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An Undecidable Decision Problem About a
Non-Negative Integer n That Has a Short
Description in Terms of Arithmetic

Apoloniusz Tyszka1

1. Hugo Kottataj University, Poland

Forn € N)let E, = {1 = zp,z; + ¢; = @i, ¢ - ¢ = 23 : 4,5,k € {0,...,n}}. Forn € N, f(n) denotes the
smallest b € N such that if a system of equations S C E,, has a solution in N"™! then S has a solution in
{0,..., b}"+1 . The author proved earlier that the function f : N — N is computable in the limit and
eventually dominates every computable function g : N — N. We present a short program in MuPAD which
for n € N prints the sequence { f;(n)};-, of non-negative integers converging to f(n). We prove that no
algorithm takes as input a non-negative integer n and decides whether or not

I, € N((n=27-39) AV (20,...,2p) € NI (yp,...,9,) €

{0,..., P (Vi k € {0,...,p} (&5 +1=ap =y, +1=w)) A

(Vi,5,k € {0,...,p}(z; - zj = 2 = y; - y; = yx))))- Forn € N, B(n) denotes the smallest b € N such thatifa
system of equations S C E,, has a unique solution in N"*!, then this solution belongs to {o,..., b}"+1 . The
author proved earlier that the function 8 : N — N is computable in the limit and eventually dominates every
function ¢ : N — N with a single-fold Diophantine representation. The computability of 5 is unknown. We
present a short program in MuPAD which for n € N prints the sequence {3;(n)};°, of non-negative integers

converging to 3(n).

Corresponding author: Apoloniusz Tyszka, rttyszka@cyf-kr.edu.pl

1. The Collatz problem leads to a short computer program that computes
in the limit a function v : N — {0, 1} of unknown computability

Definition 1. (cf lI). A computation in the limit of a function f : N — N is a semi-algorithm which takes as input a

non-negative integer n and for every m € N prints a non-negative integer {(n, m) such that lim {(n,m) = f(n).
m—0o0

By Definition 1, a function f: N — N is computable in the limit when there exists an infinite computation

which takes as input a non-negative integer » and prints a non-negative integer on each iteration and prints
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f(n) on each sufficiently high iteration.

It is known that there exists a limit-computable function f : N — N which is not computable, see Theorem 1.
Every known proof of this fact does not lead to the existence of a short computer program that computes f in
the limit. So far, short computer programs can only compute in the limit functions from N to N whose
computability is proven or unknown.
Lemma 1. Foreveryn € N,

0,ifn=1

sign(n —1)- (2n+ (1 — (-1)") - (5n + 2))
4

n . .
= E,1fn1seven

3n+1,ifnisoddandn #1

MuPAD is a part of the Symbolic Math Toolbox in MATLAB R2019b. By Lemma 1, the following program in

MuPAD computes in the limit a functiony : N — {0, 1}.

input("Input a non-negative integer n",n):
while TRUE do

print(sign(n)):
n:=sign(n-1)*(2*n+(1-(-1)An)*(5*n+2))/4:

end_while:

The computability of ~ is unknown, see [2l. The Collatz conjecture implies that (n) = 0 for every n € N.

2. A limit-computable function f : N — N which eventually dominates

every computable functiong : N — N
Forn € N, let
E,={1=ap,z+z =xp,z-2; =x;:%,5,k€{0,...,n}}
Theorem 1. Bl There exists a limit-computable function f : N — N which eventually dominates every computable

functiong : N — N.

We present an alternative proof of Theorem 1. For n € N, f(n) denotes the smallest b € N such that if a system
of equations S C E, has a solution in N*™ | then § has a solution in {0,. .., b}”“. The function f : N — N is
computable in the limit and eventually dominates every computable function g : N — N, see 4. The term
"dominated” in the title of %! means "eventually dominated”. Flowchart 1 shows a semi-algorithm which

computes f(n) in the limit, see 4],
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/ Input a non-negative integer n /

m:=0

Cen
<

\ 4
Create a list L of all systems S € Ep
which have a solution in {0,...,m}" + 1
v

Print the smallest non-negative
integer b such that each element

of L has a solution in {0, ...,»}" +1

v

m:=m+1

Flowchart 1. A semi-algorithm which computes f(n) in the limit

3. An undecidable decision problem about an ordered pair (n,m) of non-

negative integers that has a short description in terms of arithmetic

Flowchart 2 shows a simpler semi-algorithm which computes f(rn) in the limit.
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/ Input a non-negative integer n /

m:=10

€

For (xg,...,xn) € {0,...,m}" + 1

0, if there exists (yg, . .-, yn) € {0,...,m}* + 1
such that max(yg,...,yn) < max(xg,...,xpn) and
(Vk €{0,...,n} (1 = x5 = 1 = yp)A
Vi, j,k€{0,...,n} (xi+xj =X Dyity; = YA
Vi, j,k € {0,...,n} (xi-xj =X =YY =yr)
max(x, ..., Xp), otherwise

¥
/ Print the greatest number of the set /

{tm(xgs. .oy Xn) i (xgy...sxn) €{0,...,m)"+ I,

|m:=m+1l

Flowchart 2. A simpler semi-algorithm which computes f(n) in the limit

tm(xgs.--,Xn) 1= 9

Lemma 2. For every n, m € N, the number printed by Flowchart 2 does not exceed the number printed by Flowchart 1.

}n+1’

Proof. For every (ay, . ..,a,) € {0,...,m
E,2{1==x:(ke€{0,...,n}) A (L =a;)}U
{zi +zj=a: 4,5,k €{0,...,n}) A (a; + a; = az) }U
{zi-zj =2 :(4,5,k€{0,...,n}) A(ai - aj = ax)}

O

Lemma 3. For every n,m € N, the number printed by Flowchart 1 does not exceed the number printed by Flowchart 2.

}n+1

Proof. Let n,m € N. For every system of equations S C E,, if (ag,...,an) € {0,...,m and (ay, . . .,ay,) solves

S, then (ao, . . ., a, ) solves the following system of equations:
{I1=xzp:(ke{0,...,n}) A (1 =ay)}U

{zi+zj=ar:(4,5,k€{0,...,n}) A(a; +a; =az)}U
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{z;-z;j=2r:(4,5,k€{0,...,n}) A(a; -aj = a)}

O
Theorem 2. For every n, m € N, Flowcharts 1 and 2 print the same number.
Proof. 1t follows from Lemmas 2 and 3. [J

Definition 2. An approximation of a tuple (zo, . . ., z,) € N""! isatuple (yo, . - - ,yn) € N"™ such that
(VE € {0,...,n}1l =z = 1 =y))A
(V4,7,k €{0,...,n}(z; + z; = 2 = i +y; = y))A
(Vi,5,k €{0,...,n}(z; - zj =2k = ¥i - Yj = Y&))
Observation 1. For every n € N, there exists a set A(n) C N"™ such that
card(A(n)) < 2¢2iE) — gn+l42 (nt1)?

and every tuple (o, . .. ,z,) € N™*! possesses an approximation in A(n).

Observation 2. For every n € N, f(n) equals the smallest b € N such that every tuple (zg, . . . ,z,) € N™! possesses

an approximation in {0, . .., b}""".

Observation 3. For every n,m € N, Flowcharts 1 and 2 print the smallest b € {0,...,m} such that every tuple

(20, ..., 2n) € {0,...,m}""" possesses an approximation in {0, ...,b}" .
Theorem 3. No algorithm takes as input non-negative integers n and m and decides whether or not
Y(zo,- .. xn) € N (g, ..., yn) € {0,...,m}""
(Vke{0,...,n}1=2r = 1=yx)A
(Vi, 5,k € {0,...,n}H(ai + x5 = ok = yi + Y5 = Yr)) A\

Proof. Since the function f is not computable, it follows from Observation 2. [J

In Theorem 3, n + 1 is the number of variables. Hence, the formula in Theorem 3 is not a first order formula in

the language of arithmetic.

4. A short program in MuPAD that computes f in the limit

The following program in MuPAD implements the semi-algorithm shown in Flowchart 2.
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input("Input a non-negative integer n",n):

m:=0:

while TRUE do

X:=combinat::cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[ul)) $u=1..(m+1)A(n+1)]:

for p from 1 to (m+1)A(n+l) do

for q from 1 to (m+1)A(n+l) do

vi=1:

for k from 1 to n+l do

if 1=X[pl[k] and 1<>X[ql[k] then v:=0 end_if:

for i from 1 to n+l do

for j from i to n+l do

if X[pl[i1+X[pl1[j1=X[pl[k] and X[ql[il+X[ql[j1<>X[ql[k] then v:=0 end_if:
if X[pl[i1*X[pl[j1=XIp][k] and X[q][11*X[q][jI1<>X[ql[k] then v:=@ end_if:
end_for:

end_for:

end_for:

if max(op(X[qgl))<max(op(X[pl)) and v=1 then Y[p]:=0 end_if:
end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

5. An undecidable decision problem about a non-negative integer n that

has a short description in terms of arithmetic

For ne€N, h(n) denotes the smallest b€ N such that if a system of equations S C

{z;+1=zp,2;-x; = x : 4,4,k € {0,...,n}} has a solution in N***, then S has a solution in {0, ... LBy

From %! and Lemma 3 in 2] it follows that the function  : N — N is computable in the limit and eventually

dominates every computable function g : N — N. A bit shorter program in MuPAD computes A in the limit.

Theorem 4. No algorithm takes as input non-negative integers n. and m and decides whether or not

Y(xo, ..., 2n) € N1 3(yo, ... un) € {0,...,m}""!
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(Vi k €{0,...,n}(z; +1=a = y; + 1 = yi))A
(Vi,j,k € {0,...,n}(zi xj = xr = i " Yj = yk)))
Proof. It holds because the function A is not computable. (]

Corollary 1. No algorithm takes as input a non-negative integer n. and decides whether or not
Ip,q € N((n = 2P - 39)A
(2o, - --,7p) € N I(yo, ..., 5,) € {0,...,q}"""
(V4 ke{0,...;p}zj+ 1=z = y; + 1 = yz))A
(Vi g,k € {0,...,p}(@i - T =z = vi - y; = yr))))

The previously known examples of computably undecidable decision problems about a non-negative integer

n do not have a short description in terms of arithmetic.

Example 1. Let ¢ be a computable bijection from N to the set of multivariate polynomials with integer coefficients. For
n € N, the problem whether or not the equation ¢(n) = 0 has a solution in non-negative integers is computably

undecidable. For every known ¢, the polynomial ¢(n) does not have a short description in terms of arithmetic.

Example 2. Let 1) be a computable bijection from N to the set of sentences of Peano arithmetic. For n € N, the problem
whether or not 1(n) is a theorem of Peano arithmetic is computably undecidable. For every known 1), the sentence

1(n) does not have a short description in terms of arithmetic.

6. A limit-computable function 8 : N — N of unknown computability
which eventually dominates every function § : N — N with a single-fold

Diophantine representation
The Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set M C N" (n € N\ {0}) hasa
Diophantine representation, that is

(a1,-..,a,) E M <= Fz1,...,2;n € NW(ay,...,an,Z1,...,Zm) =0 (R)

for some polynomial W with integer coefficients, see [°l. The representation (R) is said to be single-fold, if for

any ay,...,a, € Ntheequation W(ay,...,a,,1,...,Z,) = 0has at most one solution (z1,...,z,) € N™.

Hypothesis 1. ((UBIOINONMINY - Eyery Jistable set X C N* (ke N~ {0}) has a singlefold Diophantine

representation.
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For n € N, B(n) denotes the smallest b € N such that if a system of equations S C E,, has a unique solution in

N"*! then this solution belongs to {0, ..., b}”+1 . The computability of 8 is unknown.

Theorem 5. The function f: N — N is computable in the limit and eventually dominates every function

0 : N — Nwith a single-fold Diophantine representation.

Proof. This is proved in [4 Flowchart 3 shows a semi-algorithm which computes 8(n) in the limit, see [

ﬁnput a non-negative integer n /

m: =0

&
<

y
Create a list L of all systems S C Ej,
which have a unique solution in {0, ..., m}"® * 1

v

Print the smallest non-negative
integer b such that each element
of L has a solution in {0,...,5}" * 1

|m:=m+1l

Flowchart 3. A semi-algorithm which computes 8(n) in the limit

7. A short program in MuPAD that computes § in the limit

Flowchart 4 shows a simpler semi-algorithm which computes (n) in the limit.
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/ Input a non-negative integer n /

m:=0

€

For (xg,...,xn) € {0,....mn+ 1,

0, if there exists (yg, ..., yn) € {0,...,m}" 1

such that (¥Q,...,¥n) #(xg,...,xXn) and

(Vk € {0,...,n} (1= x5 2 1= yp)A

Vi, j,k €{0,...,n} (xi+xj=xk = Yi+Yj = YA

(Vi ok €{0,...,0} (xj - Xj =X =2 ;" ¥j=Y))
max(x,...,xn), otherwise

Print the greatest number of the set
{Sm(x(},---,xn)i (x[)s---axn) € {09---sm}n + 1}

|m:=m+1I

Flowchart 4. A simpler semi-algorithm which computes 3(n) in the limit

Sm(XQs -+ 5Xn):=4

Lemma 4. For every n,m € N, the number printed by Flowchart 4 does not exceed the number printed by Flowchart

3.
Proof. For every (ay, . . ., an) € {0,...,m}""",
E,D{l==;:(kc{0,...,n})A(1=az)}U
{zi +zj =2 : 4,5,k €{0,...,n}) A (a; + a; = az) }U
{z;-zj=axp: (4,5,k€{0,...,n}) A (a; - aj = a)}
(I

Lemma 5. For every n, m € N, the number printed by Flowchart 3 does not exceed the number printed by Flowchart 4.

1, . )
"*1 is a unique solution

Proof. Let n,m € N. For every system of equations S C E,, if (ag,...,a,) € {0,...,m}
of Sin{0,... ,m}”“, then (ay, . . ., ay) solves the system [;’, where

S={l=a:(ke{0,....,n}) A1 =ar)}U
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{zi+zj=ar:(4,5,k€{0,....,n}) A(a; +a; =az)}U

{wi'mj =T : (iajake {07"'377’})/\(0‘1' " aj :ak)}

By this and the inclusion S DS, S has exactly one solution in {0, .. . ,m}"+1

Theorem 6. For every n,m € N, Flowcharts 3 and 4 print the same number.
Proof. It follows from Lemmas 4 and 5. [
The following program in MuPAD implements the semi-algorithm shown in Flowchart 4.

input("Input a non-negative integer n",n):
m:=0:

while TRUE do

X:=combinat: :cartesianProduct([s $s=0..m] $t=0..n):
Y:=[max(op(X[u])) $u=1..(m+1)A(n+1)]:

for p from 1 to (m+1)A(n+1l) do

for q from 1 to (m+1)A(n+l) do

v:=1:

for k from 1 to n+l do

if 1=X[pl[k] and 1<>X[ql[k] then v:=0 end_if:
for i from 1 to n+l do

for j from i to n+l do

if X[pl[i1+X[p1[j1=X[pl[k] and X[ql[i1+X[ql[j1<>X[q]l[k] then v:=0 end_if:

if X[pl[i1*X[p]1[j1=X[p][k] and X[q][i]*X[q][j1<>X[q]l[k] then v:=@ end_if:

end_for:

end_for:

end_for:

if g<>p and v=1 then Y[p]:=0 end_if:
end_for:

end_for:

print(max(op(Y))):

m:=m+1:

end_while:

Notes

2020 Mathematics Subject Classification: 03D20, 11U05.
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