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For  , let  . For  ,   denotes the

smallest   such that if a system of equations   has a solution in  , then   has a solution in 

. The author proved earlier that the function   is computable in the limit and

eventually dominates every computable function  . We present a short program in MuPAD which

for   prints the sequence   of non-negative integers converging to  . We prove that no

algorithm takes as input a non-negative integer   and decides whether or not

. For  ,   denotes the smallest   such that if a

system of equations   has a unique solution in  , then this solution belongs to  . The

author proved earlier that the function   is computable in the limit and eventually dominates every

function   with a single-fold Diophantine representation. The computability of   is unknown. We

present a short program in MuPAD which for   prints the sequence   of non-negative integers

converging to  .
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1. The Collatz problem leads to a short computer program that computes

in the limit a function   of unknown computability

Definition 1. (cf. [1]). A computation in the limit of a function   is a semi-algorithm which takes as input a

non-negative integer   and for every   prints a non-negative integer   such that  .

By Definition  1, a function    is computable in the limit when there exists an infinite computation

which takes as input a non-negative integer   and prints a non-negative integer on each iteration and prints 
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 on each sufficiently high iteration.

It is known that there exists a limit-computable function   which is not computable, see Theorem 1.

Every known proof of this fact does not lead to the existence of a short computer program that computes   in

the limit. So far, short computer programs can only compute in the limit functions from    to    whose

computability is proven or unknown.

Lemma 1. For every  ,

MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. By Lemma  1, the following program in

MuPAD computes in the limit a function  .

input("Input a non-negative integer n",n):

while TRUE do

print(sign(n)):

n:=sign(n-1)*(2*n+(1-(-1)^n)*(5*n+2))/4:

end_while:

The computability of   is unknown, see [2]. The Collatz conjecture implies that   for every  .

2. A limit-computable function    which eventually dominates

every computable function 

For  , let

Theorem 1. [3]. There exists a limit-computable function   which eventually dominates every computable

function  .

We present an alternative proof of Theorem 1. For  ,   denotes the smallest   such that if a system

of equations   has a solution in  , then   has a solution in  . The function   is

computable in the limit and eventually dominates every computable function  , see  [4]. The term

"dominated" in the title of  [4]  means "eventually dominated". Flowchart  1 shows a semi-algorithm which

computes   in the limit, see [4].
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Flowchart 1. A semi-algorithm which computes   in the limit

3. An undecidable decision problem about an ordered pair   of non-

negative integers that has a short description in terms of arithmetic

Flowchart 2 shows a simpler semi-algorithm which computes   in the limit.
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Flowchart 2. A simpler semi-algorithm which computes   in the limit

Lemma 2. For every  , the number printed by Flowchart 2 does not exceed the number printed by Flowchart 1.

Proof. For every  ,

Lemma 3. For every  , the number printed by Flowchart 1 does not exceed the number printed by Flowchart 2.

Proof. Let  . For every system of equations  , if   and   solves 

, then   solves the following system of equations:
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Theorem 2. For every  , Flowcharts 1 and 2 print the same number.

Proof. It follows from Lemmas 2 and 3. 

Definition 2. An approximation of a tuple   is a tuple   such that

Observation 1. For every  , there exists a set   such that

and every tuple   possesses an approximation in  .

Observation 2. For every  ,   equals the smallest   such that every tuple   possesses

an approximation in  .

Observation 3. For every  , Flowcharts 1 and 2 print the smallest    such that every tuple 

 possesses an approximation in  .

Theorem 3. No algorithm takes as input non-negative integers   and   and decides whether or not

Proof. Since the function   is not computable, it follows from Observation 2. 

In Theorem 3,   is the number of variables. Hence, the formula in Theorem 3 is not a first order formula in

the language of arithmetic.

4. A short program in MuPAD that computes   in the limit

The following program in MuPAD implements the semi-algorithm shown in Flowchart 2.
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input("Input a non-negative integer n",n):

m:=0:

while TRUE do

X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):

Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:

for p from 1 to (m+1)^(n+1) do

for q from 1 to (m+1)^(n+1) do

v:=1:

for k from 1 to n+1 do

if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:

for i from 1 to n+1 do

for j from i to n+1 do

if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:

if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:

end_for:

end_for:

end_for:

if max(op(X[q]))<max(op(X[p])) and v=1 then Y[p]:=0 end_if:

end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

5. An undecidable decision problem about a non-negative integer   that

has a short description in terms of arithmetic

For  ,    denotes the smallest    such that if a system of equations 

 has a solution in  , then   has a solution in  .

From [4] and Lemma 3 in [5], it follows that the function    is computable in the limit and eventually

dominates every computable function  . A bit shorter program in MuPAD computes   in the limit.

Theorem 4. No algorithm takes as input non-negative integers   and   and decides whether or not

n
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Proof. It holds because the function   is not computable. 

Corollary 1. No algorithm takes as input a non-negative integer   and decides whether or not

The previously known examples of computably undecidable decision problems about a non-negative integer 

 do not have a short description in terms of arithmetic.

Example 1. Let   be a computable bijection from   to the set of multivariate polynomials with integer coefficients. For 

, the problem whether or not the equation    has a solution in non-negative integers is computably

undecidable. For every known  , the polynomial   does not have a short description in terms of arithmetic.

Example 2. Let   be a computable bijection from   to the set of sentences of Peano arithmetic. For  , the problem

whether or not    is a theorem of Peano arithmetic is computably undecidable. For every known  , the sentence 

 does not have a short description in terms of arithmetic.

6. A limit-computable function    of unknown computability

which eventually dominates every function   with a single-fold

Diophantine representation

The Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set   has a

Diophantine representation, that is

for some polynomial   with integer coefficients, see [6]. The representation (R) is said to be single-fold, if for

any   the equation   has at most one solution  .

Hypothesis 1. ([7][8][9][10][11][12]). Every listable set    has a single-fold Diophantine

representation.
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For  ,   denotes the smallest   such that if a system of equations   has a unique solution in 

, then this solution belongs to  . The computability of   is unknown.

Theorem 5. The function    is computable in the limit and eventually dominates every function 

 with a single-fold Diophantine representation.

Proof. This is proved in [4]. Flowchart 3 shows a semi-algorithm which computes   in the limit, see [4].

Flowchart 3. A semi-algorithm which computes   in the limit

7. A short program in MuPAD that computes   in the limit

Flowchart 4 shows a simpler semi-algorithm which computes   in the limit.
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Flowchart 4. A simpler semi-algorithm which computes   in the limit

Lemma 4. For every  , the number printed by Flowchart 4 does not exceed the number printed by Flowchart

3.

Proof. For every  ,

Lemma 5. For every  , the number printed by Flowchart 3 does not exceed the number printed by Flowchart 4.

Proof. Let  . For every system of equations  , if   is a unique solution

of   in  , then   solves the system  , where
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{ + = : (i, j,k ∈ {0, … ,n}) ∧ ( + = )}∪xi xj xk ai aj ak

{ ⋅ = : (i, j,k ∈ {0, … ,n}) ∧ ( ⋅ = )}xi xj xk ai aj ak

□

n,m ∈ N
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By this and the inclusion  ,   has exactly one solution in  , namely  . 

Theorem 6. For every  , Flowcharts 3 and 4 print the same number.

Proof. It follows from Lemmas 4 and 5. 

The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.

input("Input a non-negative integer n",n):

m:=0:

while TRUE do

X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):

Y:=[max(op(X[u])) $u=1..(m+1)^(n+1)]:

for p from 1 to (m+1)^(n+1) do

for q from 1 to (m+1)^(n+1) do

v:=1:

for k from 1 to n+1 do

if 1=X[p][k] and 1<>X[q][k] then v:=0 end_if:

for i from 1 to n+1 do

for j from i to n+1 do

if X[p][i]+X[p][j]=X[p][k] and X[q][i]+X[q][j]<>X[q][k] then v:=0 end_if:

if X[p][i]*X[p][j]=X[p][k] and X[q][i]*X[q][j]<>X[q][k] then v:=0 end_if:

end_for:

end_for:

end_for:

if q<>p and v=1 then Y[p]:=0 end_if:

end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

Notes

2020 Mathematics Subject Classification: 03D20, 11U05.
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