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Generative Arti�cial Intelligence (GenAI) applies models and algorithms such as Large Language

Model (LLM) and Foundation Model (FM) to generate new data. GenAI, as a promising approach,

enables advanced capabilities in various applications, including text generation and image processing.

In current practice, GenAI algorithms run mainly on the cloud server, leading to high latency and

raising security concerns. Consequently, these challenges encourage the deployment of GenAI

algorithms directly on edge devices. However, the large size of such models and their signi�cant

computational resource requirements pose obstacles when deploying them in resource-constrained

systems. This survey provides a comprehensive overview of recent proposed techniques that optimize

GenAI for ef�cient deployment on resource-constrained edge devices. For this aim, this work

highlights three main categories for bringing GenAI to the edge: software optimization, hardware

optimization, and frameworks. The main takeaways for readers of this survey will be a clear roadmap

to design, implement, and re�ne GenAI systems for real-world implementation on edge devices.
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Introduction

Generative Arti�cial Intelligence (GenAI) has become a promising solution in text generation, image

synthesis, and multimodal content creation. These developments often rely on large-scale models such

as Large Language Models (LLMs) that achieve remarkable performance but demand large

computational and memory resources. Traditionally, these models run on powerful cloud servers, which

introduces latency, dependency on network connectivity, and potential privacy risks. As real-time
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applications and data security become ever more critical, there is a growing push to embed GenAI

functionalities directly into edge devices[1][2].

However, implementing high-intensive models on the edge presents signi�cant challenges[3][4][5]. Edge

devices, including drones[6], and autonomous systems[7] bene�t signi�cantly from the GenAI capabilities

on devices. For instance, drones can generate real-time terrain analysis in remote areas, Autonomous

systems can enhance decision-making through local models. Wearable health monitoring could generate

personalized insights from biometric data while ensuring privacy through local data processing. To

support these applications, specialized edge hardware such as NVIDIA Jetson, and Qualcomm AI Engine

have been developed to handle the computational demands of GenAI while maintaining ef�ciency.

This situation calls for innovative approaches in software optimization including model compression,

Neural Architecture Search (NAS). In parallel, hardware optimization including specialized accelerators,

attention optimization, and dedicated frameworks address computational and energy constraints at the

edge[8]. These strategies not only reduce model size and inference latency but also address privacy

concerns when deploying complex models on edge devices[2]. This paper aims to survey existing

methods and provide extensive details on implemented GenAI techniques on edge devices. To the best of

our knowledge, there is no dedicated survey on GenAI at the edge. By reviewing state-of-the-art

techniques from top-tier conferences and journals, this work offers a roadmap for researchers seeking to

apply GenAI in edge. The main category of the paper is organized as follows:

Software Optimization: Discusses key strategies for adapting GenAI models to edge devices,

including model compression methods (pruning, quantization, and knowledge distillation), NAS, and

open-source GenAI models.

Hardware Optimization: Explores hardware accelerators and attention optimization to highlight how

they meet GenAI’s computational demands while addressing power and resource constraints on edge

devices.

Frameworks: Reviews frameworks to improve inference latency, memory, and overall energy

ef�ciency.
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Figure 1. Illustration of the �ow of GenAI at the edge

Software Optimization

Model Compression

The rapid advancement of GenAI models, while ushering in unprecedented capabilities, has also given

rise to increasingly large model architectures that present signi�cant deployment challenges[9]. Early

attempts to address these challenges explored distributed mobile computing systems that could partition

model computation across multiple devices[10][11].

This challenge has since prompted extensive research in model compression techniques, which have

evolved along three principal directions to enable broader deployment and accessibility. Firstly,

quantization techniques have achieved remarkable ef�ciency through reduced precision representations,

particularly through enhanced activation distribution handling and hardware-optimized strategies.

Secondly, methodologies for pruning have advanced from rudimentary magnitude-based techniques to

sophisticated hardware-aware structured approaches, enabling considerable model reduction while

preserving architectural integrity. Thirdly, knowledge distillation has evolved to incorporate progressive

frameworks and multi-teacher architectures, showing particular promise in task-speci�c applications.

Contemporary research emphasizes hardware-aware compression strategies and architecture-speci�c
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solutions. While these advancements have enabled the deployment of foundation models with

competitive performance metrics, the fundamental challenge persists in optimizing the compression-

performance trade-off for edge deployment scenarios.

Quantization. Model quantization has emerged as a critical technique for deploying large-scale GenAI

models on resource-constrained edge devices. Quantization approaches are broadly categorized into

post-training quantization (PTQ) and quantization-aware training (QAT). PTQ methods like OPTQ[12] and

AWQ[13]  directly convert trained model parameters to lower precision formats, while QAT approaches

such as EdgeQAT[14]  incorporate quantization effects during training. PTQ methods are generally

preferred due to their computational ef�ciency, though recent advances in both approaches have enabled

effective compression through sophisticated handling of weight and activation distributions. When

applied to LLMs, unique challenges emerge from their heavy-tailed weight distribution. Methods like

SmoothQuant[15]  and OliVe[16]  address this through distribution smoothing and outlier handling

techniques. Mixed-precision approaches[17] have shown promise by automatically determining optimal

bit widths for different model components based on their quantization sensitivity. Recent work like

OneBit[18]  and BitNet[19]  has pushed boundaries by demonstrating viable 1-bit quantization through

sophisticated distribution-aware schemes. However, signi�cant challenges remain in maintaining

generation quality under extreme compression and developing ef�cient training methods for quantized

LLMs on edge devices[20].

Diffusion models present their own set of quantization challenges, particularly in handling varying

activation distributions across diffusion steps. Approaches like Q-DM[21], PTQD[22], and Q-

Diffusion[23]  tackle the challenge of varying activation distributions across diffusion steps through

adaptive calibration and noise-aware quantization. Specialized temporal-aware quantization methods[24]

[25]  have been developed to handle the unique challenges of the iterative denoising process. Current

research focuses on effectively handling dynamic activation ranges and balancing compression ratios

with generation quality for edge deployment of diffusion models[26].

Pruning. Model pruning methods can be broadly categorized into structured and unstructured

approaches, each with distinct trade-offs between compression ef�ciency and hardware compatibility.

These techniques have shown particular promise in compressing large-scale generative models while

maintaining performance for edge deployment. The �eld of LLM pruning has recently witnessed several

novel approaches. Structured pruning methods like LLM-Pruner[27]  and edge-optimized
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approaches[28]  achieve 2   speedup with minimal performance degradation by removing entire

structural components.Unstructured approaches like SparseGPT[29] enable up to 60% sparsity in large-

scale models, while recent advances in modality-speci�c pruning techniques have shown promising

results across speech, vision, and multimodal domains, with methods like SpeechPrune[30] achieving up

to 80% pruning rates while maintaining performance. Hardware-aware methods have become

increasingly crucial, as exempli�ed by Flash-LLM[31], which achieves 3   inference speedup through

unstructured sparsity-aware system optimization. Semi-structured pruning methods such as E-

Sparse[32]  further advance this direction by leveraging N:M sparsity patterns to maintain hardware

compatibility while achieving high compression rates on edge devices.

In the context of diffusion models, methods like Diff-Pruning[33] achieve approximately 50% reduction

in FLOPs by leveraging Taylor expansion over pruned timesteps while maintaining generative quality.

Specialized approaches like LD-Pruner[34]  implement task-agnostic pruning strategies for Latent

Diffusion Models, while DiP-GO[35]  demonstrates 4.4   speedup on Stable Diffusion without requiring

retraining. Recent work combines gradient-based pruning for mask matrix continuity[36] with strategic

data pruning[37], showing particular promise for edge deployment where both computational ef�ciency

and generation quality are critical[38].

Knowledge Distillation. Knowledge Distillation  (KD) has emerged as a crucial paradigm for deploying

GenAI models on edge devices, with distinct approaches developed for different model architectures to

balance model capabilities with computational constraints. The application of KD to language models has

led to a variety of approaches. These can be categorized into white-box and black-box methods. White-

box KD enables student models to match both �nal predictions and internal representations when the

teacher model is open-source (e.g., LLaMA[39]), while black-box KD works with closed-source models

(e.g., GPT-4[40]) through API calls[41]. Notable advances include MiniLLM[42], which introduces a reversed

Kullback-Leibler divergence objective to stabilize student updates, and instruction-following distillation

approaches that have produced ef�cient open-source models like Vicuna[43] and Koala[44]. Recent work in

instruction-following KD has enabled compact yet capable models through supervised �ne-tuning[45],

while advanced applications like RLAI feedback[46]  demonstrate the potential for model alignment

through distillation. Adaptive distillation methods have further enhanced this �eld by dynamically

adjusting the distillation process based on input complexity, allowing student models to focus learning

where improvement is most needed[47].

×

×

×
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In the domain of diffusion models, KD primarily focuses on accelerating sampling speed to address the

challenge of high inference latency. Progressive distillation[48]  represents an approach that iteratively

halves sampling steps (e.g., from 1000 to 1), enabling ef�cient edge deployment while maintaining

generation quality. Single-step approaches[49]  further compress diffusion teachers into one-step

generators, although this requires careful balance between ef�ciency and generation �delity. Teacher-

free acceleration methods like DPM-Solver[50]  and consistency models[51]  demonstrate effective

inference cost reduction without extensive re-training. Recent advances include two-stage

approaches[52]  for text-conditional models and score distillation sampling[53]  for 3D generation,

showcasing the versatility of distillation in different applications. Also, generative dataset distillation

using models like SDXL-Turbo with class-speci�c prompts has achieved superior images per class ratios

in recent benchmarks[54], offering new possibilities for ef�cient model training and deployment.

Neural Architecture Design

Ef�cient neural architecture design has emerged as a critical research direction to address the increasing

complexity and resource demands of modern models, particularly for edge devices[55][56]. By automating

the generation of network architectures while considering speci�c hardware and constraints,

computational overhead, required memory, and power consumption have been improved, while

maintaining model performance.

Neural Architecture Search (NAS). Neural Architecture Search (NAS)[57][56]  serves as a powerful

framework to automate the design of optimal model topologies with strict latency, memory, or power

budgets. By systematically exploring a prede�ned search space such as varying layer depth, width, or

connection patterns. NAS algorithms can discover specialized architectures that outperform traditional

solutions. In[57], they have proposed the �rst NAS using reinforcement learning (RL) to determine

optimal Recurrent Neural Network  (RNN) parameters. Subsequently, this idea was extended to

Convonotional Neural Network  (CNNs) in[58], where the authors integrated a Sequential Model-Based

Optimization (SMBO) approach with a reinforcement mechanism for cell-based searches to �nd the best

con�guration.

In the context of GenAI, where large models often dominate in tasks such as text generation or image

synthesis, NAS-driven architectures present a promising route to achieve ef�ciency. There are a limited

number of work on NAS in the �eld of transformers[59]. FL-NAS[60]  have proposed an approach which
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leverages LLM to �nd high-performance DNNs for resource-constrained systems. Moreover, work

in[61]  proposed a LLM-based methodology for NAS technique in Edge devices. Puzzle[62]  proposed an

LLM optimized for inference using NAS under hardware constraints, achieving a 2.17x inference

throughput speedup.

Open-Source GenAI models

The recent advancements in reasoning capabilities of models such as DeepSeek-R1[63]  emphasize the

power of open research development. DeepSeek-R1[63] has pro�ted signi�cantly from open-source tools

like PyTorch and Meta’s Llama[39]. One of the key contributions to the advancement in GenAI is open-

source innovations, speci�cally for edge scenarios in which the resources are limited. In these cases,

smaller model sizes and less latency besides not losing performance are the main considerations.

Therefore, researchers explored various compression methods, leading to models like DistilBERT[64],

TinyBERT[65], ALBERT[66], MobileBERT[67], MiniLM[68], and MiniLMv2[69] each using techniques such as

knowledge distillation, parameter sharing, or factorization to make large models smaller while

maintaining strong performance.

Beyond these compression-based strategies that are already covered in the previous sections, novelties in

architecture further improved ef�ciency. Reformer[70] introduced locality-sensitive hashing for attention

and reversible residual layers, enabling near-linear complexity for longer sequences. Meanwhile, GPT-

NeoX-20B[71], LLaMA[39], and LLaMA2[72]  showed how LLMs could be developed and released

collaboratively, making it easier for edge-focused adaptations. Even smaller-scale of these projects such

as TinyLlama[73]  and H2O-Danube-1.8B[74]  now offer compact language models tailored to edge

constraints, continuing the trend of collaborative research. Similarly, research on instruction tuning[75],

which trains models to handle various tasks by exposing them to different instructions, reinforced the

importance of building �exible and open-source foundations for further innovation.

Researchers have further built on open releases to develop conversational systems, including Alpaca[76],

Koala[77], and Vicuna[43], each developed by �ne-tuning LLaMA[39]  on curated datasets, all

demonstrating competitive performance against models like ChatGPT and Bard. These models have also

served as benchmarks for edge-focused projects such as SqueezeLLM[78], which introduces a post-

training quantization framework to compress LLMs for more ef�cient inference, focusing on reducing

memory bandwidth, outperforming methods like GPTQ[79], AWQ[13], and SpQR[80]. In parallel, techniques
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like LoRA (Low-Rank Adaptation)[81]  have reduced the cost of �ne-tuning large models, accelerating

domain-speci�c deployments. Later, QLoRA[82]  tried to �ne-tune a large model on a single GPU by

reducing memory usage by quantizing the quantization constants and using this technique. Taken

together, several open-source LLMs have been developed, and some of them are compressed to reduce

their size and improve ef�ciency. These include MPT-7B[83], which implements a 7B-parameter

architecture designed for commercial applications; DLite[84], which scales from 124M to 1.5B parameters;

and RedPajama-INCITE[85], which spans 3B to 7B parameters. Open-source models and innovations can

be valuable for resource-constraint applications, and be �ne-tuned for speci�c tasks to improve their

performance.

qeios.com doi.org/10.32388/JEU3U0 8

https://www.qeios.com/
https://doi.org/10.32388/JEU3U0


Hardware Optimization

Hardware Accelerators

Accelerator Year Platform Technology Networks Sparsity/Quantization
Peak Energy

Ef�ciency (TOPS/W)

EXION[86] 2025
ASIC

simulator
14nm SD/DiT ✓/ ✓@INT12

HCAEDS[87] 2024
CIM

tapeout
28nm SD - / ✓@INT10/BF16

DMPU[88] 2024
ASIC

tapeout
22nm DDPM ✓/ -

EEDA[89] 2024
ASIC

tapeout
28nm SD - / ✓@HYP8

Cambricon-

D[90]
2024

ASIC

simulator
7nm SD ✓/ ✓@INT3/FP16

AttAcc[91] 2024
CIM

simulator
7nm LLaMA/GPT-3 - / - DGX A100

SpecPIM[92] 2024
CIM

simulator
- LLaMA/OPT - / - A100

ASADI[93] 2024
CIM

simulator
28nm GPT-2/BERT ✓/ - -

MECLA[94] 2024
ASIC

simulator
28nm LLaMA/BERT - / ✓@INT8

STP[95] 2023
ASIC

tapeout
28nm BERT - / ✓@FP4

OliVe[16] 2023
ASIC

simulator
22nm

GPT-

2/OPT/BERT
- / ✓@Adaptive 4bit GOBO[96]

FACT[97] 2023
ASIC

simulator
28nm BERT ✓/ ✓@INT8

11.53

74.34

52.01

4.96

13.34

2.67×

6.7×

7.09

18.1

4×

4.39
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Table 1. Hardware Accelerator for GenAI

Hardware accelerators are typically designed through the software and hardware co-design for speci�c

networks. Algorithmically, data sparsity is enhanced by pruning, and model compression, such as

quantization, reduces network size. On the hardware side, speci�c architectures are designed to bypass

sparse or redundant computations, increase data reuse, and minimize data movement, thus enabling

energy-ef�cient acceleration on edge devices. Generative AI (GenAI) includes GAN, LLM, and Diffusion

models. While extensive hardware work has focused on optimizing GAN models[98][99][100], recent trends

have shifted toward LLM and Diffusion models, driving further hardware research in GenAI. This section

reviews recent efforts in optimizing hardware accelerator for LLM and Diffusion networks, with

representative works summarized in Table 1.

LLM Acceleration LLM models have diverse distributions at the tensor or channel levels, numerous

studies leverage customized data types to accommodate this challenge. For example, ANT[101] introduces

a novel data type and employs an adaptive mechanism to determine the most appropriate type for each

tensor from a prede�ned set. Expanding on ANT, OliVe[16]  proposes an outlier-victim pair approach,

which provides a more precise representation of outlier distributions in LLM models. Both ANT and OliVe

incorporate specialized decoders and multiply-accumulate (MAC) units to optimize their arithmetic

computation processes for LLMs. Some studies focus on reducing redundant computations in LLM

models to improve the energy ef�ciency during inference. STP[95]  proposes a computation-skipping

strategy and dynamic data path recon�guration based on entropy, achieving high energy ef�ciency with

minimal accuracy loss. Furthermore, it has been observed that linear projections contribute signi�cantly

to the memory footprint and latency in LLM models. FACT[97]  introduces an eager prediction method

with a leading-one detector and log-based inner-product estimation, reducing computations in both

attention and linear projections. MECLA[94] surpasses FACT by decomposing large matrices into smaller

sub-matrices to minimize off-chip memory access and re-associating data on-chip for better reuse.

Recently, Computing-in-Memory (CIM) becomes a prominent approach for LLM acceleration. CIM

accelerators offer signi�cant energy ef�ciency gains, particularly for general matrix-matrix

multiplication (GEMM) operations. Existing studies typically leverage CIM architectures to accelerate the

attention mechanism, while relying on CPUs or GPUs to handle other operations. ASADI[93] introduces a
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sparse attention paradigm based on diagonal compression (DIA) format, enabling highly parallel

computation on CIM processors. SpecPIM[92]  accelerates speculative inference in LLM by optimizing

resource allocation in CIM-enabled heterogeneous systems, while AttAcc[91]  accelerates batched LLM

inference on CIM/NPU heterogeneous systems. Given these developments, it is expected that CIM-based

accelerators for LLM models will become more prevalent in the future.

Diffusion Acceleration Diffusion networks have made signi�cant progress recently in various GenAI

tasks, with different network architecture from LLM models. These networks generate images or videos

through multiple iterations of denoising operations, with highly similar images in consecutive iterations.

Consequently, hardware optimizations often leverage inter- and intra-iteration similarity to accelerate

Diffusion networks, typically through differential computing and skipping redundant computations.

Cambricon-D[90]  introduces an approximate ReLU in the Stable Diffusion (SD) network, enabling

differential computing for nonlinear functions and addressing the memory overhead associated with

full-precision nonlinear calculations in traditional differential computing architectures.

DMPU[88]  observes that many pixels exhibit minimal changes between consecutive time steps in

Diffusion models, and thus proposes a semantic-segment sparse convolution along with a trivial

attention exponent inheritance method to skip redundant computations in both the convolution and

attention mechanisms, signi�cantly enhancing the energy ef�ciency. EXION[86] presents an FFN-Reuse

algorithm that can be applied across iterations, along with an improved eager prediction method for

predicting attention scores, which reduces redundant computations and boosts throughput.

HCAEDS[87]  is the �rst heterogeneous CIM chip designed for Diffusion models, incorporating a Sign-

Magnitude radix-8 Booth CIM macro for integer data and a four-operand exponent CIM macro for

�oating-point data, achieving a high energy ef�ciency.

Numerous GenAI hardware studies[90][89][102][103]  have observed that nonlinear functions (such as

softmax, GeLU, etc.) can introduce signi�cant latency overhead during the hardware acceleration. These

studies optimize nonlinear functions to enhance overall throughput. Additionally, some studies[104][105]

[106][107]  have focused speci�cally on optimizing nonlinear functions and have designed specialized

hardware to facilitate network inference. All of these studies indicate a potential research trend on

optimizing nonlinear functions in GenAI networks. Combined with techniques such as eliminating

redundant computations and data compression, these approaches can enhance hardware acceleration

and improve energy ef�ciency for GenAI systems.
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Attention Optimization

Transformers have become the backbone of many GenAI models, but their multi-head self-attention

mechanism can dominate runtime and memory usage. Therefore, researchers have explored a range of

strategies to optimize attention on hardware and algorithmic levels.

Hardware-based.  FlashAttention[108]  reorders attention operations to reduce the number of reads and

writes between GPU high bandwidth memory (HBM) and on-chip static RAM (SRAM) by splitting

queries, keys, and values into smaller blocks, recomputing attention on-chip during the backward pass,

and fusing multiple GPU kernels into one. Built on this, FlashAttention-2[109]  takes the foundation of

memory ef�ciency and adds better parallelism and work distribution to further increase speed and GPU

utilization, especially for longer sequences. Then, FlashAttention-3[110] introduces asynchrony and low-

precision computation to further optimize the attention mechanism for modern GPU architectures,

which allows for even higher performance and ef�ciency, along with reduced error for low-precision

(FP8) computing. Besides these, xFormers[111], a PyTorch-based library, provides a collection of optimized

attention and Transformer blocks, including custom GPU kernels and memory-ef�cient attention

implementations.

Algorithmic-based.  Work on sparse attention reduces the quadratic complexity of self-attention by

ignoring parts of the input that do not affect the result signi�cantly. Child et al.[112]  pioneered this

approach by limiting attention to strided patterns using sparse factorizations of the attention matrix to

reduce computation cost while maintaining performance on sequence models. Subsequent techniques

like Longformer[113] by using a combination of sliding window local attention and task-motivated global

attention, Big Bird[114] by combining random, windowed, and global attention to create a sparse attention

mechanism, and Linformer[115]  by decomposing attention with linear projections to achieve linear

complexity introduced various structured sparsity patterns. Meanwhile, Choromanski et al.

[116]  developed performer, which uses random feature maps to approximate the softmax function,

reducing its time complexity from   to  .

Frameworks

Deploying GenAI models on edge devices might bring challenges because of limited computational

power, memory, and latency requirements. To address these constraints, researchers have explored

various techniques that simplify computations at both the graph and operator levels. By fusing kernels,

O( )n
2 O(n)
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reducing redundant operations or parameters, and customizing algorithms to the hardware, these

methods enable fast inference for tasks such as large language modeling, super-resolution, and more.

NVIDIA TensorRT and Apache TVM are pioneered compiler-based optimizations by combining graph-

level fusion and quantization with lower latency. Likewise, Google’s EdgeTPU and Coral stacks enable

rapid deployment of compressed models through low-power hardware and software stack. TensorRT-

LLM[117] is also a specialized toolkit for accelerating LLM inference on GPUs, including optimized CUDA

kernels for attention computations, in�ight batching, and quantization.

Beyond these compilers, researchers have developed frameworks customized for various GenAI

workloads. For instance, Yi et al. proposed EdgeMoE[118], an engine speci�cally optimized for Mixture-of-

Experts (MoE) language models. By using expert-wise bitwidth adaptation, it supports models with a

large number of parameters on edge devices to reduce inference times substantially. Wang et al.

introduced CoreInfer[119], achieving over 10   speedup compared to the Huggingface implementation

through semantic-based sparse activation that identi�es, �xes, and maintains stable neuron activation

patterns at the sentence level. Laskaridis et al. introduced MELTing point[120], a mobile benchmarking

suite designed to evaluate LLM performance, focusing on energy usage and memory footprints, across

smartphones and Jetson platforms. TinyChatEngine[121] is also, an on-device LLM/VLM Inference Library

that uses compression techniques to limit memory budgets while maintaining interactive response times

on edge hardware. Furthermore, Nikoghosyan et al. showed that applying TensorRT to Transformer-

based models on NVIDIA Jetson Xavier yields over 60% latency reduction with negligible accuracy

loss[122].

In addition to language models, solutions target Super-Resolution (SR) and other vision-based

generators. Chen et al. introduced TileSR[123], which splits ultra-high-resolution images into tiles and

selects the ones with the highest upscaling dif�culty; these tiles are processed in parallel across multiple

devices, reducing latency by up to 82% and improving the image quality up to 10% compared to other

alternatives such as Supremo[124]  and MobiSR[125]. Wang et al.[126]  proposed ESHP, which combines a

dif�culty predictor with deep reinforcement learning to distribute SR tasks among CPUs, GPUs, and

NPUs, speeding up SR processing without modifying the original architecture of the given SR model.

Zhao et al. demonstrated a full-stack SR acceleration framework for embedded GPU devices, which

outperformed standard TensorRT baselines in speed due to dictionary compression and operations

optimization[127].

×
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FPGAs also provide a promising platform for runtime acceleration. Li et al. proposed a lookup-table

(LUT)–based SR pipeline making sharper images while using much less energy without losing image

quality[128]. Other research has combined FFT-based processing with ef�cient multipliers[129], designed

heterogeneous CNN-SNN architectures[130], or combined FPGA and GPU via PCIe to achieve real-time SR

in microscopic imaging[131]. For video-speci�c scenarios, Kim et al. employed pipeline and memory

optimizations to reach 60  fps on 4K UHD content[132], while Sun et al. developed RNN compression

techniques to manage temporal correlations[133]. On larger multi-core systems Georgis et al. attained

speedups over CPU-only baselines via parallelization[134], and Liu et al. achieved real-time 4K SR on edge

FPGAs through a DSP-enhanced caching scheme[135]. Finally, several system-level revisions help further

reduce overhead. Fan et al.[136]  leveraged codec-side data to skip redundant decoding in video SR,

improved performance by up to 9.4 . Deformable 3D convolutional networks, essential in video tasks,

were accelerated through tile decoupling and memory optimization by Zhang et al.[137]. Even resource-

limited devices like the Raspberry Pi can support real-time SR: Osorno-Ortiz et al. integrated 2D-DWT

with parallel interpolation to handle HD images in a short time[138].

Conclusion and Future Work

This work proposed a comprehensive survey regarding deploying Generative AI (GenAI) on edge devices.

It presents a promising path toward reducing latency, enhancing data privacy, and enabling real-time

capabilities in various applications. This survey has showcased the critical roles of software optimization,

hardware specialization, and on-device inference frameworks in overcoming the resource constraints

typical of embedded systems. Despite these advancements, signi�cant challenges persist especially

regarding model personalization, and security across distributed edge nodes. By effectively addressing

these challenges and combining these techniques with ongoing optimizations in model design and

hardware acceleration, researchers and practitioners can pave the way for even more ef�cient, scalable,

and privacy-preserving GenAI solutions at the edge.
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