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Short Communication

Tutorial on Fourier Transform for Ultrafast Optics

Yi-Hao Chen1

1. School of Applied and Engineering Physics, Cornell University, United States

This tutorial is designed for individuals who are new to the �eld of ultrafast optics. It was written in response to the

apparent lack of comprehensive introductions to the basic Fourier transform, extending beyond the �at-phase description.

Additionally, there is a need for complete derivations of several relations involving the Fourier transform, maintaining its

most general formulation. This approach avoids the arbitrary selection of Fourier-transform constants and ensures a

complete understanding. It shows the importance of having Fourier-transform constants as parameters, which I would like

to advocate people to do. Most important of all, I have seen misuse of Fourier transform over my years of discussion in the

lab and from others’ questions since I shared my code publicly on Github. Surprisingly, since people check the correctness of

numerical implementation only by seeing if the simulation result is smooth and if it duplicates the “overall physics,” this

seems to be a widespread problem from my perspective, which can be solved by a simple tutorial (see Sec. 2B). This is why I

hope that this tutorial can help people understand more about the Fourier transform, especially in the context of ultrafast

optics.

Feel me to send me an email if there is any confusion, or you think that there is more to add to this tutorial.

Corresponding author: Yi-Hao Chen, yc2368@cornell.edu

1. Analytic signal

A. Introduction

When we learn ultrafast optics with textbooks, such as Boyd’s Nonlinear Optics[1], they usually start with the �eld equation for

the real-valued �eld:

or simply assume, for the complex-valued �eld:

These two equations make intuitive sense if the �eld is a simple sinusoidal wave that follows   so

that the coe�cient    in Eq. (S1) is just  . However, in general situations of real-valued  , there are in�nite possible

options for complex-valued    that satis�es Eq.  (S1). During nonlinear studies, there are usually conversions between

temporal and spectral components through the Fourier transform. Not correctly de�ning or understanding the decomposition

of the �eld following the form of Eq. (S1) can not only result in a mixed use of Fourier transform of the real-valued   and

complex-valued   (which will be discussed in detail in Fig. S1) but also mislead researchers from obtaining all generated

frequencies, leading to the problem with missing negative frequencies[2]. Therefore, it is important to understand and apply
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the correct decomposition. Here I will introduce the “analytic-signal decomposition,” which decomposes the real-valued

signal into its positive- and negative-frequency components. The positive-frequency part is called the “analytic signal,”

whose complex conjugate is the negative-frequency part of the real-valued signal.

An analytic signal is a complex-valued function that has no negative-frequency part. If    is a real-valued function with

Fourier transform  , then it exhibits the Hermitian symmetry about  .

Thus, there is redundancy if both frequencies are considered; negative-frequency components can be discarded without loss

of information.

We de�ne   to represent the positive-frequency part as the following:

so that

and thus

 is a combination of its analytic signal   and the corresponding complex conjugate, which is the negative-frequency

part of the  .

Since analytic signal of   is the inverse Fourier transform of  ,

Any real-valued signal can be decomposed into its positive-frequency (analytic-signal) and negative-frequency parts, which

underlies the decomposition of Eq. (S1). In addition, this tells us that the Fourier transform of the real-valued �eld    is

di�erent from that of the analytic signal  ; they exhibit di�erent spectral components. Hence, it is crucial to de�ne clearly

what is being used, especially in studies of, for example, four-wave mixing and Raman scattering that involves nonlinear

evolutions of di�erent frequencies. In principle, any derivations of nonlinear optics should start with the real-valued signal,

followed by its decomposition into the “analytic signal.” If a derivation starts directly with a single complex-valued signal

(either the positive- or negative-frequency part), then readers need to be cautious about two things: (1) whether there is any

missing frequency component due to ignoring the complex-conjugate part, and (2) whether there is a deviation of a factor of 

. As an example,[3]  starts with the complex-valued �eld for deriving the Raman-induced index change, which eventually

results in a reported deviation of a factor of   between their theory and experiments. (Correct derivation with analytic signal,
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as well as generalization to an arbitrary polarization, is in[4].) As another example, the third-order nonlinear polarization 

  is apparently di�erent from 

, as    lacks all frequency components that result from

combinations including the negative-frequency components of three  ’s. Therefore,   is not the correct calculation for

the analytic signal    of  . A correct    should be calculated by identifying the positive-frequency part of 

B. O�set frequency 

Applying analytic signal provides bene�ts in numerical computations. Because real-valued signal contains both positive and

negative frequencies, its frequency window should cover both signs of frequency [Fig.  S1(a)]. By extracting    out as in

Eq.  (S1), the Fourier transform of    (to obtain    [Eq.  (S8)]) is equivalent to applying it

with respect to the o�set frequency    [Fig.  S1(b)]. The o�set center of the frequency window, from    to 

  enables a small window covering only around the signal’s spectrum, free from the redundant negative-frequency

components. As an example, a broadband simulation of a Yb-doped �ber laser requires a   window to cover signals

from    without inducing aliasing.1 On the other hand, the frequency window of the real-valued    should be 

  wide for a    ( ) pulse (if we assume the same    coverage around the signal: 

). If   is the pulse’s center frequency,   is called the “slowly-varying” envelope of  .   can be

real-valued if the analytic signal    exhibits no extra phase variation other than sinusoidal waves. Thus, the frequency

window of the analytic signal’s envelope is    times smaller than that of the real-valued signal, allowing a numerical

simulation with a larger temporal sampling period and thus less sampling points. For narrowband simulations, the

computational improvement can be more signi�cant (an improvement factor of    with a small  , the size of the

narrowband-signal’s frequency window). In general,   does not need to be at the pulse’s center frequency. For broadband

nonlinear processes such as vibrational-Raman generation in H2 that creates frequency    apart from the pump

frequency[5][6], or   for cascaded processes[7][8],   should be placed such that the frequency window can cover all

generated frequency components.
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Figure S1. Spectral domain of the Fourier-transform components of (a) the

real-valued signal and (b) the envelope of its analytic signal [Eq. (S1)]. PSD:

power spectral density 

2. Spectral Fourier transform

In this section, we explain the Fourier transform in its continuous and discrete formats. In addition, all constants are

represented as parameters to be compatible with various conventions people in di�erent �elds use. I would also like to

advocate people to derive their equations based on parametrized Fourier transform, as in Eq. (S8). As I will show later, many

relations are dependent on the Fourier-transform convention and its constants. Various conventions out there in the world

(e.g.,    or    [Eq.  (S8)]) can create misleading equations. For example, if an equation has  , we do not know

whether it is dependent on Fourier-transform constants or not; it can come from anywhere, such as the frequency relation 

 that is irrelevant to Fourier transform. Furthermore, losing the information of Fourier-transform constants prevents

people from correctly transforming the equation from continuous to discrete Fourier transform for numerical computations,

as I would show later in Sec. 2C.

Here in this tutorial, the overall trend of notation follows the physical convention whose inverse spectral Fourier transform

follows  , which is the spectral Fourier transform in mathematics or engineering. Note that in

contrast to the spectral Fourier transform, the physical convention ( ) potentially shows that the spatial Fourier

transform   is consistent with mathematical convention; however, we typically do not calculate based on the  -space. Here,

we will focus only on spectral Fourier transform.

A. De�nition

In general, the Fourier transform is de�ned as
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If  , the Fourier transform follows the physical convention; whereas it follows the mathematical convention if it is  . Its

constants satisfy  , which is found with

Since the convolution theorem is a commonly-used relation, we show it below:

The discrete counterpart is

 and   are the continuous and discrete versions of Fourier transform, respectively.   is the number of discrete points. In

the discrete manner,    and  . The time window is  , and the frequency window 

. The angular-frequency spacing  . If the sampling frequency is high enough, 

 and  .

In practice, during numerical computations, we sloppily treat the result from the following discrete Fourier transform (DFT)

simply as Fourier transform:

which di�ers from the Fourier transform [Eq. (S11)] in constants and units:

If we replace variables following   and  , Eq. (S12) becomes
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where  , found with the similar process to Eq. (S9).

The DFT    [Eq.  (S12)] is denoted with an extra “ ” subscript to distinguish it from    of Eqs.  (S8) and (S11).

Therefore, it is important to derive a relationship between   and  , which follows

so that they obtain the same  . For the commonly-used Fourier-transform convention in the laser �eld (and the one we

emphasize in this article),    so that the inverse Fourier transform is consistent with the use of 

  in physical representation. With this convention, the inverse Fourier transform in mathematics

becomes the Fourier transform in physics, so we de�ne  , the constant of the mathematical inverse DFT, such that

Eq. (S15) becomes   in this convention.

B. Important correct application of the Fourier-transform convention

Many physics equations are derived by assuming that the phase follows  , which implies that the Fourier transform

in physics is the inverse Fourier transform in mathematics, i.e.,  . For example in unidirectional pulse propagation

equation:

where the explanation of notations can be found in [9]. Its derivation can be found in the supplement of [4] and we can see that 

 results from

where   represents the envelope of the analytic signal of the real-valued electric �eld  . Some might rewrite it in the

time domain (with a narrowband assumption with Taylor-series expansion around center frequency  ) as

intending to be free from spectral computations. Still, terms with    that results from    are related to the

convention of Fourier transform with  :
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As a result, it is crucial to apply the correct Fourier-transform convention. In nonlinear optics, it follows the physical

convention; i.e.,  use mathematical (MATLAB’s)  �t  for Fourier transform into the spectral domain and use mathematical

(MATLAB’s) �t for inverse Fourier transform into the temporal domain. Some might think that, in numerical computations,

the wrong use of Fourier transform simply creates a signal that is a complex conjugate of the correct one, both following the

same pulse propagation equation. Since the analytic signal, or its envelope, is generally complex-valued, the spectral signal

transformed with mathematical �t is not a complex conjugate of the spectral signal transformed with mathematical i�t. Since 

 is the envelope centering around   [Fig. S1], the wrong convention represents the �eld of the reversed frequency sign 

  that should not follow the same pulse propagation equation as  . For example, the dispersion term 

 should be reversed around  :

In general, a wrong convention of Fourier transform applied to an equation derived with a di�erent convention simply creates

a wrong pulse-propagation result, unless the equation is revised accordingly.

C. Conversion of quantities with physically-useful units between FT and DFT

In this section, we derive several formulae for conversion of physical quantities between Fourier transform and discrete

Fourier transform.

Eq. (S21) leads to the general formulation of the Parseval’s theorem:

With Eq. (S15) and  , we can derive the discrete version of the Parseval’s theorem:

Rewriting the Parseval’s theorem in powers leads to  , where  . Since   has the unit

of “ ,”   has the unit of “ ” [  has a unit of “ ”].

To calculate the spectrum with the unit of “ ” numerically,

by applying Eq. (S15) and  .   leads to  . With the DFT convention we use here (

), it becomes  .

The Parseval’s theorem assumes the unit of energy ( ) after the integral. However, for continuous waves, a unit in terms of

power makes more sense in the frequency domain. With a known time window  , the continuous-wave spectral
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energy in this time window is  , where   is in “ .” Hence,

by use of the relation  .   is in  . This leads to, with Eq. (S15),

which results in    with the DFT convention we use here (note that 

).

In the common model of adding noise photon (e.g., shot noise), the noise is added as a CW background with one noise photon

per frequency mode/bin, or equivalently, with an one-noise-photon spectral distribution ( )   [10][11]

[12][13]. Eq. (S25) leads to

Eq. (S27b) gives   with the DFT convention we use here.

The power spectral density   or   can also be represented in the wavelength domain. First, we derive the relation

which leads to

Because wavelength and frequency have an inverse relation, and the power is always positive, an absolute value is taken in

derivation.   has the unit “ ,” whose CW version [Eqs. (S25) and (S26)] is in “ .”

3. Discrete Fourier transform (DFT)

During operations of DFT in numerical computations, it is sometimes necessary to apply (MATLAB’s) “�tshift” and

“i�tshift,” the o�set of the signal. However, when and how to apply them, especially in di�erent Fourier-transform

conventions, can be confusing. Despite various conventions,  �tshift  is used to shift the signal to the center of the window

(move   or    to window’s center), whether it is in temporal or spectral domain. On the other hand,  i�tshift  is to

cancel the �tshift e�ect and shifts the signal to center at   or  (left edge of the window).   and   represent the

sampling coordinates in the temporal and spectral domains, respectively. It is important to note that the periodicity occurs for

both temporal and spectral domains (Fig. S2). They should not be used simply as a pair of (�t,�tshift) and (i�t,i�tshift) due to

di�erent Fourier-transform conventions. For example, to compute the spectrum under the physical Fourier-transform

convention ( ), we should follow (in MATLAB syntax below)
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√ (S26)

| (ω)| = =AD,CW (ν)/PCW T w− −−−−−−−−−
√ (ν) △ νPCW

− −−−−−−−−−
√

= 1/ △ νT w

J = W / Hz (ν) = hνPnoise

| (ω)|Anoise photon

| (ω)|AD,noise photon

= CF hνT w− −−−−√

= ,
CFD

△ t
hνT w− −−−−√

(S27a)

(S27b)

| (ω)| = =AD,noise photon hν/T w− −−−−−
√ hν △ ν

− −−−−−√

P (ω) P (ν)

c = νλ

⇒ 0 = λdν + νdλ

⇒ dν = − dλ = − dλ
ν

λ

c

λ2
(S28)

∫ P (λ)|dλ| = ∫ P (ν)|dν|

= ∫ P (ν) − dλ = ∫ ( P (ν)) |dλ|∣
∣∣

c

λ2

∣
∣∣

c

λ2

⇒ P (λ) = P (ν)
c

λ2

(S29)

P (λ) J / m W / m

= 0tx = 0νx

= 0tx = 0νx tx νx

= 1cs
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In practice, the time coordinate is placed such that the pulse at the center of the numerical time window locates at    in

real-time ( ) coordinates [Fig.  S2(b)]. Do not confuse it with the pulse locating at    [Fig.  S2(a)]. In principle, the time

coordinate can be placed arbitrarily because numerical computations see only the sampling-point coordinate   or 

Figure S2. DFT conversion. (a) is the “formal” use of DFT when the temporal pro�le   is centered at  . However, in

numerical simulations, it is common to place the pulse at the center of the time window for visualization purpose (b), resulting in a

spectral phase shift that doesn’t a�ect the spectral shape. (c) is the result after �tshift centers the spectrum with respect to the

frequency window. PSD: power spectral density  . Here, the subscript “ ” represents the coordinate of sampling points,

rather than the actual time and frequency coordinates.

Due to the numerical phase-unwrapping process, the temporal position of the pulse can a�ect the acquirement of a smooth

phase relation  . Numerically, phase of a complex number is found within the range of either    or  . Phase

unwrapping is a process that removes the phase jump by adding multiples of   when the phase change between two data

t = 0

t = 0tx

tx .νx

|A(t)|2 t = 0

∼ |A(ω)|2 x

ϕ(ω) (0, 2π] (−π,π]

±2π
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points is larger than a threshold value, typically  [Fig.  S3(a)]. This operation is crucial in phase computations, such as

characterizing the second-order spectral phase    in a pulse to determine the pulse-dechirping strategy (see Sec.  4).

Therefore, it is important to unwrap the phase correctly such that it does not arbitrarily add multiples of   that distorts the

phase relation  . Phase unwrap can go wrong when the phase relation   changes too drastically beyond the threshold

value. The unwrapping operation will attempt to reduce the variation, leading to a kink, followed by a slope of reverse sign due

to continuous reduction of phase by    [Fig.  S3(b)]. Since a temporal o�set of a pulse adds a linear spectral phase 

 [Fig. S2(b)], this extra addition might increase the rate of phase change and trigger the wrong unwrapping operation.

As a result, in ultrafast optics, the fundamental principle is to �rst remove the temporal o�set and place the pulse at 

 (left edge of the time window), as in Fig. 2(a), before applying any spectra-phase computations. The value of temporal

o�set is remembered to recover the pulse position after the operation if necessary. However, if the phase relation inherently

shows a rapid phase change, as illustrated in Fig. 3(b), the only viable solution to accurately unwrap the phase is to enhance

the spectral resolution, which necessitates extending the time window.

π

ϕd2

 dω2

±2π

ϕ(ω) ϕ(ω)

±2π

( ω )cs t0

= 0tx
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Figure S3. Phase-unwrapping process:   (  here, integer array from   to   in MATLAB

syntax). In MATLAB, phase from   is in  . (a) Linear spectral phase:  . Its phase does not vary dramatically

between data points, so phase is correctly unwrapped. (b) Quadratic spectral phase:  . This phase rapidly varies for larger

values of  . Beyond  , the phase change between two consecutive points always exceeds  , constantly triggering phase-

unwrapping operation to add another  . This results in decreasing phase values, ultimately leading to the formation of multiple

parabolic curves. To correctly unwrap the phase, the resolution is increased to   times:   (from   to   with 

 spacing).

Since in nonlinear optics, convolution is commonly used, such as in computations of Raman scattering[14][4], it is worth

bringing it up again. Here, we use single-mode Raman scattering as an example, which has a term 

  in limited conditions (e.g., ignoring the shock-wave e�ect, i.e.,  frequency dependence of

nonlinearities). It follows

ϕ(x) = unwrap(angle(y(x))) x = 0 : 1 : 1000 0 1000

angle(⋅) (−π,π] y = eix/20

y = ei /100x2

x x = 157 π

−2π

10 x = 0 : 0.1 : 1000 0 1000

0.1

A(t) ∝ A(t)(R(t) ∗ |A(t) )∂z |2
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In our convention ( ),  , where the time window  . The

factor of   [Eq. (S30)] is important and can be easily forgotten.

4. Phenomena with complex-valued Fourier transform

Figs.  S4 and S6 shows how the phase a�ects the signal. When the pulse has a �at phase in time domain, it is called “a

transform-limited pulse.” Its temporal and spectral width satisfy a �xed time-bandwidth product: a more-broadband pulse

has a smaller duration. By adding a temporally (or spectrally) varying phase to the pulse, it modulates the signal. For example,

adding a parabolic (second-order) phase to the temporal pro�le of a transform-limited signal creates a chirp, i.e.,  varying

frequency at di�erent temporal slices, broadening the spectrum [Fig.  S4(b)]. The temporal frequency change follows 

, so the phase e�ect to the signal is also dependent on the convention of Fourier transform. Similarly,

adding a parabolic phase to the spectral pro�le increases the pulse duration, which is the “dispersion” e�ect: di�erent

frequencies moves at di�erent speeds for a certain distance, widening the pulse’s temporal pro�le [Figs. S4(c) and S5]. Fig. S6

shows the e�ect of a cubic phase, which broadens the spectral [Fig.  S6(b)] or temporal [Fig.  S6(c)] pro�les with pedestals.

Adding a linear chirp to the pulse to increase the pulse duration [Fig. S4(c)], reducing the peak power, is the basis of the chirp-

pulse ampli�cation[15]  that was awarded the Nobel Prize in Physics in 2018. It enables ampli�cation of an ultrashort pulse

without su�ering from signi�cant nonlinear-phase accumulations due to a reduced peak power.

R(t) ∗ A(t)2 = [F [R(t)] F [|A(t) ]] with Eq. (S10a)
1
CF

F
−1 |2

= ( Δω) [( Δt [R(t)])( Δt [|A(t) ])] with Eqs. (S13b) and (S15)
1
CF

CIF

CIFD

F
−1
D

CF

CFD

FD

CF

CFD

FD |2

= [ [R(t)] [|A(t) ]] ∵ ΔtΔω =Δt

CFD

F
−1
D FD FD |2 2π

N
(S30)

=CFD

1
N

R(t) ∗ |A(t) = [ [R(t)] [|A(t) ]]|2
T wF

−1
D FD FD |2 = NΔtT w

Δt

CFD

Δω(t) = (t)1
−cs

dϕ

dt

qeios.com doi.org/10.32388/JFPRSL 12

https://www.qeios.com/
https://doi.org/10.32388/JFPRSL


Figure S4. DFT conversion of a second-order chirped signal. (a) transform-limited pulse that has only �at phase in time domain. (b)

and (c) add a parabolic phase to the temporal and spectral pro�les, respectively.
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Figure S5. Spectrogram of a parabolically-chirped signal [Fig. S4(c)]. Here, the signal is positively-chirped such that lower-

frequency components are in the temporal leading edge.
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Figure S6. DFT conversion of a third-order chirped signal. (a) transform-limited pulse that has only �at phase in time domain. (b)

and (c) add a cubic phase to the temporal and spectral pro�les, respectively.

Footnotes

1 A rule of thumb for the size of frequency window is that it needs to be around   times as the pulse bandwidth.
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