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Generative Arti�cial Intelligence (GenAI) applies models and algorithms such as

Large Language Model (LLM) and Foundation Model (FM) to generate new data.

GenAI, as a promising approach, enables advanced capabilities in various

applications, including text generation and image processing. In current practice,

GenAI algorithms run mainly on the cloud server, leading to high latency and

raising security concerns. Consequently, these challenges encourage the

deployment of GenAI algorithms directly on edge devices. However, the large size of

such models and their signi�cant computational resource requirements pose

obstacles when deploying them in resource-constrained systems. This survey

provides a comprehensive overview of recent proposed techniques that optimize

GenAI for ef�cient deployment on resource-constrained edge devices. For this aim,

this work highlights three main categories for bringing GenAI to the edge: software

optimization, hardware optimization, and frameworks. The main takeaways for

readers of this survey will be a clear roadmap to design, implement, and re�ne

GenAI systems for real-world implementation on edge devices.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

Introduction

Generative Arti�cial Intelligence (GenAI) has become a promising solution in text

generation, image synthesis, and multimodal content creation. These developments

often rely on large-scale models such as Large Language Models (LLMs) that achieve

remarkable performance but demand large computational and memory resources.

Traditionally, these models run on powerful cloud servers, which introduces latency,

dependency on network connectivity, and potential privacy risks. As real-time

applications and data security become ever more critical, there is a growing push to

embed GenAI functionalities directly into edge devices[1][2].

However, implementing high-intensive models on the edge presents signi�cant

challenges[3][4][5]. Edge devices, including drones[6], and autonomous

systems[7]  bene�t signi�cantly from the GenAI capabilities on devices. For instance,

drones can generate real-time terrain analysis in remote areas, Autonomous systems

can enhance decision-making through local models. Wearable health monitoring

could generate personalized insights from biometric data while ensuring privacy

through local data processing. To support these applications, specialized edge

hardware such as NVIDIA Jetson, and Qualcomm AI Engine have been developed to

handle the computational demands of GenAI while maintaining ef�ciency.
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This situation calls for innovative approaches in software optimization including

model compression, Neural Architecture Search (NAS). In parallel, hardware

optimization including specialized accelerators, attention optimization, and dedicated

frameworks address computational and energy constraints at the edge[8]. These

strategies not only reduce model size and inference latency but also address privacy

concerns when deploying complex models on edge devices[2]. This paper aims to

survey existing methods and provide extensive details on implemented GenAI

techniques on edge devices. To the best of our knowledge, there is no dedicated survey

on GenAI at the edge. By reviewing state-of-the-art techniques from top-tier

conferences and journals, this work offers a roadmap for researchers seeking to apply

GenAI in edge. The main category of the paper is organized as follows:

Software Optimization: Discusses key strategies for adapting GenAI models to

edge devices, including model compression methods (pruning, quantization, and

knowledge distillation), NAS, and open-source GenAI models.

Hardware Optimization: Explores hardware accelerators and attention

optimization to highlight how they meet GenAI’s computational demands while

addressing power and resource constraints on edge devices.

Frameworks: Reviews frameworks to improve inference latency, memory, and

overall energy ef�ciency.

Figure 1. Illustration of the �ow of GenAI at the edge

Software Optimization

Model Compression

The rapid advancement of GenAI models, while ushering in unprecedented

capabilities, has also given rise to increasingly large model architectures that present

signi�cant deployment challenges[9]. Early attempts to address these challenges

explored distributed mobile computing systems that could partition model

computation across multiple devices[10][11].

This challenge has since prompted extensive research in model compression

techniques, which have evolved along three principal directions to enable broader

deployment and accessibility. Firstly, quantization techniques have achieved

remarkable ef�ciency through reduced precision representations, particularly through
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enhanced activation distribution handling and hardware-optimized strategies.

Secondly, methodologies for pruning have advanced from rudimentary magnitude-

based techniques to sophisticated hardware-aware structured approaches, enabling

considerable model reduction while preserving architectural integrity. Thirdly,

knowledge distillation has evolved to incorporate progressive frameworks and multi-

teacher architectures, showing particular promise in task-speci�c applications.

Contemporary research emphasizes hardware-aware compression strategies and

architecture-speci�c solutions. While these advancements have enabled the

deployment of foundation models with competitive performance metrics, the

fundamental challenge persists in optimizing the compression-performance trade-off

for edge deployment scenarios.

Quantization. Model quantization has emerged as a critical technique for deploying

large-scale GenAI models on resource-constrained edge devices. Quantization

approaches are broadly categorized into post-training quantization (PTQ) and

quantization-aware training (QAT). PTQ methods like OPTQ[12]  and AWQ[13]  directly

convert trained model parameters to lower precision formats, while QAT approaches

such as EdgeQAT[14]  incorporate quantization effects during training. PTQ methods

are generally preferred due to their computational ef�ciency, though recent advances

in both approaches have enabled effective compression through sophisticated

handling of weight and activation distributions. When applied to LLMs, unique

challenges emerge from their heavy-tailed weight distribution. Methods like

SmoothQuant[15] and OliVe[16] address this through distribution smoothing and outlier

handling techniques. Mixed-precision approaches[17]  have shown promise by

automatically determining optimal bit widths for different model components based

on their quantization sensitivity. Recent work like OneBit[18] and BitNet[19] has pushed

boundaries by demonstrating viable 1-bit quantization through sophisticated

distribution-aware schemes. However, signi�cant challenges remain in maintaining

generation quality under extreme compression and developing ef�cient training

methods for quantized LLMs on edge devices[20].

Diffusion models present their own set of quantization challenges, particularly in

handling varying activation distributions across diffusion steps. Approaches like Q-

DM[21], PTQD[22], and Q-Diffusion[23]  tackle the challenge of varying activation

distributions across diffusion steps through adaptive calibration and noise-aware

quantization. Specialized temporal-aware quantization methods[24][25]  have been

developed to handle the unique challenges of the iterative denoising process. Current

research focuses on effectively handling dynamic activation ranges and balancing

compression ratios with generation quality for edge deployment of diffusion

models[26].

Pruning. Model pruning methods can be broadly categorized into structured and

unstructured approaches, each with distinct trade-offs between compression

ef�ciency and hardware compatibility. These techniques have shown particular

promise in compressing large-scale generative models while maintaining

performance for edge deployment. The �eld of LLM pruning has recently witnessed

several novel approaches. Structured pruning methods like LLM-Pruner[27] and edge-

optimized approaches[28] achieve 2  speedup with minimal performance degradation

by removing entire structural components.Unstructured approaches like

SparseGPT[29] enable up to 60% sparsity in large-scale models, while recent advances

in modality-speci�c pruning techniques have shown promising results across speech,

vision, and multimodal domains, with methods like SpeechPrune[30] achieving up to

80% pruning rates while maintaining performance. Hardware-aware methods have

become increasingly crucial, as exempli�ed by Flash-LLM[31], which achieves 3

  inference speedup through unstructured sparsity-aware system optimization.

×

×
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Semi-structured pruning methods such as E-Sparse[32] further advance this direction

by leveraging N:M sparsity patterns to maintain hardware compatibility while

achieving high compression rates on edge devices.

In the context of diffusion models, methods like Diff-Pruning[33]  achieve

approximately 50% reduction in FLOPs by leveraging Taylor expansion over pruned

timesteps while maintaining generative quality. Specialized approaches like LD-

Pruner[34]  implement task-agnostic pruning strategies for Latent Diffusion Models,

while DiP-GO[35]  demonstrates 4.4   speedup on Stable Diffusion without requiring

retraining. Recent work combines gradient-based pruning for mask matrix

continuity[36]  with strategic data pruning[37], showing particular promise for edge

deployment where both computational ef�ciency and generation quality are

critical[38].

Knowledge Distillation. Knowledge Distillation  (KD) has emerged as a crucial

paradigm for deploying GenAI models on edge devices, with distinct approaches

developed for different model architectures to balance model capabilities with

computational constraints. The application of KD to language models has led to a

variety of approaches. These can be categorized into white-box and black-box

methods. White-box KD enables student models to match both �nal predictions and

internal representations when the teacher model is open-source (e.g., LLaMA[39]),

while black-box KD works with closed-source models (e.g., GPT-4[40]) through API

calls[41]. Notable advances include MiniLLM[42], which introduces a reversed Kullback-

Leibler divergence objective to stabilize student updates, and instruction-following

distillation approaches that have produced ef�cient open-source models like

Vicuna[43]  and Koala[44]. Recent work in instruction-following KD has enabled

compact yet capable models through supervised �ne-tuning[45], while advanced

applications like RLAI feedback[46]  demonstrate the potential for model alignment

through distillation. Adaptive distillation methods have further enhanced this �eld by

dynamically adjusting the distillation process based on input complexity, allowing

student models to focus learning where improvement is most needed[47].

In the domain of diffusion models, KD primarily focuses on accelerating sampling

speed to address the challenge of high inference latency. Progressive

distillation[48] represents an approach that iteratively halves sampling steps (e.g., from

1000 to 1), enabling ef�cient edge deployment while maintaining generation quality.

Single-step approaches[49]  further compress diffusion teachers into one-step

generators, although this requires careful balance between ef�ciency and generation

�delity. Teacher-free acceleration methods like DPM-Solver[50]  and consistency

models[51]  demonstrate effective inference cost reduction without extensive re-

training. Recent advances include two-stage approaches[52]  for text-conditional

models and score distillation sampling[53]  for 3D generation, showcasing the

versatility of distillation in different applications. Also, generative dataset distillation

using models like SDXL-Turbo with class-speci�c prompts has achieved superior

images per class ratios in recent benchmarks[54], offering new possibilities for

ef�cient model training and deployment.

Neural Architecture Design

Ef�cient neural architecture design has emerged as a critical research direction to

address the increasing complexity and resource demands of modern models,

particularly for edge devices[55][56]. By automating the generation of network

architectures while considering speci�c hardware and constraints, computational

×
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overhead, required memory, and power consumption have been improved, while

maintaining model performance.

Neural Architecture Search (NAS). Neural Architecture Search (NAS)[57][56] serves as a

powerful framework to automate the design of optimal model topologies with strict

latency, memory, or power budgets. By systematically exploring a prede�ned search

space such as varying layer depth, width, or connection patterns. NAS algorithms can

discover specialized architectures that outperform traditional solutions. In[57], they

have proposed the �rst NAS using reinforcement learning (RL) to determine optimal

Recurrent Neural Network (RNN) parameters. Subsequently, this idea was extended to

Convonotional Neural Network  (CNNs) in[58], where the authors integrated a

Sequential Model-Based Optimization (SMBO) approach with a reinforcement

mechanism for cell-based searches to �nd the best con�guration.

In the context of GenAI, where large models often dominate in tasks such as text

generation or image synthesis, NAS-driven architectures present a promising route to

achieve ef�ciency. There are a limited number of work on NAS in the �eld of

transformers[59]. FL-NAS[60] have proposed an approach which leverages LLM to �nd

high-performance DNNs for resource-constrained systems. Moreover, work

in[61]  proposed a LLM-based methodology for NAS technique in Edge devices.

Puzzle[62]  proposed an LLM optimized for inference using NAS under hardware

constraints, achieving a 2.17x inference throughput speedup.

Open-Source GenAI models

The recent advancements in reasoning capabilities of models such as DeepSeek-

R1[63]  emphasize the power of open research development. DeepSeek-R1[63]  has

pro�ted signi�cantly from open-source tools like PyTorch and Meta’s Llama[39]. One

of the key contributions to the advancement in GenAI is open-source innovations,

speci�cally for edge scenarios in which the resources are limited. In these cases,

smaller model sizes and less latency besides not losing performance are the main

considerations. Therefore, researchers explored various compression methods, leading

to models like DistilBERT[64], TinyBERT[65], ALBERT[66], MobileBERT[67], MiniLM[68],

and MiniLMv2[69]  each using techniques such as knowledge distillation, parameter

sharing, or factorization to make large models smaller while maintaining strong

performance.

Beyond these compression-based strategies that are already covered in the previous

sections, novelties in architecture further improved ef�ciency. Reformer[70] introduced

locality-sensitive hashing for attention and reversible residual layers, enabling near-

linear complexity for longer sequences. Meanwhile, GPT-NeoX-20B[71], LLaMA[39], and

LLaMA2[72]  showed how LLMs could be developed and released collaboratively,

making it easier for edge-focused adaptations. Even smaller-scale of these projects

such as TinyLlama[73]  and H2O-Danube-1.8B[74]  now offer compact language models

tailored to edge constraints, continuing the trend of collaborative research. Similarly,

research on instruction tuning[75], which trains models to handle various tasks by

exposing them to different instructions, reinforced the importance of building �exible

and open-source foundations for further innovation.

Researchers have further built on open releases to develop conversational systems,

including Alpaca[76], Koala[77], and Vicuna[43], each developed by �ne-tuning

LLaMA[39]  on curated datasets, all demonstrating competitive performance against

models like ChatGPT and Bard. These models have also served as benchmarks for

edge-focused projects such as SqueezeLLM[78], which introduces a post-training

quantization framework to compress LLMs for more ef�cient inference, focusing on
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reducing memory bandwidth, outperforming methods like GPTQ[79], AWQ[13], and

SpQR[80]. In parallel, techniques like LoRA (Low-Rank Adaptation)[81] have reduced the

cost of �ne-tuning large models, accelerating domain-speci�c deployments. Later,

QLoRA[82] tried to �ne-tune a large model on a single GPU by reducing memory usage

by quantizing the quantization constants and using this technique. Taken together,

several open-source LLMs have been developed, and some of them are compressed to

reduce their size and improve ef�ciency. These include MPT-7B[83], which implements

a 7B-parameter architecture designed for commercial applications; DLite[84], which

scales from 124M to 1.5B parameters; and RedPajama-INCITE[85], which spans 3B to 7B

parameters. Open-source models and innovations can be valuable for resource-

constraint applications, and be �ne-tuned for speci�c tasks to improve their

performance.

Hardware Optimization

Hardware Accelerators

Accelerator Year Platform Technology Networks Sparsity/Quantization

Peak

Energy

Ef�ciency

(TOPS/W)

EXION[86] 2025
ASIC

simulator
14nm SD/DiT ✓/ ✓@INT12

HCAEDS[87] 2024
CIM

tapeout
28nm SD - / ✓@INT10/BF16

DMPU[88] 2024
ASIC

tapeout
22nm DDPM ✓/ -

EEDA[89] 2024
ASIC

tapeout
28nm SD - / ✓@HYP8

Cambricon-

D[90] 2024
ASIC

simulator
7nm SD ✓/ ✓@INT3/FP16

AttAcc[91] 2024
CIM

simulator
7nm

LLaMA/GPT-

3
- / -

DGX A100

SpecPIM[92] 2024
CIM

simulator
- LLaMA/OPT - / - A100

ASADI[93] 2024
CIM

simulator
28nm GPT-2/BERT ✓/ - -

MECLA[94] 2024
ASIC

simulator
28nm LLaMA/BERT - / ✓@INT8

STP[95] 2023
ASIC

tapeout
28nm BERT - / ✓@FP4

OliVe[16] 2023
ASIC

simulator
22nm

GPT-

2/OPT/BERT
- / ✓@Adaptive 4bit

GOBO[96]

FACT[97] 2023
ASIC

simulator
28nm BERT ✓/ ✓@INT8

Table 1. Hardware Accelerator for GenAI

11.53

74.34

52.01

4.96

13.34

2.67×

6.7×

7.09

18.1

4×

4.39
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Hardware accelerators are typically designed through the software and hardware co-

design for speci�c networks. Algorithmically, data sparsity is enhanced by pruning,

and model compression, such as quantization, reduces network size. On the hardware

side, speci�c architectures are designed to bypass sparse or redundant computations,

increase data reuse, and minimize data movement, thus enabling energy-ef�cient

acceleration on edge devices. Generative AI (GenAI) includes GAN, LLM, and Diffusion

models. While extensive hardware work has focused on optimizing GAN models[98][99]

[100], recent trends have shifted toward LLM and Diffusion models, driving further

hardware research in GenAI. This section reviews recent efforts in optimizing

hardware accelerator for LLM and Diffusion networks, with representative works

summarized in Table 1.

LLM Acceleration LLM models have diverse distributions at the tensor or channel

levels, numerous studies leverage customized data types to accommodate this

challenge. For example, ANT[101] introduces a novel data type and employs an adaptive

mechanism to determine the most appropriate type for each tensor from a prede�ned

set. Expanding on ANT, OliVe[16]  proposes an outlier-victim pair approach, which

provides a more precise representation of outlier distributions in LLM models. Both

ANT and OliVe incorporate specialized decoders and multiply-accumulate (MAC) units

to optimize their arithmetic computation processes for LLMs. Some studies focus on

reducing redundant computations in LLM models to improve the energy ef�ciency

during inference. STP[95] proposes a computation-skipping strategy and dynamic data

path recon�guration based on entropy, achieving high energy ef�ciency with minimal

accuracy loss. Furthermore, it has been observed that linear projections contribute

signi�cantly to the memory footprint and latency in LLM models. FACT[97] introduces

an eager prediction method with a leading-one detector and log-based inner-product

estimation, reducing computations in both attention and linear projections.

MECLA[94] surpasses FACT by decomposing large matrices into smaller sub-matrices

to minimize off-chip memory access and re-associating data on-chip for better reuse.

Recently, Computing-in-Memory (CIM) becomes a prominent approach for LLM

acceleration. CIM accelerators offer signi�cant energy ef�ciency gains, particularly for

general matrix-matrix multiplication (GEMM) operations. Existing studies typically

leverage CIM architectures to accelerate the attention mechanism, while relying on

CPUs or GPUs to handle other operations. ASADI[93]  introduces a sparse attention

paradigm based on diagonal compression (DIA) format, enabling highly parallel

computation on CIM processors. SpecPIM[92] accelerates speculative inference in LLM

by optimizing resource allocation in CIM-enabled heterogeneous systems, while

AttAcc[91]  accelerates batched LLM inference on CIM/NPU heterogeneous systems.

Given these developments, it is expected that CIM-based accelerators for LLM models

will become more prevalent in the future.

Diffusion Acceleration Diffusion networks have made signi�cant progress recently in

various GenAI tasks, with different network architecture from LLM models. These

networks generate images or videos through multiple iterations of denoising

operations, with highly similar images in consecutive iterations. Consequently,

hardware optimizations often leverage inter- and intra-iteration similarity to

accelerate Diffusion networks, typically through differential computing and skipping

redundant computations.

Cambricon-D[90]  introduces an approximate ReLU in the Stable Diffusion (SD)

network, enabling differential computing for nonlinear functions and addressing the

memory overhead associated with full-precision nonlinear calculations in traditional

differential computing architectures. DMPU[88]  observes that many pixels exhibit

minimal changes between consecutive time steps in Diffusion models, and thus
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proposes a semantic-segment sparse convolution along with a trivial attention

exponent inheritance method to skip redundant computations in both the convolution

and attention mechanisms, signi�cantly enhancing the energy ef�ciency.

EXION[86]  presents an FFN-Reuse algorithm that can be applied across iterations,

along with an improved eager prediction method for predicting attention scores,

which reduces redundant computations and boosts throughput. HCAEDS[87] is the �rst

heterogeneous CIM chip designed for Diffusion models, incorporating a Sign-

Magnitude radix-8 Booth CIM macro for integer data and a four-operand exponent

CIM macro for �oating-point data, achieving a high energy ef�ciency.

Numerous GenAI hardware studies[90][89][102][103]  have observed that nonlinear

functions (such as softmax, GeLU, etc.) can introduce signi�cant latency overhead

during the hardware acceleration. These studies optimize nonlinear functions to

enhance overall throughput. Additionally, some studies[104][105][106][107]  have focused

speci�cally on optimizing nonlinear functions and have designed specialized

hardware to facilitate network inference. All of these studies indicate a potential

research trend on optimizing nonlinear functions in GenAI networks. Combined with

techniques such as eliminating redundant computations and data compression, these

approaches can enhance hardware acceleration and improve energy ef�ciency for

GenAI systems.

Attention Optimization

Transformers have become the backbone of many GenAI models, but their multi-head

self-attention mechanism can dominate runtime and memory usage. Therefore,

researchers have explored a range of strategies to optimize attention on hardware and

algorithmic levels.

Hardware-based.  FlashAttention[108]  reorders attention operations to reduce the

number of reads and writes between GPU high bandwidth memory (HBM) and on-

chip static RAM (SRAM) by splitting queries, keys, and values into smaller blocks,

recomputing attention on-chip during the backward pass, and fusing multiple GPU

kernels into one. Built on this, FlashAttention-2[109]  takes the foundation of memory

ef�ciency and adds better parallelism and work distribution to further increase speed

and GPU utilization, especially for longer sequences. Then, FlashAttention-

3[110]  introduces asynchrony and low-precision computation to further optimize the

attention mechanism for modern GPU architectures, which allows for even higher

performance and ef�ciency, along with reduced error for low-precision (FP8)

computing. Besides these, xFormers[111], a PyTorch-based library, provides a collection

of optimized attention and Transformer blocks, including custom GPU kernels and

memory-ef�cient attention implementations.

Algorithmic-based. Work on sparse attention reduces the quadratic complexity of self-

attention by ignoring parts of the input that do not affect the result signi�cantly. Child

et al.[112] pioneered this approach by limiting attention to strided patterns using sparse

factorizations of the attention matrix to reduce computation cost while maintaining

performance on sequence models. Subsequent techniques like Longformer[113]  by

using a combination of sliding window local attention and task-motivated global

attention, Big Bird[114] by combining random, windowed, and global attention to create

a sparse attention mechanism, and Linformer[115]  by decomposing attention with

linear projections to achieve linear complexity introduced various structured sparsity

patterns. Meanwhile, Choromanski et al.[116] developed performer, which uses random

feature maps to approximate the softmax function, reducing its time complexity from 

 to  .O( )n
2 O(n)
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Frameworks

Deploying GenAI models on edge devices might bring challenges because of limited

computational power, memory, and latency requirements. To address these

constraints, researchers have explored various techniques that simplify computations

at both the graph and operator levels. By fusing kernels, reducing redundant

operations or parameters, and customizing algorithms to the hardware, these methods

enable fast inference for tasks such as large language modeling, super-resolution, and

more.

NVIDIA TensorRT and Apache TVM are pioneered compiler-based optimizations by

combining graph-level fusion and quantization with lower latency. Likewise, Google’s

EdgeTPU and Coral stacks enable rapid deployment of compressed models through

low-power hardware and software stack. TensorRT-LLM[117]  is also a specialized

toolkit for accelerating LLM inference on GPUs, including optimized CUDA kernels for

attention computations, in�ight batching, and quantization.

Beyond these compilers, researchers have developed frameworks customized for

various GenAI workloads. For instance, Yi et al. proposed EdgeMoE[118], an engine

speci�cally optimized for Mixture-of-Experts (MoE) language models. By using

expert-wise bitwidth adaptation, it supports models with a large number of

parameters on edge devices to reduce inference times substantially. Wang et al.

introduced CoreInfer[119], achieving over 10   speedup compared to the Huggingface

implementation through semantic-based sparse activation that identi�es, �xes, and

maintains stable neuron activation patterns at the sentence level. Laskaridis et al.

introduced MELTing point[120], a mobile benchmarking suite designed to evaluate

LLM performance, focusing on energy usage and memory footprints, across

smartphones and Jetson platforms. TinyChatEngine[121]  is also, an on-device

LLM/VLM Inference Library that uses compression techniques to limit memory

budgets while maintaining interactive response times on edge hardware. Furthermore,

Nikoghosyan et al. showed that applying TensorRT to Transformer-based models on

NVIDIA Jetson Xavier yields over 60% latency reduction with negligible accuracy

loss[122].

In addition to language models, solutions target Super-Resolution (SR) and other

vision-based generators. Chen et al. introduced TileSR[123], which splits ultra-high-

resolution images into tiles and selects the ones with the highest upscaling dif�culty;

these tiles are processed in parallel across multiple devices, reducing latency by up to

82% and improving the image quality up to 10% compared to other alternatives such

as Supremo[124]  and MobiSR[125]. Wang et al.[126]  proposed ESHP, which combines a

dif�culty predictor with deep reinforcement learning to distribute SR tasks among

CPUs, GPUs, and NPUs, speeding up SR processing without modifying the original

architecture of the given SR model. Zhao et al. demonstrated a full-stack SR

acceleration framework for embedded GPU devices, which outperformed standard

TensorRT baselines in speed due to dictionary compression and operations

optimization[127].

FPGAs also provide a promising platform for runtime acceleration. Li et al. proposed a

lookup-table (LUT)–based SR pipeline making sharper images while using much less

energy without losing image quality[128]. Other research has combined FFT-based

processing with ef�cient multipliers[129], designed heterogeneous CNN-SNN

architectures[130], or combined FPGA and GPU via PCIe to achieve real-time SR in

microscopic imaging[131]. For video-speci�c scenarios, Kim et al. employed pipeline

and memory optimizations to reach 60  fps on 4K UHD content[132], while Sun et al.

developed RNN compression techniques to manage temporal correlations[133]. On

larger multi-core systems Georgis et al. attained speedups over CPU-only baselines via

×
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parallelization[134], and Liu et al. achieved real-time 4K SR on edge FPGAs through a

DSP-enhanced caching scheme[135]. Finally, several system-level revisions help further

reduce overhead. Fan et al.[136]  leveraged codec-side data to skip redundant decoding

in video SR, improved performance by up to 9.4 . Deformable 3D convolutional

networks, essential in video tasks, were accelerated through tile decoupling and

memory optimization by Zhang et al.[137]. Even resource-limited devices like the

Raspberry Pi can support real-time SR: Osorno-Ortiz et al. integrated 2D-DWT with

parallel interpolation to handle HD images in a short time[138].

Conclusion and Future Work

This work proposed a comprehensive survey regarding deploying Generative AI

(GenAI) on edge devices. It presents a promising path toward reducing latency,

enhancing data privacy, and enabling real-time capabilities in various applications.

This survey has showcased the critical roles of software optimization, hardware

specialization, and on-device inference frameworks in overcoming the resource

constraints typical of embedded systems. Despite these advancements, signi�cant

challenges persist especially regarding model personalization, and security across

distributed edge nodes. By effectively addressing these challenges and combining

these techniques with ongoing optimizations in model design and hardware

acceleration, researchers and practitioners can pave the way for even more ef�cient,

scalable, and privacy-preserving GenAI solutions at the edge.
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