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This paper focuses on detecting anomalies in surveillance video using keywords by leveraging

foundational models’ feature representation generalization capabilities. We present a novel,

lightweight pipeline for anomaly classi�cation using keyword weights. Our pipeline employs a two-

stage process: induction followed by deduction. In induction, descriptions are generated from normal

and anomalous frames to identify and assign weights to relevant keywords. In deduction, inference

frame descriptions are converted into keyword encodings using induction-derived weights for input

into our neural network for anomaly classi�cation. We achieved comparable performance on the three

benchmarks UCSD Ped2, Shanghai Tech, and CUHK Avenue, with ROC AUC scores of 0.865, 0.745, and

0.742, respectively. These results are achieved without temporal context, making such a system viable

for real-time applications. Our model improves implementation setup, interpretability, and inference

speed for surveillance devices on the edge, introducing a performance trade-off against other video

anomaly detection systems. As the generalization capabilities of open-source foundational models

improve, our model demonstrates that the exclusive use of text for feature representations is a

promising direction for ef�cient real-time interpretable video anomaly detection.

Corresponding author: Thomas Foltz, tjf5667@psu.edu

1. Introduction

In our modern society, there is an increasing need for video anomaly detection to ensure public safety,

prevent crime, and identify environmental hazards. As surveillance capabilities increase, especially in

highly populated locations, there is a high demand for intelligent systems that can ef�ciently process

large amounts of video data to identify anomalies[1]. The sheer volume of data has exceeded the human
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capacity for effective monitoring, which has led the machine learning research community to devote

effort toward developing automated anomaly detection solutions.

Originally, video anomaly detection relied on separating feature extraction from the classi�cation

process. This proved to be limited when handling complex situations in the data; however, it proved

bene�cial as a foundation for emerging methods using deep learning techniques[2]. Many modern

applications now leverage neural networks to learn representations from raw video data. This has been

possible due to the emergence of benchmarks such as UCSD Ped2[3], ShanghaiTech[4], and CUHK

Avenue[5]. These datasets include diverse anomaly scenarios, labeling various events that exclude

anomalies in the training data, and a blend of normal and anomalous events in the test data. This enables

both one-class and binary classi�cation tasks with supervised, semi-supervised, weakly supervised, and

unsupervised learning depending on how the data are preprocessed[1]. Our work only uses the test

dataset due to our supervised binary classi�cation approach. Other commonly used benchmarks include

UCF Crime[6]  and XD-Violence[7], which focus on violent or criminal real-world events. These two

datasets separate the types of anomalous events, allowing models to train speci�cally to identify a

speci�c anomaly event type or to create a multiclass classi�er.

Although the task has improved considerably over the past decade, some issues still hinder its real-world

applicability. One-class classi�cation tasks have dif�culty capturing complexity and diversity between

anomaly types. Since these implementations can only train on normal data, they can become sensitive to

deviations, leading to high false positive rates[2]. Real-time methods have the issue of sacri�cing

accuracy for speed with oversimpli�ed pipelines. In many cases, they still require video sequences as

input, introducing latency that makes them unusable for applications requiring instant recognition of

anomalies.

Another issue with deep learning techniques is that they are typically computationally expensive and

lack interpretability[2]. The “black box” nature makes it dif�cult to interpret why certain examples are

�agged as anomalous, which reduces the user’s trust and ability to re�ne the models. Attempts have been

made to create interpretable systems that use object detection, pose, or trajectories to justify the

predictions. However, the problem is that most of these cannot be implemented in real-time and include

complex data pipelines, rendering them unusable in an application. New methods employing Large

Language Models (LLMs) address the interpretability issue by generating textual explanations for

qeios.com doi.org/10.32388/JG3I10 2

https://www.qeios.com/
https://doi.org/10.32388/JG3I10


anomalies that users easily comprehend. These solutions are complex to implement, still struggle to

provide concise explanations for decisions, and use extensive computing power.

Figure 1. Pipeline Overview. FM abbreviates the foundational models necessary for generating text

descriptions from frame input. TF-IDF abbreviates the Term Frequency-Inverse Document Frequency score,

which we use to weigh keywords.

This paper addresses these issues by employing a novel approach for interpretable video anomaly

detection without reducing real-time performance or requiring large amounts of computing power. Our

approach leverages foundational models’ feature representation generalization capabilities to extract

meaningful keywords from video. We employ a two-stage induction and deduction system as in a similar

LLM-based solution[8].

As seen in Figure 1, we lay out the sequence of events between frame-level input and prediction. Before

test time, the induction stage is performed to preprocess the data and learn feature representations in

keyword weightings. Randomly sampled normal and anomalous frames are passed through our pre-

trained foundational model to output corresponding descriptions of those frames. Next, we take the

normal and anomalous descriptions and pass them through a TF-IDF operation, outputting a

corresponding TF-IDF matrix of scores. This matrix stores values of the top   relevant keywords based onk
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how relevant the word is to its corpora of descriptions. With this information, we derive a vector of

keyword weights based on how indicative those keywords are of an anomaly. In the deduction stage, we

generate frame descriptions identically as in induction, but now the keyword weight vector is used to

convert the frame description into a keyword encoding. For each keyword, if that keyword is present in

the frame description, the corresponding element of the encoding is set to the weight found in the

keyword weight vector. This keyword encoding can be directly passed into the classi�cation network to

output a probability prediction if that frame includes an anomaly. It is important to note that before test

time, some data must be used to train the classi�cation network. After the network has learned the

decision boundary, the model is ready for inference using only the deduction stage of the pipeline.

This approach allows us to reduce the computational overhead of inference due to the minimal feature

space and simple classi�cation architecture, making it suitable for application on resource-constrained

systems. By demonstrating the effectiveness of foundational models for interpretable video anomaly

detection, this work creates new opportunities for developing transparent and trustworthy surveillance

purposes.

The contributions of this paper are as follows:

�. Our �ndings show that a keyword-based approach can potentially identify video anomalies. This

approach increases the user interpretability of decisions, improving transparency and trust in our

model.

�. We introduce a lightweight, two-stage video anomaly detection pipeline based on induction

followed by deduction. During the induction step, normal and anomalous frames are randomly

sampled, from which sets of descriptions are generated. We calculate the term frequency-inverse

document frequency (TF-IDF) score with these two sets to determine weights for the most relevant

keywords. In the deduction step, descriptions are generated on the inference frames and encoded

based on the keyword weights from the induction step. This encoding is then passed into a binary

classi�cation network for the �nal prediction.

�. Our methodology has achieved comparable performance to existing benchmarks while achieving

near real-time inference, reduced model complexity, and decreased memory usage. This

demonstrates the usability of our system for real-world applications that have constrained

computing requirements and demand fast response times.
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2. Related Works

We reviewed current video anomaly detection approaches to identify areas for improvement in our

system. We explored advancements in one-class, real-time, and interpretable video anomaly detection

systems. Then, we thoroughly reviewed the emerging �eld that leverages large-language models’

prediction capabilities for identifying video anomalies. Finally, we looked at some natural language

processing techniques for classifying anomalies in text information. We did this to understand how to

reapply older techniques with emerging technologies to improve current methodologies.

2.1. One-class Classi�cation Methods

One of the original deep-learning-based detection techniques, one-class classi�cation, detects when

events occur outside of distribution. They exploit the vast amount of labeled normal data, unique to other

systems that require labeled anomaly examples during training. One such method follows this idea by

claiming that enhanced inliers and distorted outliers effectively decide anomalies.[9]  They employ dual

reconstructor-discriminator architecture, where the reconstructor learns the concept of the normal class.

This is done to reconstruct the normal samples correctly while distorting the anomalous samples that do

not share the same concepts. The discriminator learns how to differentiate the two reconstructed image

classes and make a prediction. Works such as HF2-VAD[10] focus on the �ow reconstruction of objects in a

frame. They predict the optical �ow of previous frames and fuse that information with the current frame.

A separate reconstructor module uses this information to predict the next frame. An anomaly is detected

if the predicted future frame deviates more than expected, determined by a set threshold. Although the

one-class classi�cation technique has shown high performance, it tends to indicate false positives often

in scenarios where new normal scenarios arise in the data. Additionally, it is dif�cult for people to

understand the criteria determined outside of the normal distribution, making it less interpretable.

2.2. Real-time Methods

Even though many video anomaly detection classi�ers have effective discriminative capability, there

have been efforts toward real-time classi�cation to decrease the dependence on extended temporal

contexts. One approach uses an end-to-end pipeline that learns features directly from raw video data to

train their custom visual feature extractor rather than relying on commonly used pre-trained feature

extractors that most modern methods use[11]. Then, using k-nearest-neighbors (KNN) distances and

uniform frame sampling, they train a lightweight classi�er to predict anomalies in near-real time in a
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small decision window of approximately six seconds. Another approach for inference ef�ciency is

introduced by MULDE[12], by measuring how much feature vectors deviate from the normal distribution

of frames, similar to how many one-class methods function. They train a classi�cation model with

different levels of injected noise into the training data to emulate anomalies. This can be done at the

object or frame level. At test time, they used a Gaussian mixture model to combine these noise levels to

identify different anomaly cases. They achieve near real-time inference due to their simple pipeline,

including a feature extractor, feed-forward network, and Gaussian mixture model.

2.3. Interpretable Methods

Interpretable methods in video anomaly detection have gained interest due to the "black-box" nature of

many classical methods. These new methods aim to increase transparency in the decision-making

process, crucial for understanding and trusting the model outputs. One approach focuses on semantic

embedding using scene graphs[13]. It leverages relationships between objects in a scene to provide

interpretability in the video. Text Empowered Video Anomaly Detection (TEVAD), increases accuracy and

interpretability by fusing textual features with spatio-temporal information[14]. This is achieved using

frame captions to capture events’ semantic meaning and visual features. Another work utilizes attribute-

based representations, representing objects in a scene with velocity and pose information[15]. This

information is then used to determine an anomaly score through density estimation. These interpretable

methods provide valuable information on the decision-making process by incorporating semantic

information, textual features, and attribute-based representations. However, these methods rely on long

temporal chains of information to effectively identify anomalies and newer LLM-based methods for

improving interpretability have emerged in recent years.

2.4. Large Language Model (LLM) Methods

To further advance interpretability while taking advantage of advances in machine learning, researchers

have begun to employ large-language models (LLMs) to detect anomalies in video. One such paper uses

video language models (VLMs) captioning capabilities to identify activities and objects in a scene that

indicate normal and anomalous behavior[8]. They curate a list of rules that indicate which objects and

activities are normal or anomalous. This is done by describing the normal behavior from the normal

frames and with that information identifying the opposite anomalous behavior. With these rules, they

match captions to these rules during inference and use an LLM to reason if anomaly conditions have
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been met. We employ a similar approach for identifying anomalies but introduce a simpli�ed and

explainable implementation for selecting anomaly keywords used in classi�cation. Another practical

approach was proposed by Holmes-VAD , where they leverage LLM capabilities to explain why anomalies

can occur in hour-long video sequences. They achieve this through a multi-modal LLM that encodes user

text prompts, projected visual classes, and patch tokens that the temporal sampler has selected as

noteworthy. While these methods leverage the powerful feature extraction capabilities of large language

and multimodal models, these methods are quite expensive to deploy in practice due to the large compute

requirements necessary, making them mostly unviable for applications on the edge.

2.5. Natural Language Processing (NLP) Methods

Natural Language Processing (NLP) methods have long been employed in classi�cation tasks, extending

into anomaly detection. The Term Frequency-Inverse Document Frequency (TF-IDF) score has proven to

be a versatile and effective approach for this. TF-IDF is a statistical measure that evaluates the

importance of a word within a document relative to a larger corpus. One work applies this scoring

method to classify anomalies in process logs, treating each log entry as a distinct document within the

broader corpus of all logs[16]. This approach enables the identi�cation of unusual terms or patterns that

may signify anomalous behavior. Similarly, in the analysis of network switch logs, TF-IDF has been used

as part of an approach by combining it with the log frequency and the log probabilities to calculate an

abnormal score for different components of the logs, enhancing the overall precision of the identi�cation

of anomalies[17]. TF-IDF is effective for this task because of its ability to emphasize words that deviate

from the norm within a given context, making it well-suited for detecting anomalies.

3. Approach

3.1. Induction

In this �rst stage of the detection pipeline, it is necessary to identify keywords indicative of anomalies.

There are three main steps during induction. We generate frame descriptions by sampling labeled normal

and anomalous frames. They are then passed into a foundational model along with a prompt to generate

the descriptions. These descriptions are separated into two corpora and passed into a term frequency-

inverse document frequency vectorizer. With the output vector, we calculate the difference between the

qeios.com doi.org/10.32388/JG3I10 7

https://www.qeios.com/
https://doi.org/10.32388/JG3I10


frequency of highlighted keywords and normalize it to achieve a �nal weighting vector for use in the

deduction stage.

3.1.1. Frame Description Generation

We selected two foundational models that ful�ll our requirements for frame description generation.

These models must have multi-modal input that allows the user to pass in an image alongside a prompt

since our raw data is split videos for processing at the frame level. Additionally, the model should be

optimized for visual recognition and image reasoning to create meaningful frame descriptions. The

model should be trained with minimal parameters or possess quantization capability to store weights

and perform inference on edge devices. Finally, it is important to utilize open-source weights for the

transparency and reproducibility of our implementation. Therefore, we selected the Llama-3.2-11B-

Vision-Instruct model from Meta[18]  and the MiniCPM-V-2_6-int4 model from openbmb[19], both of

which are available to the public on the HuggingFace platform.

Figure 2. Frame description generation.   represents labeled normal frames with their respective

descriptions   and   represents labeled anomalous frames with their respective descriptions 

 generated by the pre-trained foundational model.

Fnorm

Dnorm Fanom

Danom
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With the selected models, we needed to generate captions that differentiate anomaly cases from normal

scene behavior. To achieve this, we selected n frames randomly from the training data, which we know

only includes normal frame samples. We then selected random frames known to be anomalies from the

test set. This gives us an even sampling of normal and anomaly cases. As shown in Figure 2, we pass

those randomly sampled frames into our selected foundational model to generate the frame descriptions.

This is passed in with the user prompt ‘You are a surveillance monitor for urban safety. Describe the activities

and objects present in this scene.’ The �rst sentence in the prompt provides context to the foundational

model of its task, and the second sentence explicitly asks for activities and objects so that we can extract

meaningful keywords from the descriptions. We determined that sampling 20 normal and anomaly

frames was suf�cient to capture the most in�uential keywords in the corpora without over-�tting the

data.

3.1.2. Corpus Formation

Once we have our two sets of generated frame descriptions, we concatenate the string descriptions in

each set as depicted in equation (5) to create a tuple representing the text corpora C. These corpora of two

strings, one document for normal descriptions and one for anomalous descriptions, are passed into the

TF-IDF vectorizer SKLearn library[20] for calculating the TF-IDF scores.

3.1.3. Term Frequency-Inverse Document Frequency Score

To identify how any term from the corpus relates to a corresponding document, we need to calculate the

Term Frequency-Inverse Document Frequency score, a balance between measuring the frequency of a

term occurring in a document and the amount that term shows up in any of the documents.

{Dnorm}ni=1

{Danom}ni=1

Dnorm_joined

Danom_joined

C

: Set of n description samples from normal frames.

: Set of n description samples from anomaly frames.

= ⋯Dnorm_1Dnorm_2 Dnorm_n

= ⋯Danom_1Danom_2 Danom_n

= { , }Dnorm_joined Danom_joined

(1)

(2)

(3)

(4)

(5)

tfidf(t,d,C) = tf(t,d) ⋅ idf(t,C) (6)

tf(t,d) =
ft,d

∑ ∈dt′ f ,dt′

(7)

idf(t,C) = log
N

|{d ∈ C : t ∈ d}|
(8)
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In equation (6), the overall TF-IDF score of term t in document d within the corpus C is calculated by

multiplying each term’s term frequency score by the inverse-document frequency. In equation (7), we

determine the frequency of term t in document d by calculating the number of times t appears in d

divided by the total number of terms in document d. Finally, in equation (8) we obtain the inverse

document frequency of term t in corpus C, calculated with the logarithm of the total number of

documents N in C divided by the number of documents containing t. After this TF-IDF vectorization

operation on our corpus, we are left with two vectors: one for the scores of terms associated with the

normal descriptions and one for the associated scores of the anomaly descriptions.

3.1.4. Anomaly Keyword Weighting

We derive a normalized difference vector by calculating the difference between the TF-IDF score vectors

of the anomaly documents and the normal documents to identify terms indicative of anomalies. We

normalize this difference vector to ensure that the magnitude of the differences does not skew the

analysis and for stable classi�cation training. The resulting vector highlights the terms more

characteristic of the anomaly frame descriptions than the normal frame descriptions, providing insights

into the keywords that distinguish anomalies.

3.2. Deduction

In this second stage of the detection pipeline, we predict whether an anomaly was found frame by frame.

The deduction stage has two main steps: creating a keyword encoding from the generated frame

description and passing that encoding into a classi�cation model for predicting the anomaly probability.

3.2.1. Keyword Encoding

First, we take a frame from a video we intend to infer. It is passed through the same pre-trained

foundational model with identical user prompting as in induction. The difference is that instead of

forming a corpus with a combination of frame descriptions as in Section 3.1.1, we individually map each

to a keyword encoding, as shown in Figure 3 below.

(t) = = ∀t ∈ Twkeywords

(t)wdiff

∥ ∥wdiff

(t) − (t)wanom wnorm

( ( ) − ( )∑ ∈Tt′ wanom t′ wnorm t′ )2
− −−−−−−−−−−−−−−−−−−−−−−

√
(9)
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Figure 3. Creating the keyword encoding. Description   is generated by passing frame   into the

pre-trained foundational model. Then the description is mapped into a keyword encoding   using the

keyword weights   from the induction stage.

We assign a weight for each keyword in the description to an encoding. This weighting keyword vector 

  is pre-generated in induction. The resulting encoding    re�ects how strongly the

generated frame description is associated with anomalies. The length of this encoding vector is

equivalent to the number of elements in  . If a keyword is absent in the frame description, the

respective component of the encoding is set to zero. This encoding is still interpretable to the user since

we know each keyword’s position in the encoding and weight value. Therefore, each encoding can be

interpreted as the potential abnormality of the frame based on the presence of anomaly-related

keywords.

3.2.2. Binary Classi�cation Model

The keyword encoding   is fed into our binary classi�cation model, designed to predict whether or

not the frame input contains an anomaly. We decided to utilize a simple feed-forward neural network to

satisfy this simple classi�cation task. Our network includes three fully connected layers, as shown in

Figure  4. The input dimension has    neurons, where    is the number of elements in the encoding,

identical to the number of keywords identi�ed in induction. The output layer has a single neuron that

produces the anomaly probability of the frame input.

Ddeduct Fdeduct

Ededuct

wkeywords

wkeywords Ededuct

wkeywords

Ededuct

k k
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Figure 4. Feed-forward network for binary classi�cation.   stands for the fully-connected layer

number  . The input and output dimensions are represented by  , with   for input and   for output. The

dimension size   is based on the number of keywords generated from induction. The probability 

 represents the chance that the inputted keyword encoding is an anomaly.

We train the model using this same pipeline. During this training process, our network learns the

keyword encodings to output the �nal anomaly prediction and effectively learns the patterns and

relationships in the data that indicate anomalies. Once trained, our model can take any keyword

encoding and predict the likelihood that the frame is an anomaly. We then set a threshold the output

must exceed to indicate an anomaly during test time.

4. Experiments and Results

This section will review the datasets selected for benchmarking our proposed method for video anomaly

detection. Then, we will review the setup process of our experiments and the associated design choices.

Next, we discuss the evaluation metrics necessary for measuring the success of our method.

Classi�cation results are reported and compared to other video anomaly detection methods. Finally, we

compare qualitative features between different approaches and demonstrate the interpretability of our

process with an example.

FC − n

n (i, o) i o

k

P(A)
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4.1. Video Anomaly Detection Datasets

In VAD, datasets are typically created from videos split into sequences of frames. These frames typically

blend normal activities and abnormal activities or unusual events[1]. Most frames commonly include only

normal activities since it is dif�cult to capture many anomalies due to the infrequency of their

occurrence. Regardless, these datasets provide an excellent resource for models to differentiate routine

occurrences from abnormal events. The three datasets we use, UCSD Ped2, ShanghaiTech, and CUHK

Avenue[3][4][5], are commonly used to develop robust video anomaly detection. Examples are included

below in Figure 5.

Figure 5. VAD benchmark examples. These include UCSD Ped2[3] (left), ShanghaiTech[4] (center), and the

CUHK Avenue[5] (right) datasets. Images in the top row depict normal occurrences, and the bottom row

depicts anomaly occurrences.

The UCSD Ped2 dataset was gathered from a stationary camera mounted overlooking a pedestrian

walkway at the University of California - San Diego campus. The dataset contains 16 videos for training

and 12 videos for testing, including 12 abnormal events[3]. The video should contain only pedestrians in

the normal setting. Therefore, abnormal events like bikers, skaters, or cars can be described as any non-

pedestrian entity on the walkway. Frame-level and pixel-level annotations are included, but we only

utilize the frame-level annotations. UCSD Ped2 is a baseline for video anomaly detection because of its

simplistic representation of an environment that lacks complex anomalies. However, many surveillance

applications have a narrow scope like the one portrayed in this dataset, making it a suitable choice for

testing detection effectiveness.
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An alternative for video anomaly detection is the CUHK Avenue dataset, capturing scenes from an avenue

at the Chinese University of Hong Kong. This dataset includes 16 training and 21 testing videos with 47

abnormal events, including loitering, throwing objects, and running[4]. The advantage of this dataset

comes from the increased complexity compared to UCSD Ped2 while maintaining well-de�ned individual

anomalies. It is also worth noting that it includes additional complexity from camera shake and

infrequent normal behavior in the dataset, which is important for measuring model robustness.

Created from scenes at the Shanghai Tech (SHTech) University Campus, the SHTech dataset provides

various anomaly scenarios. Unlike the previous two datasets, this SHTech contains 13 scenes of multiple

lighting conditions and camera angles[5]. There are 130 abnormal events with 274,515 training frames

and 42,883 testing frames, making this signi�cantly more signi�cant than most video anomaly detection

datasets. This allows us to test the adaptability of anomaly detection methods against a wide range of

possible anomalies while providing more realistic scenarios compared to UCSD Ped2 and CUHK Avenue.

4.2. Experimental Setup

Using the Llama-3.2 Vision-Instruct-11B[18]  foundational model, we employ quantization for frame

description generation to reduce computational and memory requirements. We convert the model’s 16-

bit �oat precision to 4-bit integer precision using Huggingface’s BitsAndBytesCon�g function. This

allows us to achieve faster inference for near-real-time prediction on resource-constrained devices when

we deploy our system.

To obtain keywords that generalize the normal and anomalous behavior of the datasets, we determined

that randomly sampling 20 videos each for both normal and anomalous frames performed well. This is

because enough frames were sampled to learn typical behaviors from all the dataset’s videos without

over-�tting to any one speci�c occurrence in the videos. We omit these 40 randomly selected frames

during classi�cation model training/testing to maintain data integrity.

We employ the Scikit-Learn[20] library’s TFidfVectorizer function for converting the corpus into a TF-IDF

score matrix. We utilize function arguments to simplify extracting meaningful keywords from both

corpora. The �rst one we set is ’stop_words’. In NLP, words such as "the", "and", "is", and "or" are

considered to be insigni�cant to the meaning of the sentence. Therefore, when we �ag this argument, we

omit such words from consideration for anomaly keywords, allowing our keyword weights to focus on

critical parts of the frame description. Next, the TFidfVectorizer will enable us to set a ngram_range from

one to three. N-grams are collections of n successive pieces of text. In our implementation, we maintain
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the default value of one to consider each keyword independently. This also increases the keyword

encoding speed in deduction since we don’t have to search the text for sets of words. An argument called

max_features is used to limit the number of words generated in the TF-IDF score matrix and, in our case,

the number of keywords in our encodings. We limit this amount to 100 for the more straightforward

UCSD Ped2 dataset and 200 for the more complex CUHK Avenue and SHTech datasets. The �nal

arguments we employ are the min_df and max_df values. Since the TF-IDF score is between 0 and 1, we

can adjust these limits to only output values in the matrix between these min_df and max_df values. In

our implementation, we set the max_df value on the UCSD Ped2 dataset to 0.95 for better performance

and maintain the 0 to 1 range for the CUHK Avenue and UCSD Ped2 datasets.

Next, we made some design decisions for training and testing the binary classi�cation model. We use a

weighted Binary Cross-Entropy loss to address the common class imbalance issue in these video anomaly

detection datasets. The positive class weight for each dataset was calculated as the inverse proportion of

anomalous samples within the training set to provide further weight to the uncommon anomaly class

during training. The model was initialized with the AdamW optimizer using a learning rate and decay

rate of 0.001. To decrease the chance of over�tting, we employ a 5-fold cross-validation. Each fold was

trained for a maximum of 20 epochs, and early stopping was used if the validation loss did not decrease

for three consecutive epochs. We used custom batch sizes speci�c to the datasets, with 200 for UCSD

Ped2, 1000 for CUHK Avenue, and 2000 frames for SHTech. The model with the best performance across

the validation folds was selected for evaluation. We used 80% of the frames for training and 20% for

testing.

4.3. Evaluation Metrics

For most implementations of video anomaly detection, the frame-level area under the receiver operation

characteristic (AUROC) is used to evaluate the ground truth labels. AUROC measures how well a

classi�cation model can distinguish the positive and negative class in binary classi�cation by plotting

the True Positive Rate (TPR) against the False Positive Rate (FPR). VAD employs this metric over accuracy

because of its improved reliability when dealing with imbalanced datasets, where one class occurs more

often than the other, which is common in VAD datasets. AUROC typically comes in two forms: micro-

averaged, where the score is computed on all frames from all the videos, whereas the macro-averaged

form computes the score separately for each video and then takes the average of them[13].
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4.4. Ablation Study

We evaluate the impact of the foundational model choice on anomaly detection performance, by

conducting an ablation study comparing the Llama-3.2 Vision-Instruct-11B[18]  and OpenBmb Mini-

CPM[19] models. Table 1 depicts our results on the UCSD Ped2, ShanghaiTech, and CUHK Avenue datasets.

UCSD Ped2[3] ShanghaiTech[4] CUHK Avenue[5]

Vision-Instruct-11B[18] 0.865/5.77s 0.753/5.17s 0.742/5.38s

Mini-CPM[19] 0.865/2.43s 0.707/2.09s 0.604/2.12s

Table 1. Ablation study results. Each cell shows the AUROC (%) / inference speed in seconds per frame for

different foundational models and datasets.

These results show a trade-off between detection accuracy and speed. Both models achieve comparable

performance on the UCSD Ped2 dataset, but Vision-Instruct-11B performs noticeably better on the more

complex ShanghaiTech and CUHK Avenue datasets. Speci�cally, Vision-Instruct-11B achieves ROC-AUC

scores of 74.2% and 75.3% on ShanghaiTech and CUHK Avenue compared to Mini-CPM’s 60.4% and

70.7%. This can be explained by the increase in detail in Vision-Instruct’s frame descriptions which allow

it to capture more subtleties compared to Mini-CPM. The improved accuracy and detail come at the cost

of computational overhead and speed due to Vision-Instruct’s longer generation times. Mini-CPM

exhibits signi�cantly faster inference across all of the datasets, slightly above two seconds per frame

compared to Vision-Instruct’s �ve or six seconds per frame. Mini-CPM also defaults to using 4-bit int

precision and fewer parameters than Vision-Instruct-11B, making it more viable on constrained systems.

Therefore, the choice of a foundational model depends on the speci�c requirements of the application. If

high accuracy is critical, even at the expense of computational speed, Vision-Instruct-11B is the better

option. Likewise, if real-time performance or resource constraints are critical, Mini-CPM offers an

alternative with a reduced computational footprint at the cost of a potential accuracy decrease on

complex scenarios.
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4.5. Classi�cation Results

As seen in Table 2, we compare the frame-level AUROC between our method and multiple state-of-the-

art approaches across the three selected benchmark datasets: UCSD Ped2, ShanghaiTech, and CUHK

Avenue[3][4][5]. Our results demonstrate that while Video Anomaly Detection with Structured Keywords

(VADSK) doesn’t outperform most advanced SOTA methods, it achieves competitive performance in

certain scenarios, such as on the ShanghaiTech dataset, where it achieves an AUROC of 75.3%. This is

comparable to methods such as HF2-VAD with 76. 2% and exceeds Toward Interpretable VAD (68. 9%). It

is important to understand that our results on the UCSD Ped2 and CUHK Avenue datasets still

underperform the top-performing methods, which achieve scores above 90%.

Our performance disparity between UCSD Ped2 and the other two benchmarks can be explained by their

increased anomaly event complexity, indicating that our method is better suited for handling simpler

anomaly events and that there is room for improvement in our method’s ability to generalize across

many diverse anomaly contexts.

UCSD Ped2[3] ShanghaiTech[4] CUHK Avenue[5]

HF2-VAD[10] 0.993 0.762 0.911

Towards Interpretable VAD[13] - 0.689 0.790

TEVAD[14] 0.987 0.981 -

Attribute-based VAD[15] 0.991 0.859 0.937

MULDE[12] 0.997 0.864 0.931

AnomalyRuler[8] 0.965 0.852 0.822

VADSK (ours) 0.865 0.753 0.742

Table 2. Frame-level AUROC (%) Comparison

4.6. Qualitative Comparison and Analysis

While the quantitative performance of our approach doesn’t outperform state-of-the-art methods across

the datasets, as seen in Table 2, the signi�cance of our approach is how we developed a memory-
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ef�cient, interpretable system with real-time inference capability. The methods we compare against ours

have some, but not all, of these necessary traits, as depicted in Table 3.

Interpretable Real-time Memory-ef�cient

HF2-VAD[10]
✗ ✗ ✗

Towards Interpretable VAD[13]
✓ ✗ ✓

TEVAD[14]
✓ ✗ ✗

Attribute-based VAD[15] ✓ ✗ ✗

MULDE[12]
✗ ✓ ✓

AnomalyRuler[8] ✓ ✗ ✗

VADSK (ours) ✓ ✓ ✓

Table 3. Qualitative Comparison

Interpretability is an important aspect of our system, de�ned by the user’s ability to interpret the

extracted features and understand how they are used in the classi�cation decision-making process.

Typically, this is done with textual information incorporated into the pipeline[8][13][14]  or with visual

information such as velocity and pose[15]. Our system is interpretable since we use frame descriptions

and encode them based on pre-de�ned keyword weights that are transparent to the user. As seen in

Figure 6, it is possible for the user to view the steps used in outputting the �nal prediction and adjust the

keyword encoding or foundational model for frame description generation for improved results. Such

transparency is vital in scenarios where understanding the reason behind an anomaly is equally

important as detection.

Another advantage our system provides is the near real-time inference. We de�ne real-time systems as

the ability to run inference with minimal latency on individual or windows of frames[12], compared to

inputting the entire video at once to generate a prediction. Our approach is real-time because we generate

descriptions for each frame, pass in the respective keyword encoding one at a time during inference, and
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receive predictions at most a few seconds after input. This proves valuable in applications that need

immediate or rapid responses to detected anomalies.

Lastly, our system maintains memory ef�ciency during the induction and deduction stages. We de�ne

memory-ef�cient systems as those that do not require the storage of temporal information and do not

run expensive feature extraction processes in parallel with one another[12][13]. Our approach is memory-

ef�cient since we do not require temporal information and use one sequential process for feature

extraction and classi�cation. Most of our computational overhead comes from the quantized foundation

model, which generates initial frame descriptions from the inputted frame. This ef�ciency is necessary

for many video anomaly detection systems since they are deployed in resource-constrained

environments and must be scaled for large-scale surveillance systems.

Combining these three traits - interpretability, near real-time inference, and ef�ciency makes VADSK a

practical solution for video anomaly use cases that require these critical capabilities at the cost of

decreased performance against SOTA methods. Our work, therefore, represents an essential contribution

by offering a more balanced approach that addresses these key considerations for the real-world

application of video anomaly detection systems.
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Figure 6. Interpretable Inference. The heatmap (right) visualizes a keyword encoding for classi�cation

derived from the frame description (center-left). The frame description was generated by passing the frame

(top-left) into the MiniCPM foundational model[19]. The different colors in this heatmap represent different

weight values between 0 and 1. Finally, the result is a probability (bottom-left) that an anomaly has occurred.

5. Conclusion

This paper presents a novel approach to video anomaly detection using structured keywords,

demonstrating the potential for exclusively using text-based features for detection. We developed a

lightweight interpretable pipeline for video anomaly detection consisting of an induction and deduction

stage. Our method achieves comparable performance to state-of-the-art methods on certain benchmarks

and demonstrates the feasibility of real-time inference without temporal information. Our performance

gap on more complex datasets, such as CUHK Avenue and ShanghaiTech, shows that there is still more
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room for improvement. Our work has broader implications. The increased interpretability could improve

trust and adoption of video surveillance systems for public spaces and critical infrastructure. Our simple,

lightweight pipeline can make such systems suitable for edge devices with limited computational

resources or large-scale networks, enabling adoption in environments previously limited by hardware

constraints or scalability issues. Finally, our near real-time inference allows for immediate response

times to anomalous events, which can be critical in detecting security threats or other emergencies.

For future work, improving the keyword generation and selection process would be worthwhile. The

selection process could include advanced natural language processing techniques for selecting nuanced

keywords, dynamically updating the keyword selection from patterns emerging in the video footage, or

generating domain-speci�c keywords depending on the particular environment. Experimenting with

different foundational models and classi�cation architectures would help improve the frame description

quality and discriminative capabilities. Finally, it could be bene�cial to test the effectiveness of our

method on specialized domains such as industrial safety, healthcare, or traf�c to investigate the

effectiveness of our method in real-world scenarios. By leveraging the power of foundational models and

natural language processing, we have opened up new possibilities for video anomaly detection to be

deployed in real-world scenarios, paving the way for intelligent and responsive surveillance for

improving urban safety.
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