization dampens the excessive in�uence of famous styles by reducing their scale while

preserving or even slightly boosting the contribution of normal styles through an appropriate shift.

, , … ,z1 z2 zk ≥ ≥ ⋯ ≥w1 w2 wk

z1⋯i i (i + 1)

wi+1

= SLI( , , )z1⋯(i+1)
wi+1

∑i+1
m=1 wm

z1⋯i zi+1 (11)

zsli
blend

k ∥k∥

T = 0.5

⟨Q,K⟩ ∝ ∥Q∥∥K∥ (12)

∥k∥

Aoriginal

= × σ + μAnormalized Aoriginal (13)

μ σ

{μ,σ} = {{log(2), 1}
{log(1), 0.5}

style == normal (“n”)
style == famous (“f”)

(14)
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3.3. Weighted Multi-Style DINO VIT-B/8

Evaluating style consistency in text-to-image (T2I) models requires a robust metric that captures both

�ne-grained visual details and higher-level semantic style characteristics. The DINO (Distillation with No

Labels) VIT-B/8 model[22]—a self-supervised vision transformer—has proven effective in this regard.

Thanks to its multi-headed self-attention layers and an 8-patch input scheme, DINO VIT-B/8 extracts

feature representations that encapsulate subtle stylistic nuances without requiring manual labels.

To assess the alignment between a generated image and a reference style, we �rst compute the cosine

similarity between their corresponding feature embeddings. Let    denote the embedding of the

generated image and   that of a reference style image. The cosine similarity is de�ned as:

While DINO VIT-B/8 excels at comparing a generated image against a single style reference, it does not

directly support the evaluation of multi-style consistency. To address this, we extend the conventional

cosine similarity into a weighted multi-style metric. Given the feature embeddings of    reference style

images and a generated image, we de�ne the weighted multi-style similarity score as:

This formulation effectively combines the individual style alignments into a single metric that re�ects

the overall style consistency of the generated image with respect to multiple references. More speci�cally,

if we denote the cosine similarity for each reference as  , then the �nal metric can be

expressed as a weighted average:

4. Experiments

We conduct our experiments on Stable Diffusion XL (SDXL), speci�cally the pre-trained model

‘stabilityai/stable-diffusion-xl-base-1.0‘[25], following the setup of Hertz \etal[20]. However, our approach is

model-agnostic and can be adapted to other diffusion-based or generative models. We use a DDIM

(Denoising Diffusion Implicit Models)[26]  scheduler (con�guration in Table 1) and initialize the SDXL

zgen

zref

CS( , ) =zgen zref
⋅zgen zref

∥ ∥∥ ∥zgen zref
(15)

k

( , , … , ) = ⋅ CS( , )Smulti-style zgen z1 zk ∑
i=1

k

wi zgen zi (16)

= CS( , )si zgen zi

=Smulti-style ∑
i=1

k

wisi (17)
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pipeline with parameters in Table 2. All experiments are performed on GPUs in mixed-precision mode

for ef�ciency.

Parameter Value

beta_start 0.00085

beta_end 0.012

beta_schedule scaled_linear

clip_sample False

set_alpha_to_one False

Table 1. DDIMScheduler Con�guration

Parameter Value

torch_dtype torch.�oat16

variant fp16

use_safetensors True

scheduler DDIMScheduler

device cuda

num_inference_steps 50

Table 2. SDXL Pipeline Con�guration

4.1. Weighted Multi-Style DINO VIT-B/8: Linear vs SLI Interpolation

We �rst compare our SLI Blending against the simpler Linear Blending approach, which is inspired by the

linear interpolation used in StyleGAN2-ADA[21]  but extended to diffusion models. To evaluate style

consistency, we use the proposed Weighted Multi-Style DINO VIT-B/8 metric (indicated as WMSDINO-ViT-
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B/8 in the table) and also report the CLIP Score[27] for image-text alignment. In addition, we compute and

report the mean similarity scores for the Medieval and Cubism reference images, denoted as MSmed and

MScub, respectively. These metrics quantify the alignment of generated images with each reference style

individually, providing insight into how well each style is preserved in the blended output.

Setup. We generate images by blending two reference styles (e.g., Medieval and Cubism) using several

weight con�gurations:  ,  ,  ,  ,  ,  , and  , and

we �x the guidance scale to 20. In our experiments, the weight con�guration, e.g.  ,

determines the relative in�uence of the Medieval and Cubism styles on the generated image. For

example,    yields full Cubism and    full Medieval;    produces an even blend, while 

  or    skew the output toward Cubism or Medieval, respectively. Inspired by the

StyleAligned[20]  approach, we also created a dataset for the textual input prompts, composed of seven

sets of nine images, using ChatGPT. This dataset comprises a diverse collection of stylistic descriptions

and artistic references, enabling systematic evaluation of our blending methods across a wide range of

style fusion scenarios.

Results. Table 3 summarizes our �ndings. The rows    and    represent the

StyleAligned[20]  baseline with no multi-style blending. From Table 3, SLI outperforms Linear

interpolation in multi-style alignment (WMSDINO-ViT-B/8) while maintaining better CLIP scores. The

differences become more pronounced in blended scenarios (e.g.,  ) where linear blending

struggles to stay on the latent manifold, leading to suboptimal style fusion.

(0, 1) (0.15, 0.85) (0.25, 0.75) (0.5, 0.5) (0.75, 0.25) (0.85, 0.15) (1, 0)

( , )wmed wcub

(0, 1) (1, 0) (0.5, 0.5)

(0.25, 0.75) (0.75, 0.25)

{0, 1} {1, 0}

{0.5, 0.5}
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Style Weights Linear (StyleGAN2-ADA[21]-adapted) Z-SASLM (Ours)

MS MS WMS CLIP MS MS WMS CLIP

- 0.47552 0.47552 0.30280 - 0.47552 0.47552 0.30280

0.32466 0.42683 0.41151 0.31534 0.32595 0.47072 0.44900 0.31049

0.35550 0.42250 0.40575 0.31420 0.33046 0.45447 0.42347 0.31657

0.34905 0.37881 0.36393 0.29232 0.36150 0.42156 0.39153 0.31434

0.35798 0.38327 0.36430 0.31752 0.34648 0.35099 0.34760 0.31911

0.35513 0.40860 0.36315 0.32381 0.36513 0.38286 0.36779 0.31499

0.29891 - 0.29891 0.30570 0.29891 - 0.29891 0.30570

Table 3. Weighted Multi-Style DINO VIT-B/8: Linear vs. Z-SASLM. *: Rows   and   indicate no

blending (i.e., StyleAligned[20]). We omit from the comparison the basic SDXL results as we are comparing

only style-alignment results.

4.2. Multi-Modal Content Fusion Module Inclusion

Although our primary focus is on multi-style blending, we also evaluate an optional Multi-Modal Content

Fusion module (see Figure 2) to demonstrate the advantages of enriching the input prompt beyond simple

text, de�ned in our architecture as ”Single-Content Textual Prompt”. In many creative tasks, a single-

context prompt may lack the nuance necessary to capture the full spectrum of an intended artistic vision.

By incorporating additional modalities—such as visual cues, audio transcripts, musical mood descriptors,

and real-time weather data—we provide a richer and more informative conditioning signal that enhances

style alignment and improves image quality.

In our approach, each modality is �rst converted into text: a photo is described via BLIP[28]-based Image-

to-Text, spoken content is transcribed with Whisper[29], music is interpreted via CLAP[30] combined with

cosine similarity matching, and weather data is retrieved through the OpenWeather API[31]. This process

has been employed to continue avoiding to perform the �ne-tuning step. These diverse textual snippets

are then concatenated and further condensed using T5[32]-based paraphrasing to produce a compact, yet

semantically rich, ”Multi-Content Textual Prompt” that is fed into the SDXL pipeline.

{ , }wmed wcub med cub DINO-ViT-B/8 score med cub DINO-ViT-B/8 score

{0, 1}∗

{0.15, 0.85}

{0.25, 0.75}

{0.5, 0.5}

{0.75, 0.25}

{0.85, 0.15}

{1, 0}∗

{0, 1} {1, 0}
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As shown in Figure 5, our Z-SASLM Blending method maintains coherent style alignment even under

these richer conditions, demonstrating the advantage of multi-modal fusion in guiding the generation

process.

Figure 5. Z-SASLM with Multi-Modal Content Fusion. Our SLI blending (with   = (0.15,

0.85)) preserves style alignment despite varied contextual cues (image, audio, music). As you can observe

from the photos, the impact of the other modalities on the generated image is tangible (e.g., the

background of the images is ”heavy and thunderous” as the music modalities suggest). In the meanwhile,

information given through Audio further allows to be more detailed in the generation.

( , )wmed wvangogh
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4.3. Scaling vs. Non-Scaling

We next investigate the impact of attention scaling ( ) on Z-SASLM’s SLI blending. Using an equal

weight con�guration    for two reference styles, we vary the scaling parameters for the more

prominent style (Cubism). Table 4 shows that without scaling, the difference between mean similarities 

  is signi�cantly larger, implying style imbalance. Rescaling helps mitigate dominance

by famous styles, ensuring a more balanced blend. CLIP scores remain fairly stable. You can also observe

this behavior from Figure 6, noting the predominance of the Cubism style w.r.t. the medieval one during

image generation.

Scaling Parameters (Cubism) MS MS WMS CLIP

0.36096 0.40155 0.04059 0.38126 0.31817

0.35660 0.39909 0.04249 0.37784 0.28070

0.36150 0.42156 0.06006 0.39153 0.31434

0.36272 0.41224 0.04952 0.38748 0.31706

0.33432 0.45480 0.12048 0.39456 0.30885

Table 4. Ablation Study: Attention Scaling vs. Non-Scaling (Z-SASLM’s SLI   Blending

: Without Attention Scaling

μ,σ

{0.5, 0.5}

| − |MSmed MScub

med cub | − |MSmed MScub DINO-ViT-B/8 score

{log(1), 0.125}

{log(1), 0.25}

{log(1), 0.5}

{log(1), 0.75}

{log(2), 1}†

{0.5, 0.5}

†
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Figure 6. Attention score rescaling effect under SLI blending.

4.4. Guidance Ablation

Finally, we vary the guidance scale (5 to 30) under SLI blending with weights  . Table 5 indicates

that higher guidance often increases the Weighted Multi-Style DINO VIT-B/8 metric but may also

increase  . This suggests a trade-off: stronger guidance can boost style �delity but

might amplify one style more than the other. Overall, moderate guidance (15–20) strikes a good balance.

This behavior can also be observed directly through Figure 7, where you can observe how increasing the

guidance scale progressively ampli�es the stylistic in�uence from the two reference images. At low

guidance (5), each generated image remains relatively faithful to its textual prompt. As guidance rises

(10–15), characteristic shapes, colors, and patterns drawn from the reference images become more

evident. By higher guidance levels (20–25), the stylization is more aggressive; the original content is still

recognizable, but geometric forms, bold outlines, and subdued palettes—drawn from the references—

{0.5, 0.5}

| − |MSmed MScub
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dominate the overall look. In other words, strong guidance enhances style �delity but can overshadow

�ne details of the prompt, creating images that lean more heavily toward the shared artistic signature of

the references.

Z-SASLM {0.5, 0.5}

Guidance MS MS WMS CLIP

5 0.37721 0.38623 0.00902 0.38172 0.31420

10 0.36149 0.42156 0.06007 0.39153 0.31434

15 0.35610 0.43315 0.07705 0.39463 0.31681

20 0.38218 0.45844 0.07626 0.42031 0.31656

25 0.36966 0.44971 0.08005 0.40968 0.31554

30 0.36350 0.46818 0.10468 0.41584 0.31316

Table 5. Guidance Ablation Study for Z-SASLM   Blending.

med cub | − |MSmed MScub DINO-ViT-B/8 score

{0.5, 0.5}
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Figure 7. Z-SASLM: Guidance Ablation showing the effect of different guidance scaling

factors.

5. Conclusions

We have presented the novel Z-SASLM framework for multi-style blending in diffusion models, focusing

on a Spherical Linear Interpolation (SLI) approach that respects the non-Euclidean geometry of the latent

space. Our experiments show that Z-SASLM outperforms the Linear baseline (inspired by StyleGAN2-
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ADA) across various style weight con�gurations and under multi-modal content prompts. Additionally,

we introduced a Weighted Multi-Style DINO VIT-B/8 metric to quantify style consistency, demonstrating

the superiority of SLI in navigating complex latent manifolds. Although our main emphasis is on multi-

style blending, we also illustrated that Z-SASLM’s solution remains robust when additional modalities

(audio, music, weather) are fused into the prompt. Future work will explore more ef�cient attention

mechanisms and extended style references for large-scale applications.
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