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Equilibrium thermodynamics is grounded in the law of energy conservation, with a specific focus
on how systems exchange energy with their environment during transitions between equilibrium
states. These transitions are typically characterized by quantities such as heat absorption and the
work needed to alter the system’s volume. This study is inspired by the potential to develop an
analogous, straightforward thermodynamic description for systems that are out of equilibrium. Here,
we explore the global energy exchanges that occur during transitions between these nonequilibrium
states. We study a system with heat flow and an external (gravity) field that exhibits macroscopic
motion, such as Rayleigh-Bénard convection. We show that the formula for system’s energy exchange
has the same form as in equilibrium. It opens the possibility of describing out-of-equilibrium systems
using a few simple laws similar to equilibrium thermodynamics.

I. INTRODUCTION

Consider the phenomenon where water, despite being
cooled below its freezing point, remains in a liquid state
- an unstable condition known as supercooling. A minor
disturbance, such as a simple shake, can trigger a rapid
transition to solid ice. Equilibrium thermodynamics pro-
vides a comprehensive framework to understand such be-
haviors, predicting the stability of equilibrium states by
analyzing energy flow and exchanges with the surround-
ing environment [2]. But what about systems that are
out of equilibrium? Can their stability also be inferred
from energy considerations?

Motivated by this question, this paper explores the
possibility of a thermodynamic-like theory for nonequilib-
rium systems. Specifically, we examine systems like a gas
undergoing macroscopic heat-driven convection (illus-
trated in Fig. 1), which can exhibit abrupt state changes
in response to minor temperature variations [10, 14].
Developing a predictive theory for these nonequilibrium
transitions, akin to equilibrium thermodynamics, could
profoundly enhance our understanding of atmospheric
phenomena and improve designs in areas like steady state
chemical reactors [13].

To develop a thermodynamic-like theory beyond equi-
librium, we concentrated on a basic aspect of equilibrium
thermodynamics: energy balance. This concept is repre-
sented in thermodynamics by the first law. Energy is a
fundamental physical quantity, and the energy balance
beyond equilibrium has been studied in many different
contexts. The local (in infinitesimally small volume) en-
ergy balance is the foundation of linear irreversible ther-
modynamics [6]. There is a vibrant research field of
stochastic thermodynamics related to energy balance for
small systems [7, 23, 28, 29, 31].

However, examining the total energy balance in macro-
scopic nonequilibrium systems has received limited atten-
tion. Even for equilibrium systems, hydrodynamic-based
examination of the total energy balance in transitions be-
tween macroscopic equilibrium states has been performed
recently [30]. Beyond equilibrium, a similar approach has

Figure 1. Rayleigh-Bénard convection in a fluid. The fig-
ure illustrates the temperature distribution and the resulting
convective flow pattern in a fluid subjected to a temperature
gradient. The bottom boundary, denoted by T2, is at a higher
temperature, while the top boundary, denoted by T1, is at a
lower temperature. The temperature gradient, combined with
the gravitational field g acting downward, induces buoyancy-
driven convection. Colors schematically shows temperature
profile (red - hotter, blue - colder).

been used to study of the total energy balance for a quies-
cent fluid in a heat flow [15–17, 20]. These studies show
that in a mixture of gases in the presence of heat flow
or a gravity field, the total energy balance has a sim-
ple form, dE = d̄Q + d̄W , with d̄Q being the heat, and
d̄W is the volumetric work. The total energy balance
in these nonequilibrium systems has the same form as
in equilibrium thermodynamics. For more complicated
systems that contain macroscopic flow, such as ideal gas
between parallel plates in a shearing motion that exhibits
nonequilibrium phase transition [22], the energy balance,
dE = d̄Q+d̄W+d̄Ww, contains another term d̄Ww which
does not appear in equilibrium. It represents the excess
shear work of the plate that induces the shearing motion
of the gas.

It is worth mentioning that the term “first law” already
appeared in the context of systems with shearing flow
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[11, 12]. However, the term “first law” used in papers [11,
12] refers to the fundamental relation solely for internal
energy [4, 5]. The fundamental relation is another vivid
topic [24, 27] but is beyond the scope of the current paper.

It has been recognized that in steady state systems,
there is a component of the heat exchanged with the envi-
ronment, in addition to the steady state heat flow, known
as excess heat and denoted as d̄Q. This excess heat may
play a crucial role in developing a thermodynamic-like
description of steady states [26]. The excess heat by
itself has been recently studied by different researchers
experimentally [33] and theoretically [1, 3, 8, 9, 21].

On the one hand, the studies mentioned above offer a
promising foundation for achieving a thermodynamic-like
description of nonequilibrium states. On the other hand,
one might be curious that one of the most common sys-
tems has not been approached in a thermodynamic-like
manner. Indeed, heat-driven convection, which serves as
a window to understanding atmospheric phenomena and
turbulent systems, still awaits even basic study. A simi-
lar observation has been expressed recently by Yoshimura
and Ito [34] who claim “Deterministic hydrodynamic sys-
tems described by the Navier-Stokes equation are among
the least investigated subjects”. Nakagawa and Sasa also
made similar observations discussing the concept of heat
in nonequilibrium states [25].

Following this line of reasoning, we derive the global
energy balance for the nonequilibrium system depicted
in Fig. 1. The presented energy balance describes the
transitions of the system due to the change of bound-
ary temperatures, the shape of the system, and the shift
in the gravity field. The resulting global energy bal-
ance mirrors the first law of equilibrium thermodynamics
and simplifies to the equilibrium first law when transi-
tions occur between equilibrium states. Given that the
system in Fig. 1 captures key features of atmospheric
dynamics, heat-driven convection, and turbulence, this
achievement represents a significant step toward formu-
lating a thermodynamic-like description for many out-of-
equilibrium systems.

II. BALANCE EQUATIONS OF A SINGLE
COMPONENT SYSTEM WITH TIME

DEPENDENT POTENTIAL

To understand how a nonequilibrium system exchanges
energy with its environment, we assume a hydrodynamic
description of the system [6]. The total energy consists
of macroscopic kinetic energy (related to the macroscopic
motion determined by the average velocity field v in the
system), ekin = v2/2, internal, u, and gravitational en-
ergy φ. The total energy density per unit mass is defined
as

e = ekin + u+ φ. (1)

The flow of the energy is described by corresponding flux

Je = ρev + P · v + Jq, (2)

which includes convection (ρ is the volumetric mass den-
sity) and fluxes of the energy due to mechanical work,
P ·v (the pressure tensor is denoted by P ), and the heat
flux, Jq. The evolution equations in hydrodynamics take
the form of a balance equation,

∂

∂t
f (r, t) = −∇ · J (r, t) + σ (r, t) , (3)

where f is volumetric density, J (r, t) is flux and σ (r, t)
is the source term. We decompose J into a convective
term term, f (r, t)v (r, t), and the rest (non-convective),

J (r, t) = f (r, t)v (r, t) + Jnc (r, t) , (4)

which is the definition of non-convective flux Jnc (r, t).
In particular, with

fe = ρe, (5)
Jnc,e = P · v + Jq, (6)

σe = ρ∂tφ, (7)

we obtain the total energy balance equation

∂tρe = −∇ · Je + ρ∂tφ. (8)

With

fφ = ρφ, (9)
Jnc,φ = 0, (10)

σφ = ρv · ∇φ+ ρ∂tφ, (11)

we get the external potential balance equation

∂tρφ = −∇ · (ρφv) + ρv · ∇φ+ ρ∂tφ. (12)

With

fekin = ρekin, (13)
Jnc,ekin = P · v, (14)

σekin = P : [∇v]− ρv · ∇φ, (15)

we get the kinetic energy balance equation

∂t
1

2
ρv2 = −∇·

(
1

2
ρv2v + P · v

)
+P : [∇v]+ρv·(−∇φ) .

(16)
With

fu = ρu, (17)
Jnc,e = Jq, (18)

σu = −P : [∇v] , (19)

we obtain the internal energy balance equation

∂tρu = −∇ · (ρuv + Jq)− P : [∇v] . (20)
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Notice that the sum of the last three cases gives the en-
ergy balance equation (the first case above), because total
energy is the sum of external, kinetic and internal energy.
It is worth mentioning that the above balance equations
generalize the considerations presented in the monograph
of Mazur and de Groot [6] to include the time dependent
external potential φ (r, t).

We further assume that the above mentioned hydro-
dynamic densities, fluxes and sources along with the ve-
locity field are known. To determine the evolution of
energies in practice we would have to supplement the
above description with additional information (equations
of states, constitutive relations, boundary conditions).
However, as we will see, for the investigation of the gen-
eral structure of the system’s energy exchange with its
environment, the above quantities are sufficient and other
parts of hydrodynamic theory are not essential. Energy
is a fundamental physical quantity conserved on the most
basic level. It will be conserved independently of how the
heat flux is related to the temperature field or any other
system’s properties, such as those that are considered in
rational and extended thermodynamics [18].

III. GLOBAL ENERGY BALANCE EQUATIONS

In the previous section we discussed time dependent
balance equations defined at each point in space. These
equations describe both the system and its environment.
By the system we mean a part of the space (a region),
confined within the volume V (t), which may move over
time. For example, in a steady situation presented in Fig.
1, the gas inside the box has a time independent volume
V . However, if we consider the motion of the wall, the
region V will change over time according to the motion
of its boundary, ∂V (t). The motion of the boundary of
the system defines the velocity of the boundary of the
volume, vV (r, t). This velocity is defined only for r on
the boundary of V (t).

In the attempt to construct global thermodynamics,
we focus on how the total energy inside the system,
E (t) ≡

∫
V (t)

d3r e (r, t), changes during a process that
occurs from an initial time ti to a final time tf , dE ≡
E (tf ) − E (ti). For any energy represented by its volu-
metric density f (r, t), the total energy F (t) in the sys-
tem is given by

F (t) ≡
∫
V (t)

d3r f (r, t) , (21)

and its change after the process by

dF ≡ F (tf )− F (ti) . (22)

From the time derivative of Eq. (21) we get the rate of

change,

d

dt
F (t) =

∫
∂V (t)

d2r n̂ (r, t) · vV (r, t) f (r, t)

+

∫
V (t)

d3r
∂

∂t
f (r, t) , (23)

where n̂ (r, t) is a vector normal to the surface ∂V point-
ing outside of the volume [30, 32]. The last term can be
expressed in terms of the energy balance Eq. (3) with
the nonconvective energy flux in Eq. (4) giving

dF

dt
=

∫
∂V (t)

d2r n̂ (r, t) · [vV (r, t)− v (r, t)] f (r, t)

−
∫
∂V (t)

d2r n̂ (r, t) · Jnc (r, t) +

∫
V (t)

σ (r, t) . (24)

The above formula for the change of energy in the system
(understood as a region in space) uses a small number of
assumptions. In the above derivation we used Gauss’s
theorem,

∫
V (t)

d3r∇ · Jnc (r, t) =
∫
∂V (t)

d2r n̂ (r, t) ·
Jnc (r, t). Essentially, up to this point, we assumed that
the energy densities are given by hydrodynamic balance
equations and calculated their changes in a process. From
now on, we assume that the system is closed, so there is
no flow through the surface ∂V . This means that the
flux of the particles through the surface ∂V vanishes in
the reference frame where the surface element is at rest,

n̂ (r, t) · [vV (r, t)− v (r, t)] = 0 for r ∈ ∂V. (25)

As before, n̂ (r) is the vector normal to the surface, point-
ing outside the region V . The above condition simplifies
the rate of energy change (24) to

dF

dt
= −

∫
∂V (t)

d2r n̂ (r, t) · Jnc (r, t) +

∫
V (t)

d3r σ (r, t) .

(26)
By integrating the rate of change over time we get the
change of energy, dF ≡ F (tf ) − F (ti) =

∫ tf
ti

dF (t) /dt,
in the following form,

dF =−
∫ tf

ti

dt

∫
∂V (t)

d2r n̂ (r, t) · Jnc (r, t)

+

∫ tf

ti

dt

∫
V (t)

d3r σ (r, t) . (27)

The above two equations describe the energy change
of a closed hydrodynamic system. We use the former
equation to study steady state and the latter equation to
study energy exchange during transitions between steady
states. In further analysis, we assume slip boundary con-
ditions on the boundaries of a closed system. This means
that on the wall, the transverse components of the pres-
sure tensor vanish,

n̂ (r) · P (r) · (1− n̂ (r) n̂ (r)) = 0 for r ∈ ∂V. (28)
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The no-slip boundary condition can also be used without
changing the main result of the paper.

The above assumptions are sufficient to generalize the
first law of thermodynamics to nonequilibrium closed sys-
tems including the system shown in Fig. 1. The applica-
tion of Eq. (26) to the case of external, kinetic, internal
and total energy (cf. Eqs. (5-19)) yields the following:

dΦ

dt
=

∫
V (t)

d3r ρv · ∇φ+

∫
V (t)

d3r ρ∂tφ, (29)

dEkin

dt
= −

∫
∂V (t)

d2r n̂ (r, t) · P · v +

∫
V (t)

d3r P : [∇v]

−
∫
V (t)

d3rρv · ∇φ, (30)

dU

dt
= −

∫
∂V (t)

d2r n̂ (r, t) · Jq (r, t)−
∫
V (t)

d3r P : [∇v] ,

(31)

dE

dt
=−

∫
∂V (t)

d2r n̂ (r, t) · Jq (r, t)

−
∫
∂V (t)

d2r n̂ (r, t) · P · v +

∫
V (t)

d3r ρ∂tφ. (32)

All of the above rates (left hand side) vanish in a steady
state, and the above equations give essential information
on the energy balance at a given steady state.

Let’s start with Eq. (29) for external potential energy.
At a steady state the external potential does not change,
∂tφ = 0. Therefore, Eq. (29) yields,

∫
V (t)

d3r ρvst · ∇φ = 0. (33)

It follows that the gravitational field globally does not
perform work in a steady state because for a homoge-
neous gravity field pointing downward in the vertical z-
coordinate, ∇φ = êzg holds, and Eq. (33) results in the
vanishing of the center of mass velocity,

∫
V (t)

d3r ρvst =

0. Therefore, in the reference frame where the boundaries
of the system are immobile, the center of mass velocity
vanishes, the position of the center of mass is constant
and gravity does not perform work. This conclusion also
holds for any potential field, like the gravity field around
the earth, in a system with the mass continuity equation
∂tρ = −∇ (ρv).

Eq. (33) simplifies the steady state form of Eq. (30).
Moreover, the system is closed, so on the surface we have
n̂ (r, t) ·vst = 0, and the application of the slip boundary
conditions given by Eq. (28) yields,∫

∂V (t)

d2r n̂ (r, t) · P st · vst = 0. (34)

The last two equations applied to Eq. (30) at steady
state, where dEkin/dt = 0, yield

∫
V (t)

d3r P st :
[
∇vst

]
= 0. (35)

The above term appears locally in hydrodynamic equa-
tions for kinetic and internal energy balance (16), (20).
It describes the work of mechanical forces inside the fluid,
typically appearing during expansion and viscous dissi-
pation. Eq. (35) indicates that although the expansion-
dissipation exists locally in a steady state, it globally dis-
appears.

Finally, the vanishing of the global mechanical work
inside the fluid given by Eq. (35) simplifies the steady
state form of Eq. (31), which in steady state becomes∫

∂V (t)

d2r n̂ (r, t) · Jst
q (r, t) = 0. (36)

This implies that although heat may locally enter or leave
the system in a steady state, the total heat does not
flow into the system. Consequently, there is no need to
introduce the notion of ’excess heat’ [26], which is the
heat in addition to the constant steady state heat flux.

It is worth noting that Eqs. (33-36) also hold for quasi-
steady states, i.e. when there exists a time scale for which
the system can be effectively treated as being in a steady
state. In this case we would consider time averages of
Eqs. (29-32). With a similar reasoning we obtain Eqs.
(33), (34) and (36) with the symbol ′st′ denoting the
average over a sufficiently long time scale. Eq. (35) would
change to

∫
V (t)

d3r {P : [∇v]}st = 0 , with {P : [∇v]}st

denoting the time average of P : [∇v] in a given quasi-
steady state.

The above equations apply to a steady state with con-
vection that is schematically shown in Fig. 1 and also
to other steady states including e.g. those with much
more complicated patterns of temperature and velocity
fields [19]. These steady state equations give important
insight into the rate of the global energy exchange of
such systems with their surroundings. From the perspec-
tive of the global energy of the system, gravity does not
perform work, there is no global compression-dissipation,
and there is no heat. Thus, from the perspective of global
energy, the system appears to be in equilibrium (no global
flux of heat, no global work).

In what follows we study the energy exchange in tran-
sitions between steady states. We assume that at the
initial time ti the system is at a steady state, which is
then disturbed by a small change of boundary temper-
atures, external gravitational field or the motion of the
surrounding wall. After time tf the system reaches an-
other steady state. The change in energy is described in
this situation by Eq. (27), which applied to the cases
of external, kinetic, internal and total energy (cf. Eqs.



5

(5-19)) yields,

dΦ = −d̄Wφ + d̄Wdtφ, (37)

dEkin = d̄MS − d̄PV + d̄Wφ, (38)

dU = d̄Q+ d̄PV , (39)

dE = d̄Q+ d̄MS + d̄Wdtφ, (40)

where we used the following definitions of the heat dif-
ferential,

d̄Q = −
∫ tf

ti

dt

∫
∂V

d2r n̂ · Jq (t) , (41)

volumetric mechanical work differential,

d̄PV = −
∫ tf

ti

dt

∫
V (t)

d3r P : [∇v] , (42)

mechanical surface force differential,

d̄MS = −
∫ tf

ti

dt

∫
∂V (t)

d2r n̂ · P · v, (43)

potential work differential,

d̄Wφ = −
∫ tf

ti

dt

∫
V (t)

d3rρv · ∇φ, (44)

and potential source differential,

d̄Wdtφ =

∫ tf

ti

dt

∫
V (t)

d3r ρ∂tφ. (45)

Formula (40) is the main result of the paper. It expresses
the balance of total energy and is a generalization of the
first law of equilibrium thermodynamics. The total en-
ergy changes due to heat, work on the surface of the sys-
tem, and the work of the external potential field. With-
out the gravity field (d̄Wdtφ = 0) and neglecting macro-
scopic motion (dE = dU), the above formula reduces to
the equilibrium first law, dU = d̄Q− pdV , where we use
the fact that under these conditions we get d̄MS = −pdV
[16].

IV. SUMMARY

This study is driven by the possibility of extending
thermodynamic principles to describe systems that are
not in equilibrium. As a preliminary step, we examine
total energy exchange in a closed system with macro-
scopic motion, exemplified by Rayleigh-Bénard convec-
tion. Consequently, we extend the first law of equilib-
rium thermodynamics beyond equilibrium to the form

dE = d̄Q + d̄MS + d̄Wdtφ. This is valid for transitions
between steady states and for turbulent states that ex-
hibit steady-state-like behavior over time. For transitions
between equilibrium states, this generalization reduces to
the equilibrium first law.

Two aspects are particularly noteworthy. First, the
nonequilibrium first law that we derive retains the same
form as the equilibrium first law. The heat and work dif-
ferentials are physically interpretable in a manner akin
to equilibrium thermodynamics. Second, in equilibrium
states, viscous dissipation, compression, heat, and me-
chanical work vanish locally by definition. In nonequi-
librium steady states, although heat, surface mechanical
work, and viscous dissipation-compression may exist lo-
cally, they vanish globally.

This similarity enables a global thermodynamic de-
scription of steady states, comparable to equilibrium sys-
tems, and paves the way for studying heat and surface
work differentials. Heat should be measured by moni-
toring the total heat on the system’s surface, and work
differentials by measuring the force on the wall and its
displacement. This approach opens avenues for numeri-
cal and experimental investigations of out-of-equilibrium
systems. These include systems relevant to climate dy-
namics and steady state chemical reactors in industry.
For instance, understanding heat-driven convection is
fundamental in meteorology, where it plays a critical role
in weather patterns and climate dynamics. In indus-
trial applications, heat-driven convection is essential in
designing more efficient cooling systems, chemical reac-
tors, and energy generation processes.

Importantly, the heat in transitions between steady
states has never been studied for systems with heat-
driven convection. This reveals an entirely unexplored
field of global thermodynamics, currently in its infancy.
From the perspective of a potentially existing thermody-
namic description of nonequilibrium states, we might be
at a similar juncture to where thermodynamics was when
Carnot and Clausius began studying heat differentials.
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