
Qeios PEER-APPROVED

v1: 18 June 2025 Review Article

GenAI at the Edge: Comprehensive

Survey on Empowering Edge

Devices

Preprinted: 30 March 2025

Peer-approved: 18 June 2025

© The Author(s) 2025. This is an
Open Access article under the CC BY

4.0 license.

Qeios, Vol. 7 (2025)

ISSN: 2632-3834

Mozhgan Navardi1, Romina Aalishah1, Yuzhe Fu2, Yueqian Lin2, Hai Li2, Yiran Chen2,

Tinoosh Mohsenin1

1. Johns Hopkins University, United States; 2. Duke University, United States

Generative Arti�cial Intelligence (GenAI) applies models and algorithms such as

Large Language Model (LLM) and Foundation Model (FM) to generate new data.

GenAI, as a promising approach, enables advanced capabilities in various

applications, including text generation and image processing. In current practice,

GenAI algorithms run mainly on the cloud server, leading to high latency and

raising security concerns. Consequently, these challenges encourage the

deployment of GenAI algorithms directly on edge devices. However, the large size of

such models and their signi�cant computational resource requirements pose

obstacles when deploying them in resource-constrained systems. This survey

provides a comprehensive overview of recent proposed techniques that optimize

GenAI for ef�cient deployment on resource-constrained edge devices. For this aim,

this work highlights three main categories for bringing GenAI to the edge: software

optimization, hardware optimization, and frameworks. The main takeaways for

readers of this survey will be a clear roadmap to design, implement, and re�ne

GenAI systems for real-world implementation on edge devices.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

Introduction

Generative Arti�cial Intelligence (GenAI) has become a promising solution in text

generation, image synthesis, and multimodal content creation. These developments

often rely on large-scale models such as Large Language Models (LLMs) that achieve

remarkable performance but demand large computational and memory resources.

Traditionally, these models run on powerful cloud servers, which introduces latency,

dependency on network connectivity, and potential privacy risks. As real-time

applications and data security become ever more critical, there is a growing push to

embed GenAI functionalities directly into edge devices[1][2].

However, implementing high-intensive models on the edge presents signi�cant

challenges[3][4][5]. Edge devices, including drones[6], and autonomous

systems[7] bene�t signi�cantly from the GenAI capabilities on devices. For instance,

drones can generate real-time terrain analysis in remote areas, Autonomous systems

can enhance decision-making through local models. Wearable health monitoring

could generate personalized insights from biometric data while ensuring privacy

through local data processing. To support these applications, specialized edge

hardware such as NVIDIA Jetson, and Qualcomm AI Engine have been developed to

handle the computational demands of GenAI while maintaining ef�ciency.

qeios.com doi.org/10.32388/JEU3U0.2 1

mailto:papers@team.qeios.com
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

This situation calls for innovative approaches in software optimization including

model compression, Neural Architecture Search (NAS). In parallel, hardware

optimization including specialized accelerators, attention optimization, and dedicated

frameworks address computational and energy constraints at the edge[8]. These

strategies not only reduce model size and inference latency but also address privacy

concerns when deploying complex models on edge devices[2]. This paper aims to

survey existing methods and provide extensive details on implemented GenAI

techniques on edge devices. To the best of our knowledge, there is no dedicated survey

on GenAI at the edge. By reviewing state-of-the-art techniques from top-tier

conferences and journals, this work offers a roadmap for researchers seeking to apply

GenAI in edge. The main category of the paper is organized as follows:

Software Optimization: Discusses key strategies for adapting GenAI models to

edge devices, including model compression methods (pruning, quantization, and

knowledge distillation), NAS, and open-source GenAI models.

Hardware Optimization: Explores hardware accelerators and attention

optimization to highlight how they meet GenAI’s computational demands while

addressing power and resource constraints on edge devices.

Frameworks: Reviews frameworks to improve inference latency, memory, and

overall energy ef�ciency.

Figure 1. Illustration of the �ow of GenAI at the edge

Software Optimization

Model Compression

The rapid advancement of GenAI models, while ushering in unprecedented

capabilities, has also given rise to increasingly large model architectures that present

signi�cant deployment challenges[9]. Early attempts to address these challenges

explored distributed mobile computing systems that could partition model

computation across multiple devices[10][11].

This challenge has since prompted extensive research in model compression

techniques, which have evolved along three principal directions to enable broader

deployment and accessibility. Firstly, quantization techniques have achieved

remarkable ef�ciency through reduced precision representations, particularly through

qeios.com doi.org/10.32388/JEU3U0.2 2

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

enhanced activation distribution handling and hardware-optimized strategies.

Secondly, methodologies for pruning have advanced from rudimentary magnitude-

based techniques to sophisticated hardware-aware structured approaches, enabling

considerable model reduction while preserving architectural integrity. Thirdly,

knowledge distillation has evolved to incorporate progressive frameworks and multi-

teacher architectures, showing particular promise in task-speci�c applications.

Contemporary research emphasizes hardware-aware compression strategies and

architecture-speci�c solutions. While these advancements have enabled the

deployment of foundation models with competitive performance metrics, the

fundamental challenge persists in optimizing the compression-performance trade-off

for edge deployment scenarios.

Quantization. Model quantization has emerged as a critical technique for deploying

large-scale GenAI models on resource-constrained edge devices. Quantization

approaches are broadly categorized into post-training quantization (PTQ) and

quantization-aware training (QAT). PTQ methods like OPTQ[12] and AWQ[13] directly

convert trained model parameters to lower precision formats, while QAT approaches

such as EdgeQAT[14] incorporate quantization effects during training. PTQ methods

are generally preferred due to their computational ef�ciency, though recent advances

in both approaches have enabled effective compression through sophisticated

handling of weight and activation distributions. When applied to LLMs, unique

challenges emerge from their heavy-tailed weight distribution. Methods like

SmoothQuant[15] and OliVe[16] address this through distribution smoothing and outlier

handling techniques. Mixed-precision approaches[17] have shown promise by

automatically determining optimal bit widths for different model components based

on their quantization sensitivity. Recent work like OneBit[18] and BitNet[19] has pushed

boundaries by demonstrating viable 1-bit quantization through sophisticated

distribution-aware schemes. However, signi�cant challenges remain in maintaining

generation quality under extreme compression and developing ef�cient training

methods for quantized LLMs on edge devices[20].

Diffusion models present their own set of quantization challenges, particularly in

handling varying activation distributions across diffusion steps. Approaches like Q-

DM[21], PTQD[22], and Q-Diffusion[23] tackle the challenge of varying activation

distributions across diffusion steps through adaptive calibration and noise-aware

quantization. Specialized temporal-aware quantization methods[24][25] have been

developed to handle the unique challenges of the iterative denoising process. Current

research focuses on effectively handling dynamic activation ranges and balancing

compression ratios with generation quality for edge deployment of diffusion

models[26].

Pruning. Model pruning methods can be broadly categorized into structured and

unstructured approaches, each with distinct trade-offs between compression

ef�ciency and hardware compatibility. These techniques have shown particular

promise in compressing large-scale generative models while maintaining

performance for edge deployment. The �eld of LLM pruning has recently witnessed

several novel approaches. Structured pruning methods like LLM-Pruner[27] and edge-

optimized approaches[28] achieve 2 speedup with minimal performance degradation

by removing entire structural components.Unstructured approaches like

SparseGPT[29] enable up to 60% sparsity in large-scale models, while recent advances

in modality-speci�c pruning techniques have shown promising results across speech,

vision, and multimodal domains, with methods like SpeechPrune[30] achieving up to

80% pruning rates while maintaining performance. Hardware-aware methods have

become increasingly crucial, as exempli�ed by Flash-LLM[31], which achieves 3

 inference speedup through unstructured sparsity-aware system optimization.

×

×

qeios.com doi.org/10.32388/JEU3U0.2 3

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

Semi-structured pruning methods such as E-Sparse[32] further advance this direction

by leveraging N:M sparsity patterns to maintain hardware compatibility while

achieving high compression rates on edge devices.

In the context of diffusion models, methods like Diff-Pruning[33] achieve

approximately 50% reduction in FLOPs by leveraging Taylor expansion over pruned

timesteps while maintaining generative quality. Specialized approaches like LD-

Pruner[34] implement task-agnostic pruning strategies for Latent Diffusion Models,

while DiP-GO[35] demonstrates 4.4 speedup on Stable Diffusion without requiring

retraining. Recent work combines gradient-based pruning for mask matrix

continuity[36] with strategic data pruning[37], showing particular promise for edge

deployment where both computational ef�ciency and generation quality are

critical[38].

Knowledge Distillation. Knowledge Distillation (KD) has emerged as a crucial

paradigm for deploying GenAI models on edge devices, with distinct approaches

developed for different model architectures to balance model capabilities with

computational constraints. The application of KD to language models has led to a

variety of approaches. These can be categorized into white-box and black-box

methods. White-box KD enables student models to match both �nal predictions and

internal representations when the teacher model is open-source (e.g., LLaMA[39]),

while black-box KD works with closed-source models (e.g., GPT-4[40]) through API

calls[41]. Notable advances include MiniLLM[42], which introduces a reversed Kullback-

Leibler divergence objective to stabilize student updates, and instruction-following

distillation approaches that have produced ef�cient open-source models like

Vicuna[43] and Koala[44]. Recent work in instruction-following KD has enabled

compact yet capable models through supervised �ne-tuning[45], while advanced

applications like RLAI feedback[46] demonstrate the potential for model alignment

through distillation. Adaptive distillation methods have further enhanced this �eld by

dynamically adjusting the distillation process based on input complexity, allowing

student models to focus learning where improvement is most needed[47].

In the domain of diffusion models, KD primarily focuses on accelerating sampling

speed to address the challenge of high inference latency. Progressive

distillation[48] represents an approach that iteratively halves sampling steps (e.g., from

1000 to 1), enabling ef�cient edge deployment while maintaining generation quality.

Single-step approaches[49] further compress diffusion teachers into one-step

generators, although this requires careful balance between ef�ciency and generation

�delity. Teacher-free acceleration methods like DPM-Solver[50] and consistency

models[51] demonstrate effective inference cost reduction without extensive re-

training. Recent advances include two-stage approaches[52] for text-conditional

models and score distillation sampling[53] for 3D generation, showcasing the

versatility of distillation in different applications. Also, generative dataset distillation

using models like SDXL-Turbo with class-speci�c prompts has achieved superior

images per class ratios in recent benchmarks[54], offering new possibilities for

ef�cient model training and deployment.

Neural Architecture Design

Ef�cient neural architecture design has emerged as a critical research direction to

address the increasing complexity and resource demands of modern models,

particularly for edge devices[55][56]. By automating the generation of network

architectures while considering speci�c hardware and constraints, computational

×

qeios.com doi.org/10.32388/JEU3U0.2 4

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

overhead, required memory, and power consumption have been improved, while

maintaining model performance.

Neural Architecture Search (NAS). Neural Architecture Search (NAS)[57][56] serves as a

powerful framework to automate the design of optimal model topologies with strict

latency, memory, or power budgets. By systematically exploring a prede�ned search

space such as varying layer depth, width, or connection patterns. NAS algorithms can

discover specialized architectures that outperform traditional solutions. In[57], they

have proposed the �rst NAS using reinforcement learning (RL) to determine optimal

Recurrent Neural Network (RNN) parameters. Subsequently, this idea was extended to

Convonotional Neural Network (CNNs) in[58], where the authors integrated a

Sequential Model-Based Optimization (SMBO) approach with a reinforcement

mechanism for cell-based searches to �nd the best con�guration.

In the context of GenAI, where large models often dominate in tasks such as text

generation or image synthesis, NAS-driven architectures present a promising route to

achieve ef�ciency. There are a limited number of work on NAS in the �eld of

transformers[59]. FL-NAS[60] have proposed an approach which leverages LLM to �nd

high-performance DNNs for resource-constrained systems. Moreover, work

in[61] proposed a LLM-based methodology for NAS technique in Edge devices.

Puzzle[62] proposed an LLM optimized for inference using NAS under hardware

constraints, achieving a 2.17x inference throughput speedup.

Open-Source GenAI models

The recent advancements in reasoning capabilities of models such as DeepSeek-

R1[63] emphasize the power of open research development. DeepSeek-R1[63] has

pro�ted signi�cantly from open-source tools like PyTorch and Meta’s Llama[39]. One

of the key contributions to the advancement in GenAI is open-source innovations,

speci�cally for edge scenarios in which the resources are limited. In these cases,

smaller model sizes and less latency besides not losing performance are the main

considerations. Therefore, researchers explored various compression methods, leading

to models like DistilBERT[64], TinyBERT[65], ALBERT[66], MobileBERT[67], MiniLM[68],

and MiniLMv2[69] each using techniques such as knowledge distillation, parameter

sharing, or factorization to make large models smaller while maintaining strong

performance.

Beyond these compression-based strategies that are already covered in the previous

sections, novelties in architecture further improved ef�ciency. Reformer[70] introduced

locality-sensitive hashing for attention and reversible residual layers, enabling near-

linear complexity for longer sequences. Meanwhile, GPT-NeoX-20B[71], LLaMA[39], and

LLaMA2[72] showed how LLMs could be developed and released collaboratively,

making it easier for edge-focused adaptations. Even smaller-scale of these projects

such as TinyLlama[73] and H2O-Danube-1.8B[74] now offer compact language models

tailored to edge constraints, continuing the trend of collaborative research. Similarly,

research on instruction tuning[75], which trains models to handle various tasks by

exposing them to different instructions, reinforced the importance of building �exible

and open-source foundations for further innovation.

Researchers have further built on open releases to develop conversational systems,

including Alpaca[76], Koala[77], and Vicuna[43], each developed by �ne-tuning

LLaMA[39] on curated datasets, all demonstrating competitive performance against

models like ChatGPT and Bard. These models have also served as benchmarks for

edge-focused projects such as SqueezeLLM[78], which introduces a post-training

quantization framework to compress LLMs for more ef�cient inference, focusing on

qeios.com doi.org/10.32388/JEU3U0.2 5

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

reducing memory bandwidth, outperforming methods like GPTQ[79], AWQ[13], and

SpQR[80]. In parallel, techniques like LoRA (Low-Rank Adaptation)[81] have reduced the

cost of �ne-tuning large models, accelerating domain-speci�c deployments. Later,

QLoRA[82] tried to �ne-tune a large model on a single GPU by reducing memory usage

by quantizing the quantization constants and using this technique. Taken together,

several open-source LLMs have been developed, and some of them are compressed to

reduce their size and improve ef�ciency. These include MPT-7B[83], which implements

a 7B-parameter architecture designed for commercial applications; DLite[84], which

scales from 124M to 1.5B parameters; and RedPajama-INCITE[85], which spans 3B to 7B

parameters. Open-source models and innovations can be valuable for resource-

constraint applications, and be �ne-tuned for speci�c tasks to improve their

performance.

Hardware Optimization

Hardware Accelerators

Accelerator Year Platform Technology Networks Sparsity/Quantization

Peak

Energy

Ef�ciency

(TOPS/W)

EXION[86] 2025
ASIC

simulator
14nm SD/DiT ✓/ ✓@INT12

HCAEDS[87] 2024
CIM

tapeout
28nm SD - / ✓@INT10/BF16

DMPU[88] 2024
ASIC

tapeout
22nm DDPM ✓/ -

EEDA[89] 2024
ASIC

tapeout
28nm SD - / ✓@HYP8

Cambricon-

D[90] 2024
ASIC

simulator
7nm SD ✓/ ✓@INT3/FP16

AttAcc[91] 2024
CIM

simulator
7nm

LLaMA/GPT-

3
- / -

DGX A100

SpecPIM[92] 2024
CIM

simulator
- LLaMA/OPT - / - A100

ASADI[93] 2024
CIM

simulator
28nm GPT-2/BERT ✓/ - -

MECLA[94] 2024
ASIC

simulator
28nm LLaMA/BERT - / ✓@INT8

STP[95] 2023
ASIC

tapeout
28nm BERT - / ✓@FP4

OliVe[16] 2023
ASIC

simulator
22nm

GPT-

2/OPT/BERT
- / ✓@Adaptive 4bit

GOBO[96]

FACT[97] 2023
ASIC

simulator
28nm BERT ✓/ ✓@INT8

Table 1. Hardware Accelerator for GenAI

11.53

74.34

52.01

4.96

13.34

2.67×

6.7×

7.09

18.1

4×

4.39

qeios.com doi.org/10.32388/JEU3U0.2 6

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

Hardware accelerators are typically designed through the software and hardware co-

design for speci�c networks. Algorithmically, data sparsity is enhanced by pruning,

and model compression, such as quantization, reduces network size. On the hardware

side, speci�c architectures are designed to bypass sparse or redundant computations,

increase data reuse, and minimize data movement, thus enabling energy-ef�cient

acceleration on edge devices. Generative AI (GenAI) includes GAN, LLM, and Diffusion

models. While extensive hardware work has focused on optimizing GAN models[98][99]

[100], recent trends have shifted toward LLM and Diffusion models, driving further

hardware research in GenAI. This section reviews recent efforts in optimizing

hardware accelerator for LLM and Diffusion networks, with representative works

summarized in Table 1.

LLM Acceleration LLM models have diverse distributions at the tensor or channel

levels, numerous studies leverage customized data types to accommodate this

challenge. For example, ANT[101] introduces a novel data type and employs an adaptive

mechanism to determine the most appropriate type for each tensor from a prede�ned

set. Expanding on ANT, OliVe[16] proposes an outlier-victim pair approach, which

provides a more precise representation of outlier distributions in LLM models. Both

ANT and OliVe incorporate specialized decoders and multiply-accumulate (MAC) units

to optimize their arithmetic computation processes for LLMs. Some studies focus on

reducing redundant computations in LLM models to improve the energy ef�ciency

during inference. STP[95] proposes a computation-skipping strategy and dynamic data

path recon�guration based on entropy, achieving high energy ef�ciency with minimal

accuracy loss. Furthermore, it has been observed that linear projections contribute

signi�cantly to the memory footprint and latency in LLM models. FACT[97] introduces

an eager prediction method with a leading-one detector and log-based inner-product

estimation, reducing computations in both attention and linear projections.

MECLA[94] surpasses FACT by decomposing large matrices into smaller sub-matrices

to minimize off-chip memory access and re-associating data on-chip for better reuse.

Recently, Computing-in-Memory (CIM) becomes a prominent approach for LLM

acceleration. CIM accelerators offer signi�cant energy ef�ciency gains, particularly for

general matrix-matrix multiplication (GEMM) operations. Existing studies typically

leverage CIM architectures to accelerate the attention mechanism, while relying on

CPUs or GPUs to handle other operations. ASADI[93] introduces a sparse attention

paradigm based on diagonal compression (DIA) format, enabling highly parallel

computation on CIM processors. SpecPIM[92] accelerates speculative inference in LLM

by optimizing resource allocation in CIM-enabled heterogeneous systems, while

AttAcc[91] accelerates batched LLM inference on CIM/NPU heterogeneous systems.

Given these developments, it is expected that CIM-based accelerators for LLM models

will become more prevalent in the future.

Diffusion Acceleration Diffusion networks have made signi�cant progress recently in

various GenAI tasks, with different network architecture from LLM models. These

networks generate images or videos through multiple iterations of denoising

operations, with highly similar images in consecutive iterations. Consequently,

hardware optimizations often leverage inter- and intra-iteration similarity to

accelerate Diffusion networks, typically through differential computing and skipping

redundant computations.

Cambricon-D[90] introduces an approximate ReLU in the Stable Diffusion (SD)

network, enabling differential computing for nonlinear functions and addressing the

memory overhead associated with full-precision nonlinear calculations in traditional

differential computing architectures. DMPU[88] observes that many pixels exhibit

minimal changes between consecutive time steps in Diffusion models, and thus

qeios.com doi.org/10.32388/JEU3U0.2 7

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

proposes a semantic-segment sparse convolution along with a trivial attention

exponent inheritance method to skip redundant computations in both the convolution

and attention mechanisms, signi�cantly enhancing the energy ef�ciency.

EXION[86] presents an FFN-Reuse algorithm that can be applied across iterations,

along with an improved eager prediction method for predicting attention scores,

which reduces redundant computations and boosts throughput. HCAEDS[87] is the �rst

heterogeneous CIM chip designed for Diffusion models, incorporating a Sign-

Magnitude radix-8 Booth CIM macro for integer data and a four-operand exponent

CIM macro for �oating-point data, achieving a high energy ef�ciency.

Numerous GenAI hardware studies[90][89][102][103] have observed that nonlinear

functions (such as softmax, GeLU, etc.) can introduce signi�cant latency overhead

during the hardware acceleration. These studies optimize nonlinear functions to

enhance overall throughput. Additionally, some studies[104][105][106][107] have focused

speci�cally on optimizing nonlinear functions and have designed specialized

hardware to facilitate network inference. All of these studies indicate a potential

research trend on optimizing nonlinear functions in GenAI networks. Combined with

techniques such as eliminating redundant computations and data compression, these

approaches can enhance hardware acceleration and improve energy ef�ciency for

GenAI systems.

Attention Optimization

Transformers have become the backbone of many GenAI models, but their multi-head

self-attention mechanism can dominate runtime and memory usage. Therefore,

researchers have explored a range of strategies to optimize attention on hardware and

algorithmic levels.

Hardware-based. FlashAttention[108] reorders attention operations to reduce the

number of reads and writes between GPU high bandwidth memory (HBM) and on-

chip static RAM (SRAM) by splitting queries, keys, and values into smaller blocks,

recomputing attention on-chip during the backward pass, and fusing multiple GPU

kernels into one. Built on this, FlashAttention-2[109] takes the foundation of memory

ef�ciency and adds better parallelism and work distribution to further increase speed

and GPU utilization, especially for longer sequences. Then, FlashAttention-

3[110] introduces asynchrony and low-precision computation to further optimize the

attention mechanism for modern GPU architectures, which allows for even higher

performance and ef�ciency, along with reduced error for low-precision (FP8)

computing. Besides these, xFormers[111], a PyTorch-based library, provides a collection

of optimized attention and Transformer blocks, including custom GPU kernels and

memory-ef�cient attention implementations.

Algorithmic-based. Work on sparse attention reduces the quadratic complexity of self-

attention by ignoring parts of the input that do not affect the result signi�cantly. Child

et al.[112] pioneered this approach by limiting attention to strided patterns using sparse

factorizations of the attention matrix to reduce computation cost while maintaining

performance on sequence models. Subsequent techniques like Longformer[113] by

using a combination of sliding window local attention and task-motivated global

attention, Big Bird[114] by combining random, windowed, and global attention to create

a sparse attention mechanism, and Linformer[115] by decomposing attention with

linear projections to achieve linear complexity introduced various structured sparsity

patterns. Meanwhile, Choromanski et al.[116] developed performer, which uses random

feature maps to approximate the softmax function, reducing its time complexity from

 to .O()n
2 O(n)

qeios.com doi.org/10.32388/JEU3U0.2 8

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

Frameworks

Deploying GenAI models on edge devices might bring challenges because of limited

computational power, memory, and latency requirements. To address these

constraints, researchers have explored various techniques that simplify computations

at both the graph and operator levels. By fusing kernels, reducing redundant

operations or parameters, and customizing algorithms to the hardware, these methods

enable fast inference for tasks such as large language modeling, super-resolution, and

more.

NVIDIA TensorRT and Apache TVM are pioneered compiler-based optimizations by

combining graph-level fusion and quantization with lower latency. Likewise, Google’s

EdgeTPU and Coral stacks enable rapid deployment of compressed models through

low-power hardware and software stack. TensorRT-LLM[117] is also a specialized

toolkit for accelerating LLM inference on GPUs, including optimized CUDA kernels for

attention computations, in�ight batching, and quantization.

Beyond these compilers, researchers have developed frameworks customized for

various GenAI workloads. For instance, Yi et al. proposed EdgeMoE[118], an engine

speci�cally optimized for Mixture-of-Experts (MoE) language models. By using

expert-wise bitwidth adaptation, it supports models with a large number of

parameters on edge devices to reduce inference times substantially. Wang et al.

introduced CoreInfer[119], achieving over 10 speedup compared to the Huggingface

implementation through semantic-based sparse activation that identi�es, �xes, and

maintains stable neuron activation patterns at the sentence level. Laskaridis et al.

introduced MELTing point[120], a mobile benchmarking suite designed to evaluate

LLM performance, focusing on energy usage and memory footprints, across

smartphones and Jetson platforms. TinyChatEngine[121] is also, an on-device

LLM/VLM Inference Library that uses compression techniques to limit memory

budgets while maintaining interactive response times on edge hardware. Furthermore,

Nikoghosyan et al. showed that applying TensorRT to Transformer-based models on

NVIDIA Jetson Xavier yields over 60% latency reduction with negligible accuracy

loss[122].

In addition to language models, solutions target Super-Resolution (SR) and other

vision-based generators. Chen et al. introduced TileSR[123], which splits ultra-high-

resolution images into tiles and selects the ones with the highest upscaling dif�culty;

these tiles are processed in parallel across multiple devices, reducing latency by up to

82% and improving the image quality up to 10% compared to other alternatives such

as Supremo[124] and MobiSR[125]. Wang et al.[126] proposed ESHP, which combines a

dif�culty predictor with deep reinforcement learning to distribute SR tasks among

CPUs, GPUs, and NPUs, speeding up SR processing without modifying the original

architecture of the given SR model. Zhao et al. demonstrated a full-stack SR

acceleration framework for embedded GPU devices, which outperformed standard

TensorRT baselines in speed due to dictionary compression and operations

optimization[127].

FPGAs also provide a promising platform for runtime acceleration. Li et al. proposed a

lookup-table (LUT)–based SR pipeline making sharper images while using much less

energy without losing image quality[128]. Other research has combined FFT-based

processing with ef�cient multipliers[129], designed heterogeneous CNN-SNN

architectures[130], or combined FPGA and GPU via PCIe to achieve real-time SR in

microscopic imaging[131]. For video-speci�c scenarios, Kim et al. employed pipeline

and memory optimizations to reach 60 fps on 4K UHD content[132], while Sun et al.

developed RNN compression techniques to manage temporal correlations[133]. On

larger multi-core systems Georgis et al. attained speedups over CPU-only baselines via

×

qeios.com doi.org/10.32388/JEU3U0.2 9

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

parallelization[134], and Liu et al. achieved real-time 4K SR on edge FPGAs through a

DSP-enhanced caching scheme[135]. Finally, several system-level revisions help further

reduce overhead. Fan et al.[136] leveraged codec-side data to skip redundant decoding

in video SR, improved performance by up to 9.4 . Deformable 3D convolutional

networks, essential in video tasks, were accelerated through tile decoupling and

memory optimization by Zhang et al.[137]. Even resource-limited devices like the

Raspberry Pi can support real-time SR: Osorno-Ortiz et al. integrated 2D-DWT with

parallel interpolation to handle HD images in a short time[138].

Conclusion and Future Work

This work proposed a comprehensive survey regarding deploying Generative AI

(GenAI) on edge devices. It presents a promising path toward reducing latency,

enhancing data privacy, and enabling real-time capabilities in various applications.

This survey has showcased the critical roles of software optimization, hardware

specialization, and on-device inference frameworks in overcoming the resource

constraints typical of embedded systems. Despite these advancements, signi�cant

challenges persist especially regarding model personalization, and security across

distributed edge nodes. By effectively addressing these challenges and combining

these techniques with ongoing optimizations in model design and hardware

acceleration, researchers and practitioners can pave the way for even more ef�cient,

scalable, and privacy-preserving GenAI solutions at the edge.

References

�. ^Nezami Z, et al. (2024). "Generative AI on the Edge: Architecture and Performance Eva

luation". arXiv preprint arXiv:2411.17712. Available from: arXiv:2411.17712.

�. a, bNavardi M, et al. MetaTinyML: End-to-End Metareasoning Framework for TinyML

Platforms. IEEE Embedded Systems Letters. 16(4): 393–396. 2024.

�. ^Pourmehrani H, et al. FAT-RABBIT: Fault-Aware Training towards Robustness Against

Bit-�ip Based Attacks in Deep Neural Networks. In: 2024 IEEE International Test Confer

ence (ITC). IEEE; 2024. p. 106–110.

�. ^Kallakuri U, et al. Resource-Aware Saliency-Guided Differentiable Pruning for Deep Ne

ural Networks. In: Proceedings of the Great Lakes Symposium on VLSI 2024. 2024. p. 69

4-699.

�. ^Humes E, et al. Squeezed Edge YOLO: Onboard Object Detection on Edge Devices. arXiv

preprint arXiv:2312.11716. 2023.

�. ^Navardi M, et al. MLAE2: Metareasoning for latency-aware energy-ef�cient autonom

ous nano-drones. In: 2023 IEEE International Symposium on Circuits and Systems (ISC

AS). IEEE; 2023. p. 1-5.

�. ^Manjunath T, et al. Reprohrl: Towards multi-goal navigation in the real world using hi

erarchical agents. On 37th AAAI Conference on Arti�cial Intelligence. In: The 1st Reinfor

cement Learning Ready for Production workshop; 2023.

�. ^Ali AH, et al. (2024). "Energy-Aware FPGA Implementation of Spiking Neural Network

with LIF Neurons". arXiv preprint arXiv:2411.01628.

�. ^Guo C, et al. A Survey: Collaborative Hardware and Software Design in the Era of Larg

e Language Models. arXiv preprint arXiv:2410.07265. 2024.

��. ^Mao J, et al. MoDNN: Local distributed mobile computing system for Deep Neural Net

work. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. 2

017. p. 1396-1401. doi:10.23919/DATE.2017.7927211.

��. ^Mao J, et al. MeDNN: A distributed mobile system with enhanced partition and deploy

ment for large-scale DNNs. In: 2017 IEEE/ACM International Conference on Computer-A

ided Design (ICCAD). IEEE; 2017. p. 751–756.

×

qeios.com doi.org/10.32388/JEU3U0.2 10

https://arxiv.org/abs/2411.17712
https://doi.org/10.23919/DATE.2017.7927211
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

��. ^Frantar E, et al. (2023). "OPTQ: Accurate Quantization for Generative Pre-trained Tran

sformers." In The Eleventh International Conference on Learning Representations. Avai

lable from: https://openreview.net/forum?id=tcbBPnfwxS.

��. a, bLin J, et al. AWQ: Activation-aware Weight Quantization for On-Device LLM Compre

ssion and Acceleration. In: Gibbons P, Pekhimenko G, De Sa C, editors. Proceedings of M

achine Learning and Systems. 2024; 6:87-100. Available from: https://proceedings.mlsy

s.org/paper_�les/paper/2024/�le/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conferen

ce.pdf.

��. ^Shen X, et al. (2024). "EdgeQAT: Entropy and Distribution Guided Quantization-Aware

Training for the Acceleration of Lightweight LLMs on the Edge". arXiv preprint arXiv:24

02.10787.

��. ^Xiao G, et al. SmoothQuant: Accurate and Ef�cient Post-Training Quantization for Lar

ge Language Models. In: Proceedings of the 40th International Conference on Machine

Learning; 2023.

��. a, b, cGuo C, Tang J, Hu W, Leng J, Zhang C, Yang F, Liu Y, Guo M, Zhu Y (2023). "Olive: Acc

elerating large language models via hardware-friendly outlier-victim pair quantizatio

n." Proceedings of the 50th Annual International Symposium on Computer Architectur

e. 1–15.

��. ^Chen Z, et al. Channel-wise mixed-precision quantization for large language models.

arXiv preprint arXiv:2410.13056. 2024.

��. ^Xu Y, et al. OneBit: Towards Extremely Low-bit Large Language Models. arXiv preprin

t arXiv:2402.11295. 2024.

��. ^Wang H, et al. (2023). "Bitnet: Scaling 1-bit transformers for large language models." a

rXiv. arXiv:2305.10403.

��. ^Egiazarian V, et al. Extreme Compression of Large Language Models via Additive Qua

ntization. arXiv 2024. Available from: arXiv:2401.06118.

��. ^Li Y, et al. (2023). "Q-DM: An Ef�cient Low-bit Quantized Diffusion Model". In: Advanc

es in Neural Information Processing Systems, 76680–76691.

��. ^He Y, et al. (2023). "PTQD: Accurate Post-Training Quantization for Diffusion Models."

In: Oh A, Naumann T, Globerson A, Saenko K, Hardt M, Levine S, editors. Advances in Ne

ural Information Processing Systems. Curran Associates, Inc.; 2023. 36:13237-13249. Avai

lable from: https://proceedings.neurips.cc/paper_�les/paper/2023/�le/2aab8a76c7e761b

66eccaca0927787de-Paper-Conference.pdf.

��. ^Li X, et al. Q-Diffusion: Quantizing Diffusion Models. In: Proceedings of the IEEE/CVF I

nternational Conference on Computer Vision (ICCV). 2023 Oct; p. 17535-17545.

��. ^So J, et al. Temporal Dynamic Quantization for Diffusion Models. In: Oh A, Naumann

T, Globerson A, Saenko K, Hardt M, Levine S, editors. Advances in Neural Information Pr

ocessing Systems. Curran Associates, Inc.; 2023. p. 48686-48698. Available from: https://

proceedings.neurips.cc/paper_�les/paper/2023/�le/983591c3e9a0dc94a99134b3238bbe

52-Paper-Conference.pdf.

��. ^Huang Y, et al. TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion

Models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern R

ecognition (CVPR); 2024. p. 7362–7371.

��. ^Yao Y, et al. Timestep-Aware Correction for Quantized Diffusion Models. In: European

Conference on Computer Vision (ECCV); 2024.

��. ^Ma X, et al. LLM-Pruner: On the Structural Pruning of Large Language Models. In: Adv

ances in Neural Information Processing Systems; 2023.

��. ^Khiabani YS, et al. Optimizing Small Language Models for In-Vehicle Function-Callin

g. arXiv preprint arXiv:2501.02342. 2025.

��. ^Frantar E, Alistarh D (2023). "SparseGPT". arXiv. arXiv:2307.00026.

��. ^Lin Y, et al. SpeechPrune: Context-aware Token Pruning for Speech Information Retrie

val. arXiv preprint arXiv:2412.12009. 2024.

qeios.com doi.org/10.32388/JEU3U0.2 11

https://openreview.net/forum?id=tcbBPnfwxS
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2401.06118
https://proceedings.neurips.cc/paper_files/paper/2023/file/2aab8a76c7e761b66eccaca0927787de-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/2aab8a76c7e761b66eccaca0927787de-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/983591c3e9a0dc94a99134b3238bbe52-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/983591c3e9a0dc94a99134b3238bbe52-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/983591c3e9a0dc94a99134b3238bbe52-Paper-Conference.pdf
https://arxiv.org/abs/2307.00026
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

��. ^Xia H, et al. Flash-LLM: Enabling Cost-Effective and Highly-Ef�cient Large Generative

Model Inference with Unstructured Sparsity. 2023. arXiv:2308.04528.

��. ^Li Y, et al. E-sparse: Boosting the large language model inference through entropy-bas

ed n: M sparsity. 2023. arXiv:2310.12843.

��. ^Fang G, et al. (2023). "Structural pruning for diffusion models". In: Advances in Neural I

nformation Processing Systems.

��. ^Castells T, et al. LD-Pruner: Ef�cient Pruning of Latent Diffusion Models using Task-A

gnostic Insights. Proceedings of the IEEE/CVF Conference on Computer Vision and Patt

ern Recognition (CVPR) Workshops. 2024:821-830.

��. ^Zhu H, et al. DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization. arXiv pre

print arXiv:2410.16942. 2024. Available from: https://arxiv.org/abs/2410.16942.

��. ^Wan B, et al. Pruning for Sparse Diffusion Models based on Gradient Flow. arXiv. 2025.

Available from: arXiv:2501.01101.

��. ^Briq R, et al. Data Pruning in Generative Diffusion Models. arXiv [cs.LG]. 2024. Availabl

e from: https://arxiv.org/abs/2411.12523.

��. ^Yan C, et al. Hybrid SD: Edge-Cloud Collaborative Inference for Stable Diffusion Model

s. arXiv. 2024. Available from: arXiv:2410.02453.

��. a, b, c, dTouvron H, et al. (2023). "LLaMA: Open and Ef�cient Foundation Language Mod

els". arXiv preprint arXiv:2302.13971. Available from: https://arxiv.org/abs/2302.13971.

��. ^OpenAI (2024). "GPT-4 Technical Report". arXiv. arXiv:2303.08774.

��. ^Liu C, et al. Evolving Knowledge Distillation with Large Language Models and Active

Learning. In: Proceedings of the 2024 Joint International Conference on Computational

Linguistics, Language Resources and Evaluation (LREC-COLING 2024). 2024. p. 6717-67

31. ELRA and ICCL.

��. ^Gu Y, et al. Mini{LLM}: Knowledge Distillation of Large Language Models. In: The Twe

lfth International Conference on Learning Representations; 2024. Available from: http

s://openreview.net/forum?id=5h0qf7IBZZ.

��. a, bChiang WL, Li Z, Lin Z, Sheng Y, Wu Z, Zhang H, Zheng L, Zhuang S, Zhuang Y, Gonza

lez JE, Stoica I, Xing EP (2023). "Vicuna: An Open-Source Chatbot Impressing GPT-4 wit

h 90%* ChatGPT Quality". https://lmsys.org/blog/2023-03-30-vicuna/.

��. ^Geng X, et al. Koala: A Dialogue Model for Academic Research. 2023.

��. ^Wu M, et al. Lamini: Large Language Model Approaches for Generating Assistive Prog

rams. Proceedings of the 18th Conference of the European Chapter of the Association fo

r Computational Linguistics (Volume 1: Long Papers). 2024:944-964.

��. ^Lee H, et al. (2023). "RLAIF: Scaling Reinforcement Learning from Human Feedback w

ith AI Feedback". arXiv. arXiv:2309.00267.

��. ^Liang Z, et al. Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multim

odal Large Model for Ef�cient Cross-modal Representation Learning. arXiv preprint arX

iv:2404.10838. 2024.

��. ^Salimans T, Ho J (2022). "Progressive Distillation for Fast Sampling of Diffusion Model

s". In: International Conference on Learning Representations. Available from: https://op

enreview.net/forum?id=TIdIXIpzhoI.

��. ^Luhman E, Luhman T (2021). "Knowledge distillation in iterative generative models fo

r improved sampling speed". arXiv preprint arXiv:2101.02388. Available from: https://arx

iv.org/abs/2101.02388.

��. ^Lu C, et al. DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling i

n Around 10 Steps. In: Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A, editor

s. Advances in Neural Information Processing Systems. Curran Associates, Inc.; 2022. p.

5775-5787. Available from: https://proceedings.neurips.cc/paper_�les/paper/2022/�le/2

60a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf.

��. ^Song Y, et al. Consistency Models. In: Proceedings of the 40th International Conference

on Machine Learning. 2023. p. 32211–32252.

qeios.com doi.org/10.32388/JEU3U0.2 12

https://arxiv.org/abs/2308.04528
https://arxiv.org/abs/2310.12843
https://arxiv.org/abs/2410.16942
https://arxiv.org/abs/2501.01101
https://arxiv.org/abs/2411.12523
https://arxiv.org/abs/2410.02453
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2309.00267
https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=TIdIXIpzhoI
https://arxiv.org/abs/2101.02388
https://arxiv.org/abs/2101.02388
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/260a14acce2a89dad36adc8eefe7c59e-Paper-Conference.pdf
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

��. ^Meng C, et al. On distillation of guided diffusion models. In: Proceedings of the IEEE/C

VF Conference on Computer Vision and Pattern Recognition. 2023. p. 14297–14306.

��. ^Poole B, et al. DreamFusion: Text-to-3D using 2D Diffusion. In: The Eleventh Internatio

nal Conference on Learning Representations; 2023. Available from: https://openreview.n

et/forum?id=FjNys5c7VyY.

��. ^Su D, et al. Generative Dataset Distillation Based on Diffusion Model. In: Proceedings o

f the European Conference on Computer Vision (ECCV), Workshop; 2024.

��. ^Howard AG, et al. Mobilenets: Ef�cient convolutional neural networks for mobile visio

n applications. arXiv preprint arXiv:1704.04861. 2017. Available from: https://arxiv.org/a

bs/1704.04861.

��. a, bElsken T, et al. (2019). "Neural architecture search: A survey". Journal of Machine Lea

rning Research.

��. a, bZoph B (2016). "Neural architecture search with reinforcement learning". arXiv prepri

nt arXiv:1611.01578. Available from: https://arxiv.org/abs/1611.01578.

��. ^Zoph B, et al. (2018). "Learning transferable architectures for scalable image recogniti

on." In: Proceedings of the IEEE conference on computer vision and pattern recognition.

pp. 8697–8710.

��. ^Liu Z, et al. Mobilellm: Optimizing sub-billion parameter language models for on-devi

ce use cases. arXiv preprint arXiv:2402.14905. 2024. Available from: https://arxiv.org/ab

s/2402.14905.

��. ^Qin R, et al. FL-NAS: Towards Fairness of NAS for Resource Constrained Devices via La

rge Language Models. In: Proceedings of the 29th Asia and South Paci�c Design Autom

ation Conference, ASPDAC '24, 2024. p. 429–434. IEEE Press. ISBN 9798350393545. doi:1

0.1109/ASP-DAC58780.2024.10473847.

��. ^Benmeziane H, Maghraoui KE (2024). "Are Large Language Models Good Neural Arch

itecture Generators for Edge?" In 2024 IEEE International Conference on Edge Computi

ng and Communications (EDGE), 162-165. doi:10.1109/EDGE62653.2024.00029.

��. ^Bercovich A, et al. Puzzle: Distillation-Based NAS for Inference-Optimized LLMs. arXiv

preprint arXiv:2411.19146. 2024.

��. a, bDeepSeek-AI, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinf

orcement learning. arXiv preprint arXiv:2501.12948. 2025. doi:10.48550/arXiv.2501.1294

8.

��. ^Sanh V, et al. (2019). "DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper a

nd Lighter". arXiv preprint arXiv:1910.01108.

��. ^Jiao X, et al. (2020). "TinyBERT: Distilling BERT for Natural Language Understanding".

arXiv preprint arXiv:1909.10351.

��. ^Lan Z, et al. ALBERT: A Lite BERT for Self-supervised Learning of Language Represent

ations. In: International Conference on Learning Representations (ICLR); 2020.

��. ^Sun Z, et al. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Device

s. arXiv preprint arXiv:2004.02984. 2020.

��. ^Wang W, et al. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compressio

n of Pre-Trained Transformers. 2020. Available from: https://arxiv.org/abs/2002.10957.

��. ^Wang W, et al. MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compress

ing Pretrained Transformers. 2021. Available from: https://arxiv.org/abs/2012.15828.

��. ^Kitaev N, et al. Reformer: The Ef�cient Transformer. In: International Conference on Le

arning Representations (ICLR); 2020.

��. ^Black S, et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. arXiv

preprint arXiv:2204.06745. 2022.

��. ^Touvron H, et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models". ar

Xiv preprint arXiv:2307.09288.

��. ^Zhang P, et al. TinyLlama: An Open-Source Small Language Model. arXiv preprint arXi

v:2401.02385. 2024.

qeios.com doi.org/10.32388/JEU3U0.2 13

https://openreview.net/forum?id=FjNys5c7VyY
https://openreview.net/forum?id=FjNys5c7VyY
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2402.14905
https://doi.org/10.1109/ASP-DAC58780.2024.10473847
https://doi.org/10.1109/ASP-DAC58780.2024.10473847
https://doi.org/10.1109/EDGE62653.2024.00029
https://doi.org/10.48550/arXiv.2501.12948
https://doi.org/10.48550/arXiv.2501.12948
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2012.15828
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

��. ^Singer P, et al. H2O-Danube-1.8B Technical Report. arXiv preprint arXiv:2401.16818. 20

24. Available from: https://arxiv.org/abs/2401.16818.

��. ^Chung HW, et al. (2022). "Scaling Instruction-Finetuned Language Models". arXiv prep

rint arXiv:2210.11416.

��. ^Taori R, et al. Alpaca: A Strong, Replicable Instruction-Following Model. 2023. Availabl

e from: https://crfm.stanford.edu/2023/03/13/alpaca.html.

��. ^Geng X, et al. Koala: A Dialogue Model for Academic Research. 2023. Available from: h

ttps://bair.berkeley.edu/blog/2023/04/03/koala/.

��. ^Kim S, et al. SqueezeLLM: Dense-and-Sparse Quantization. In: Proceedings of the 41st

International Conference on Machine Learning (ICML). 2024. doi:10.48550/arXiv.2306.0

7629.

��. ^Frantar E, et al. (2022). "GPTQ: Accurate Post-Training Quantization for Generative Pr

e-trained Transformers". arXiv preprint arXiv:2210.17323. doi:10.48550/arXiv.2210.17323.

��. ^Dettmers T, et al. SpQR: A Sparse-Quantized Representation for Near-Lossless LLM We

ight Compression. arXiv preprint arXiv:2306.03078. 2023. doi:10.48550/arXiv.2306.0307

8. {Extended Preprint}.

��. ^Hu E, et al. LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint ar

Xiv:2106.09685. 2021.

��. ^Dettmers T, et al. QLoRA: Ef�cient Finetuning of Quantized LLMs. Advances in Neural

Information Processing Systems. 2023:10088–10115.

��. ^MosaicML NLP Team (2023). "Introducing MPT-7B: A new standard for open-source, c

ommercially usable LLMs". https://www.mosaicml.com/blog/mpt-7b.

��. ^AI Squared (2023). DLite V2. Available from: https://huggingface.co/aisquared/dlite-v2

-774m.

��. ^Together Computer (2023). RedPajama: An Open Source Recipe to Reproduce LLaMA t

raining dataset [software]. Available from: https://github.com/togethercomputer/RedPa

jama-Data.

��. a, bHeo J, et al. EXION: Exploiting Inter-and Intra-Iteration Output Sparsity for Diffusion

Models. arXiv preprint arXiv:2501.05680. 2025.

��. a, bGuo R, et al. 20.2 A 28nm 74.34TFLOPS/W BF16 Heterogenous CIM-Based Accelerato

r Exploiting Denoising-Similarity for Diffusion Models. In: 2024 IEEE International Soli

d-State Circuits Conference (ISSCC). 2024; 67:362-364. doi:10.1109/ISSCC49657.2024.104

54308.

��. a, bQin Y, et al. A 52.01 TFLOPS/W Diffusion Model Processor with Inter-Time-Step Conv

olution-Attention-Redundancy Elimination and Bipolar Floating-Point Multiplication.

In: 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circu

its). 2024. p. 1-2. doi:10.1109/VLSITechnologyandCir46783.2024.10631322.

��. a, bYoo S, et al. A 28nm 4.96 TOPS/W End-to-End Diffusion Accelerator with Recon�gur

able Hyper-Precision and Uni�ed Non-Matrix Processing Engine. In: 2024 IEEE Europe

an Solid-State Electronics Research Conference (ESSERC). 2024. p. 253-256. doi:10.1109/

ESSERC62670.2024.10719558.

��. a, b, cKong W, et al. Cambricon-D: Full-Network Differential Acceleration for Diffusion M

odels. In: 2024 ACM/IEEE 51st Annual International Symposium on Computer Architect

ure (ISCA); 2024. doi:10.1109/ISCA59077.2024.00070.

��. a, bPark J, et al. AttAcc! Unleashing the Power of PIM for Batched Transformer-based Ge

nerative Model Inference. In: Proceedings of the 29th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems, Volume 2; 2

024.

��. a, bLi C, et al. SpecPIM: Accelerating Speculative Inference on PIM-Enabled System via A

rchitecture-Data�ow Co-Exploration. In: Proceedings of the 29th ACM International Co

nference on Architectural Support for Programming Languages and Operating Systems,

Volume 3; 2024.

qeios.com doi.org/10.32388/JEU3U0.2 14

https://arxiv.org/abs/2401.16818
https://crfm.stanford.edu/2023/03/13/alpaca.html
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.48550/arXiv.2306.07629
https://doi.org/10.48550/arXiv.2306.07629
https://doi.org/10.48550/arXiv.2210.17323
https://doi.org/10.48550/arXiv.2306.03078
https://doi.org/10.48550/arXiv.2306.03078
https://www.mosaicml.com/blog/mpt-7b
https://huggingface.co/aisquared/dlite-v2-774m
https://huggingface.co/aisquared/dlite-v2-774m
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.1109/ISSCC49657.2024.10454308
https://doi.org/10.1109/ISSCC49657.2024.10454308
https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631322
https://doi.org/10.1109/ESSERC62670.2024.10719558
https://doi.org/10.1109/ESSERC62670.2024.10719558
https://doi.org/10.1109/ISCA59077.2024.00070
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

��. a, bLi H, et al. ASADI: Accelerating Sparse Attention Using Diagonal-based In-Situ Comp

uting. In: 2024 IEEE International Symposium on High-Performance Computer Archite

cture (HPCA). IEEE; 2024.

��. a, bQin Y, et al. MECLA: Memory-Compute-Ef�cient LLM Accelerator with Scaling Sub-

matrix Partition. In: 2024 ACM/IEEE 51st Annual International Symposium on Comput

er Architecture (ISCA). 2024. p. 1032-1047. doi:10.1109/ISCA59077.2024.00079.

��. a, bTambe T, et al. 2023. "22.9 A 12nm 18.1 TFLOPs/W sparse transformer processor with

entropy-based early exit, mixed-precision predication and �ne-grained power manage

ment". In: 2023 IEEE International Solid-State Circuits Conference (ISSCC). IEEE. p. 370

–372.

��. ^Zadeh AH, et al. (2020). "GOBO: Quantizing Attention-Based NLP Models for Low Late

ncy and Energy Ef�cient Inference." In 2020 53rd Annual IEEE/ACM International Sym

posium on Microarchitecture (MICRO), 811-824. doi:10.1109/MICRO50266.2020.00071.

��. a, bQin Y, et al. FACT: FFN-Attention Co-optimized Transformer Architecture with Eager

Correlation Prediction. In: Proceedings of the 50th Annual International Symposium on

Computer Architecture, ISCA '23. New York, NY, USA: Association for Computing Machi

nery; 2023. Article No. 22. doi:10.1145/3579371.3589057. ISBN 9798400700958.

��. ^Chen F, et al. ReGAN: A pipelined ReRAM-based accelerator for generative adversarial

networks. In: 2018 23rd Asia and South Paci�c Design Automation Conference (ASP-DA

C). IEEE; 2018.

��. ^Kim S, et al. An Energy-Ef�cient GAN Accelerator with On-chip Training for Domain S

peci�c Optimization. In: 2020 IEEE Asian Solid-State Circuits Conference (A-SSCC). 202

0. p. 1-4. doi:10.1109/A-SSCC48613.2020.9336128.

���. ^Kang S, et al. GANPU: An Energy-Ef�cient Multi-DNN Training Processor for GANs Wit

h Speculative Dual-Sparsity Exploitation. IEEE Journal of Solid-State Circuits. 56(9): 28

45-2857. doi:10.1109/JSSC.2021.3066572.

���. ^Guo C, et al. Ant: Exploiting adaptive numerical data type for low-bit deep neural net

work quantization. In: 2022 55th IEEE/ACM International Symposium on Microarchite

cture (MICRO). IEEE; 2022. p. 1414–1433.

���. ^Yang G, et al. SDA: Low-Bit Stable Diffusion Acceleration on Edge FPGAs. In: 2024 34th

International Conference on Field-Programmable Logic and Applications (FPL). IEEE; 2

024.

���. ^Wang X, et al. DTrans: A Data�ow-transformation FPGA Accelerator with Nonlinear-o

perators fusion aiming for the Generative Model. In: 2024 34th International Conferenc

e on Field-Programmable Logic and Applications (FPL). IEEE; 2024.

���. ^Fu Y, et al. (2024). "SoftAct: A High-Precision Softmax Architecture for Transformers S

upporting Nonlinear Functions". IEEE Transactions on Circuits and Systems for Video T

echnology. 34 (9). doi:10.1109/TCSVT.2024.3386779.

���. ^Dong P, et al. Genetic Quantization-Aware Approximation for Non-Linear Operations i

n Transformers. In: Proceedings of the 61st ACM/IEEE Design Automation Conference

(DAC); 2024. p. 220.

���. ^Stevens JR, et al. (2021). "Softermax: Hardware/Software Co-Design of an Ef�cient Sof

tmax for Transformers." In 2021 58th ACM/IEEE Design Automation Conference (DAC),

469-474. doi:10.1109/DAC18074.2021.9586134.

���. ^Yan B, et al. RRAM-based spiking nonvolatile computing-in-memory processing engi

ne with precision-con�gurable in situ nonlinear activation. In: 2019 Symposium on VLS

I Technology. IEEE; 2019. p. C258–C259.

���. ^Dao T, et al. FlashAttention: Fast and Memory-Ef�cient Exact Attention with IO-Awar

eness. arXiv preprint arXiv:2205.14135. 2022.

���. ^Dao T (2023). "FlashAttention-2: Faster Attention with Better Parallelism and Work Pa

rtitioning". arXiv preprint arXiv:2307.08691.

qeios.com doi.org/10.32388/JEU3U0.2 15

https://doi.org/10.1109/ISCA59077.2024.00079
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1145/3579371.3589057
https://doi.org/10.1109/A-SSCC48613.2020.9336128
https://doi.org/10.1109/JSSC.2021.3066572
https://doi.org/10.1109/TCSVT.2024.3386779
https://doi.org/10.1109/DAC18074.2021.9586134
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

���. ^Shah J, et al. FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low

-precision. arXiv preprint arXiv:2407.08608. 2024.

���. ^Lefaudeux B, et al. xFormers: A modular and hackable Transformer modelling library.

2022. Available from: https://github.com/facebookresearch/xformers.

���. ^Child R, et al. 2019. "Generating Long Sequences with Sparse Transformers". arXiv prep

rint arXiv:1904.10509.

���. ^Beltagy I, et al. Longformer: The Long-Document Transformer. arXiv preprint arXiv:20

04.05150. 2020.

���. ^Zaheer M, et al. Big Bird: Transformers for Longer Sequences. In: Advances in Neural I

nformation Processing Systems; 2020.

���. ^Wang S, et al. Linformer: Self-Attention with Linear Complexity. arXiv preprint arXiv:2

006.04768. 2020.

���. ^Choromanski K, et al. Rethinking Attention with Performers. In: International Confere

nce on Learning Representations (ICLR); 2021.

���. ^NVIDIA Corporation (2025). TensorRT-LLM. Available from: https://github.com/NVIDI

A/TensorRT-LLM.

���. ^Yi R, et al. EdgeMoE: Fast On-Device Inference of MoE-Based Large Language Models.

arXiv preprint arXiv:2308.14352. 2023.

���. ^Wang Q, et al. CoreInfer: Accelerating Large Language Model Inference with Semantic

s-Inspired Adaptive Sparse Activation. arXiv. 2024. Available from: arXiv:2410.18311.

���. ^Laskaridis S, et al. MELTing point: Mobile Evaluation of Language Transformers. arXi

v preprint arXiv:2403.12844. 2024.

���. ^MIT-HAN-Lab (2024). TinyChatEngine: On-Device LLM Inference Library. Available fr

om: https://github.com/mit-han-lab/TinyChatEngine.

���. ^Nikoghosyan KH, et al. Acceleration of Transformer Architectures on Jetson Xavier usi

ng TensorRT. Proceedings of Innovative Polytechnic. 2023.

���. ^Chen N, et al. TileSR: Accelerate On-Device Super-Resolution with Parallel Of�oading i

n Tile Granularity. In: IEEE Annual International Conference on Computer Communicat

ions; 2024.

���. ^Yi J, et al. (2022). "Supremo: Cloud-assisted low-latency super-resolution in mobile de

vices". IEEE Transactions on Mobile Computing.

���. ^Lee R, et al. MobiSR: Ef�cient on-device super-resolution through heterogeneous mobi

le processors. In: Proceedings of the 25th Annual International Conference on Mobile Co

mputing and Networking (MobiCom); 2019.

���. ^Wang Q, et al. (2024). "An Intelligent Co-Scheduling Framework for Ef�cient Super-Res

olution on Edge Platforms With Heterogeneous Processors". IEEE Internet of Things Jou

rnal.

���. ^Zhao W, et al. A High-Performance Accelerator for Super-Resolution Processing on Em

bedded GPU. arXiv preprint arXiv:2303.08999. 2021.

���. ^Li H, et al. (2024). "An Energy-Ef�cient Look-up Table Framework for Super Resolutio

n on FPGA". IEEE Transactions on Circuits and Systems for Video Technology.

���. ^Malathi L, et al. (2024). "FPGA design of FFT-based intelligent accelerator with optimi

zed Wallace tree multiplier for image super resolution and quality enhancement". Biom

edical Signal Processing and Control. doi:10.1016/j.bspc.2023.105599.

���. ^Choi J, et al. (2023). "A Resource-Ef�cient Super-Resolution FPGA Processor with Heter

ogeneous CNN and SNN Core Architecture". IEEE Transactions on Computers.

���. ^Gui D, et al. PCIe-based FPGA-GPU heterogeneous computation for real-time multi-e

mitter �tting in super-resolution localization microscopy. Biomedical Optics Express. 20

22.

���. ^Kim Y, et al. (2019). "A Real-Time Convolutional Neural Network for Super-Resolution

on FPGA With Applications to 4K UHD 60 fps Video Services". IEEE Transactions on Circ

qeios.com doi.org/10.32388/JEU3U0.2 16

https://github.com/facebookresearch/xformers
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://arxiv.org/abs/2410.18311
https://github.com/mit-han-lab/TinyChatEngine
https://doi.org/10.1016/j.bspc.2023.105599
https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

uits and Systems for Video Technology.

���. ^Sun K, et al. An FPGA-Based Residual Recurrent Neural Network for Real-Time Video

Super-Resolution. IEEE Transactions on Circuits and Systems for Video Technology. 202

2.

���. ^Georgis G, et al. (2019). "Acceleration techniques and evaluation on multi-core CPU, GP

U and FPGA for image processing and super-resolution". Journal of Real-Time Image Pr

ocessing.

���. ^Liu H, et al. (2024). "A High-Performance Accelerator for Real-Time Super-Resolution o

n Edge FPGAs". ACM Transactions on Design Automation of Electronic Systems.

���. ^Fan H, et al. Co-ViSu: a Video Super-Resolution Accelerator Exploiting Codec Informati

on Reuse. In: International Conference on Field-Programmable Logic and Applications

(FPL); 2023.

���. ^Zhang S, et al. (2022). "An Ef�cient Accelerator of Deformable 3D Convolutional Netw

ork for Video Super-Resolution". IEEE Transactions on Multimedia.

���. ^Osorno-Ortiz RJ, et al. Implementation of the image super-resolution DWT based algo

rithm on Raspberry Pi platform for real-time applications. In: Proceedings of SPIE. 202

4.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/JEU3U0.2 17

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0.2

