Web-Based Crime Management System for Samara City Main Police Station

Demelash Lemmi Ettisa¹, Minota Milkias¹

¹ Samara University (SU), Ethiopia

Funding: No specific funding was received for this work.
Potential competing interests: No potential competing interests to declare.

Abstract

Crime is a human experience, and it must be controlled. The Samara town police station plays a significant role in controlling crime. However, the management of crime activities is done manually, which is due to the lack of an automated system that supports the station workers in communicating with citizens to share information and store, retrieve, and manage crime activities. To control crime efficiently, we need to develop online crime management systems.

This project, entitled "Web-Based Crime Management System," is designed to develop an online application in which any citizen can report crimes; if anybody wants to file a complaint against crimes, they must enjoy online communication with the police. This project provides records of crimes that have led to disciplinary cases in addition to being used to simply retrieve information from the database. The system implemented is a typical web-based crime record management system based on client-server architecture, allowing data storage and crime record interchange with police stations.

Demelash Lemmi Ettisa¹,¹ and Minota Milkias²
Chapter One

1. Introduction to the Study

The “Crime Management System” is a web-based website for online complaining and computerized management of crime records (Khan et al., 2008).

A criminal is a popular term used for a person who has committed a crime or has been legally convicted of a crime. "Criminal" also means being connected with a crime. When certain acts or people are involved in or related to a crime, they are termed as criminal (Wex, 2023).

Samara City's main police station is located in Samara City, within the Afar Regional State. It was established in 1984 E.C. with the purpose of protecting local communities from criminal activities. The Samara City police station is situated near the diesel suppliers in Samara City. In the first phase, there was a small number of police members, including commanders, inspectors, and constables. But recently, more than 170 police members have been employed. It is a well-organized police station that serves in crime prevention; the detection and conviction of criminals depend on a highly responsive manner. The effectiveness of this station is based on how efficient, reliable, and fast it is. As a consequence, the station maintains a large volume of information. To manage their information requirements, the station is currently using an information system. This system is manual and paper-based, where information is passed hand-to-hand, and information is kept in hard-copy paper files stored ordinarily in filing cabinets. Despite the relevance of their information system, it poses several challenges in the management of information, including an ever-increasing paper load, difficulty in enforcing file access controls, and cases of missing files and information.

To have a peaceful life, we need a well-organized law enforcement system. In our city, Samara, we have very good facilities in the law enforcement sector. However, due to a lack of facilities, some work cannot be done in a very good way. The widely employed CMS method in Samara City is the manual process. This approach entails the use of paper files in the documentation of criminal information. For this reason, a website will be produced for the Crime Management System. The main authority is given to the administrator. Next is the main module of the system, which is the crime module. In this way, all the crime information will be stored in the database. First, complaint details will be added to the system, and then...
Station employees will check if the complaint is related to a crime or law and order. The researcher focuses on a crime management system to provide services based on a computerized or web-based system for the main police station in Samara. It also emphasizes computerized work on many activities, especially recording and reporting crime information. The researcher will help to facilitate an easy crime management system by making it reliable and efficient by implementing the loss of many crime works means web-based through the crime parts of the Samara City main police station.

The aim of the proposed system is to develop a system with improved facilities. The proposed system can overcome all the limitations of the existing system. The system provides proper security and reduces manual work.

- Security of data.
- Minimize manual data entry.
- Better service.
- User-friendly and interactive.
- Minimum time required.
- Changing the manual system into an automated system.

1.1. Statement of the Problem

The police station record management system is a project designed with the aim of maintaining all the records and details related to a police station in order to increase efficiency. As a result of making it easier to manage and administer a police station, this record management system makes the management and administration of a police station easier and more effective. Every country has always placed the safety and protection of human rights at the top of its priorities, since without them no country can exist. It is the responsibility of every country's government to protect the freedom and rights of all human beings without discrimination so that every individual can lead his life with his own choice without violating the rules and regulations set by the government of that country (Fluchtplan erstellen, 2023).

The existing system of the Samara Police Station crime record management is a manual system. With the existing system, all activities are performed manually; there is no computerized system like a database or website. Files are manually stored, moved, and processed from one section to another. Reports are manually prepared and delivered to the appropriate unit. In the existing system, it's very difficult to retrieve any record information because different records are written in paper-based books or agendas. The problems in the existing system are:

- **Limitations on crime recording**: Recording crime information manually.
- **Limitation on System Retrievals**: The information is very difficult to retrieve, and finding particular information, like searching for crime detail information, is challenging.
- **Problem with information storage**: The information generated by various transactions takes time and effort to be stored in the right place.
- **Problems with updating records**: Various changes to information, like crime details, are difficult to update.
• **More manpower required:** Many police officers are needed to handle crime.
• **Time-consuming:** It is time-consuming to record crime.
• **Consumes a large volume of paperwork:** It requires much paper to record a crime file.
• **Lack of security and space:** There is no security for data because it is paper-based and has no password.
• **Report generation latency:** There is an overlap of crime records from others.
• **Poor inter-station sharing and connectivity.**

Therefore, the main objective of this project was to solve the entire above-mentioned problem by developing a web-based crime management system for the Samara city police station.

1.2. Objective

1.2.1. General Objective

The general objective of the project is to develop a web-based crime management system for Samara city main police station.

1.2.2. Specific Objectives

The specific objectives for our project are:

• Make a plan for how to carry out our project accordingly.
• Gather or collect data.
• Analyze the gathered data.
• Design the system based on the specified requirements.
• Develop an interactive user interface.
• Identify the functional and non-functional requirements.
• Implement the system based on the system design.
• Test to check the availability of the project.
• Finally, deploy the system in the working environment.

1.3. Significance of the System

The significance of this project will be:

• Providing a web-based crime reporting system for police stations.
• Reducing errors by suggesting appropriate actions for the recorded personal data.
• Giving efficient service within the time limit.
• Effective manipulation in terms of cost.
• Ease of use, updating, and maintenance.
Facilitating the accessibility of information.

1.4. Data gathering

To gather accurate data from the concerned body, the researcher used the following fact-finding techniques:

- **Interview:** In order to gather complete and appropriate information for the proposed project, the team selected a person to interview about the organization, consisting of inspectors and secretaries, to get necessary information that is stated in the background of the project, like the existing problems and costs, such as salary.

- **Document Analysis:** To get historical information about the organization's activities and to know the organization's rules and regulations, the team tried to analyze as many documents as possible that were relevant to the new system.

- **Observation:** To get first-hand, accurate information about how the existing system works, the team observed the current system directly and found the pros and cons of the present system.

1.5. Design Methodology

The team decided to use object-oriented methodology (a system development approach that allows the reuse of existing components) for the following reasons:

- It is known to the group members.
- It is easier to maintain.
- There is ease of understanding object-oriented models due to a consistent underlying representation throughout the development process.
- There is ease of modification and extensibility of object-oriented models.
- There is no separation between data and processes, unlike in structured analysis methodology, which treats data and processes separately.

From the development method, we would use prototyping, and from the **testing method**, we would use integration and system testing.

Design Tools:

- Deployment diagram
- Design class diagram

1.5.1. Analysis Methodology

The analysis approach used is object-oriented analysis (OOA). This method was selected because "object-oriented analysis is a method of analysis that examines requirements from the perspectives of the classes and objects found in the vocabulary of the problem domain." The primary tasks in object-oriented analysis (OOA) are identifying objects, organizing the objects by creating an object-oriented model diagram, and defining the behavior of the objects. Here,
common models used in OOA are use cases and object models.

The team looked at the problem domain with the aim of producing a conceptual model of the information that exists in the area that will be analyzed. The team selected users who use the system and tried to refine how the users communicate with each other. This model includes the functions of the system (use case modeling), identifies the business objects, organizes the objects, and also the relationships between them, and finally models the behavior of the objects.

Analysis Tools:
- Class diagram
- Use case diagram
- Sequence diagram
- Activity diagram

1.5.2. Hardware and Software to Be Used for Implementation

The software requirements specification is the single most important document in the software development process. The following are software requirements:

- **XAMPP Server, MySQL, Editor, Edraw Max and Microsoft Office Visio, Browser, Microsoft Office Word 2010, Microsoft PowerPoint 2010.**

Hardware requirements are the tangible and visible components that are necessary to develop a system. **Hardware Tools that were used to develop this project are:**

- Computers, Flash Disk (8GB), Pen and Paper, Mobile, Camera, Hard Disk

Chapter Two

2. System Modeling

System modeling is the process of developing abstract models of a system, with each model presenting a different view or perspective of that system. It is about representing a system using some kind of graphical notation, which is now almost always based on notations in the Unified Modeling Language (UML). Models help the analyst to understand the functionality of the system and are used to communicate with customers.

2.1. Use Case Identification

A use case describes the functionality that a system is supposed to perform or shows by modeling. Each use case describes a possible scenario of how the external entity interacts with the system. That means it interacts with the entire
system for external users. In modeling use cases, each use case describes the interaction between the actors within the system boundary. A Use Case describes the sequence of actions that provides a measurable value to an actor, is drawn as a horizontal ellipse, and contains the use case name inside the ellipse.

In the following table, we attempt to list the use case ID, the use case name, and its description.

<p>| Table 1. Use Case Identification |</p>
<table>
<thead>
<tr>
<th>Use case ID</th>
<th>Use case Name</th>
<th>Include/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uc1</td>
<td>Create Account</td>
<td>Login</td>
</tr>
<tr>
<td>Uc2</td>
<td>View User Account</td>
<td>Login</td>
</tr>
<tr>
<td>Uc3</td>
<td>Update account</td>
<td>Login</td>
</tr>
<tr>
<td>Uc4</td>
<td>View user Activities</td>
<td>Login</td>
</tr>
<tr>
<td>Uc5</td>
<td>Take backup</td>
<td>Login</td>
</tr>
<tr>
<td>Uc6</td>
<td>Restore backup</td>
<td>Login</td>
</tr>
<tr>
<td>Uc7</td>
<td>Assign placement for police</td>
<td>Login</td>
</tr>
<tr>
<td>Uc8</td>
<td>View employee</td>
<td>Login</td>
</tr>
<tr>
<td>Uc9</td>
<td>View comment</td>
<td>Login</td>
</tr>
<tr>
<td>Uc10</td>
<td>View nomination</td>
<td>Login</td>
</tr>
<tr>
<td>Uc11</td>
<td>Post missing criminals</td>
<td>Login</td>
</tr>
<tr>
<td>Uc12</td>
<td>Post notice</td>
<td>Login</td>
</tr>
<tr>
<td>Uc13</td>
<td>View criminal report</td>
<td>Login</td>
</tr>
<tr>
<td>Uc14</td>
<td>View placement</td>
<td>Login</td>
</tr>
<tr>
<td>Uc15</td>
<td>Register criminal</td>
<td>Login</td>
</tr>
<tr>
<td>Uc16</td>
<td>View nomination</td>
<td>Login</td>
</tr>
<tr>
<td>Uc17</td>
<td>Send account request for complaint</td>
<td>Login</td>
</tr>
<tr>
<td>Uc18</td>
<td>View order</td>
<td>Login</td>
</tr>
<tr>
<td>Uc19</td>
<td>View complaint request</td>
<td>Login</td>
</tr>
<tr>
<td>Uc20</td>
<td>View criminal</td>
<td>Login</td>
</tr>
<tr>
<td>Uc21</td>
<td>Register complaint</td>
<td>Login</td>
</tr>
<tr>
<td>Uc22</td>
<td>Order preventive police</td>
<td>Login</td>
</tr>
<tr>
<td>Uc23</td>
<td>Register witness</td>
<td>Login</td>
</tr>
<tr>
<td>Uc24</td>
<td>Register Accused</td>
<td>Login</td>
</tr>
<tr>
<td>Uc25</td>
<td>Register Accuser</td>
<td>Login</td>
</tr>
<tr>
<td>Uc26</td>
<td>Register first information report</td>
<td>Login</td>
</tr>
<tr>
<td>Uc27</td>
<td>Order preventive police</td>
<td>Login</td>
</tr>
<tr>
<td>Uc28</td>
<td>Register employee</td>
<td>Login</td>
</tr>
<tr>
<td>Uc29</td>
<td>Update employee</td>
<td>Login</td>
</tr>
<tr>
<td>Uc30</td>
<td>View employee</td>
<td>Login</td>
</tr>
<tr>
<td>Uc31</td>
<td>Send complain</td>
<td>Login</td>
</tr>
<tr>
<td>Uc32</td>
<td>View complain response</td>
<td>Login</td>
</tr>
<tr>
<td>Uc33</td>
<td>View missing criminal</td>
<td>--------</td>
</tr>
<tr>
<td>Uc34</td>
<td>Give nomination</td>
<td>--------</td>
</tr>
<tr>
<td>Uc35</td>
<td>Give comment</td>
<td>--------</td>
</tr>
<tr>
<td>Uc36</td>
<td>Login</td>
<td>--------</td>
</tr>
<tr>
<td>Uc37</td>
<td>Logout</td>
<td>Login</td>
</tr>
</tbody>
</table>

2.2. Use Case Diagram
A UML use case diagram shows the relationships among actors and use cases within a system. A use-case diagram is a graphic representation of the interactions among the elements of a system. Use case diagrams show the various activities the users can perform on the system. The system is something that performs a function. They model the dynamic aspects of the system. It deals with who uses your application or system and what they can do with it.

A use case diagram contains the following sub-components:

- **System boundary**: which defines the system of interest in relation to the world around it.
- **Actors**: An actor is an entity that initiates the use case from outside the scope of the use case. It can be any element that can trigger an interaction with the use case. Define the roles that users or other systems play while interacting with the system.

It is usually individuals involved with the system defined according to their roles.

The **relationship**: Communication associations connect actors with the use cases in which they participate. Relationships among use cases are defined by means of including and extending relationships.

It is a connection between the actors and the use cases. The Include Relationship (<<include>> or <<uses>>) represents the inclusion of the functionality of one use case within another. The arrow is drawn from the base use case to the used use case. The Extend Relationship (<<extend>>) represents the extension of the use case to include optional functionality.

- **Use Case**: are the specific roles played by the actors within the system

2.2.1. Actor Specification

This part describes who the actors are and what their role is in the system. In the proposed system, there are eight actors who are participating. The following are the actors in the proposed system:

System Administrator: An administrator who interacts with the proposed system and has full control over the system. After logging in to the system, their responsibilities include:

- View User Account
- Update Account
- View User Activities
- Restore Backup
- Create Account
- View Employee
- Take Backup

Police Head: Has the following activities:

- Assign placement for preventive police
• View Employee
• View Nomination
• View missing criminal
• Create account
• View Comment
• Post missing criminals
• View Criminal Report

Criminal Preventive Police: Have the following activities:

• View their Placement assigned by police head
• Register criminal
• Register complaint
• Register crime
• View complaint request
• View nomination
• View notice
• Send nomination
• View order

Detective Officer: Have the following activities:

• View criminal
• Order preventive police
• Register witness
• Register Accused
• Register Accuser
• View witness
• View accused
• View accuser
• Generate First Information Report

Human Resource Manager: Have the following activities:

• Register Employee
• View Employee
• Update Employee

Customer: Have the following activities:

• View Missing Criminal
Complaint: Have the following activities:

- Send request
- View response

2.2.2. Use Case Description

A use case description is a business analysis presentation of the steps defining the interactions between a user (called an actor) and a system (usually a computer system). It details the interactions and sets expectations for how the user will work within the system.

<table>
<thead>
<tr>
<th>Use Case Name</th>
<th>Register Employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Case ID</td>
<td>Uc28</td>
</tr>
<tr>
<td>Include</td>
<td>Login</td>
</tr>
<tr>
<td>Actor</td>
<td>Human resource manager</td>
</tr>
<tr>
<td>Description</td>
<td>The human resources manager accepts the user and registers them for the database in the system.</td>
</tr>
<tr>
<td>Precondition</td>
<td>The users should be workers at the police station.</td>
</tr>
</tbody>
</table>

Basic course of Action

<table>
<thead>
<tr>
<th>Actor action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HR manager opens the system.</td>
</tr>
<tr>
<td>3. HR manager, click on the Register Employee Link.</td>
</tr>
<tr>
<td>5. Fill each individual field and press the register button.</td>
</tr>
<tr>
<td>7. Use case end</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. The system opens to the user page.</td>
</tr>
<tr>
<td>4. The system displays a user registration form.</td>
</tr>
<tr>
<td>6. If the user correctly fills each required field the system will display the “You are Successfully Registered” message.</td>
</tr>
</tbody>
</table>

Alternative course of action

If the HR manager enters the wrong username or password, the system displays “Incorrect input, *” and the process turns again from step 5.

Post condition

Employees are legal users of the station.

| Table 3. Create Account use case description |

Qeios, CC-BY 4.0 · Article, December 11, 2023
<table>
<thead>
<tr>
<th>Use Case Name</th>
<th>Create Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Case ID</td>
<td>Uc1</td>
</tr>
<tr>
<td>Include</td>
<td>Login</td>
</tr>
<tr>
<td>Actor</td>
<td>Administrator</td>
</tr>
<tr>
<td>Description</td>
<td>Administrators create accounts for already-registered users.</td>
</tr>
<tr>
<td>Precondition</td>
<td>Administrators must login and should get a list of users' information from registered users.</td>
</tr>
</tbody>
</table>

Basic course of Action

Actor action

1. Administrator Login to the system
3. Click on the Create Account Link.
5. The administrator fills out the field, including the user name and password, then clicks on the Create Account button.
7. Use case-end.

System response

2. The system opens to the Administrator page.
4. The system displays Create Account form
6. If the entered data is valid, the system will display the "You have successfully created an account" message.

Alternative course of action

If the user enters the wrong username or password, the system displays an invalid input message and processes it again from step 4.

Post condition

Users can login to the system with their account.

<table>
<thead>
<tr>
<th>Table 4. Login use case description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Case Name</td>
</tr>
<tr>
<td>Use Case ID</td>
</tr>
<tr>
<td>Include</td>
</tr>
<tr>
<td>Actor</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Precondition</td>
</tr>
</tbody>
</table>

Basic course of Action

Actor action

1. The user opens the system.
3. User-Click Login Menu
5. The user fills out the form and clicks the login button.
7. Use case-end

System response

2. The system displays the Home Page.
4. The system displays the login form.
6. System displays user page

Alternative course of action

The user may input the wrong username and password and the system will display the wrong message.

The process turns back to step 5.

Post condition

Users perform their own tasks on the system.
Table 5. Register Accused use case description

<table>
<thead>
<tr>
<th>Use Case Name</th>
<th>Register Accused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use Case ID</td>
<td>Uc24</td>
</tr>
<tr>
<td>Include</td>
<td>Login</td>
</tr>
<tr>
<td>Actor</td>
<td>Detective Officer</td>
</tr>
<tr>
<td>Description</td>
<td>A detective officer can register the accused criminal to make a decision.</td>
</tr>
<tr>
<td>Precondition</td>
<td>The detective officer must have a valid user name and password to register the accused criminal.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic course of Action</th>
<th>Action</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. The user logs into the system.</td>
<td>2. The user inputs the correct value, and the system displays Detective Officer Page.</td>
</tr>
<tr>
<td></td>
<td>3. Detective Officer, click the Register accused criminal link.</td>
<td>4. The system displays an accused criminal register form.</td>
</tr>
<tr>
<td></td>
<td>5. Fill out the form and click the Register button.</td>
<td>6. The system displays a successful message.</td>
</tr>
<tr>
<td></td>
<td>7. Use case-end.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alternative course of action</th>
<th>Action</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The user may input the wrong user name and password, and the system will show an incorrect message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The process turns back to step 1.</td>
<td></td>
</tr>
</tbody>
</table>

| Post condition | Logout from the system... |

Table 6. Assign Police use case description
Use Case Name	Assign placement for police
Use Case ID | Uc7
Include | Login
Actor | Police Head
Description | Police Head: Assign police to their working place.
Precondition | The police head must have a valid user name and password to assign police to their task.

Basic course of Action

<table>
<thead>
<tr>
<th>Actor action</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The police head logged in to the system.</td>
<td>2. System directs to police head page</td>
</tr>
<tr>
<td>3. The user clicks Assign Link.</td>
<td>4. The system opens the form.</td>
</tr>
<tr>
<td>5. Then fill out the form and click the Assign button.</td>
<td>6. System display successfully message</td>
</tr>
<tr>
<td></td>
<td>7. Use case-end.</td>
</tr>
</tbody>
</table>

Alternative course of action

| A1. The police head may input the wrong user name and password, and the system will show an incorrect message. The process turns back to step 1. A2. If the police chief enters incorrect information, the system displays an incorrect message. The process turns back to step 5. |
|---|---|

Post condition

User's logout from the system.

Table 7. Post Missing Criminals use case description
Use Case Name
Post Missing Criminals

Use Case ID
Uc11

Include
Login

Actor
Police Head

Description
Police Head post the missing criminal on the home page and get a nomination from the citizen.

Precondition
There must have been a missing criminal nominated by the people, and The police head must have a valid user name and password to post.

Basic course of Action

<table>
<thead>
<tr>
<th>Actor action</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The police head logged in to the system.</td>
<td>2. system directs to the police head page.</td>
</tr>
<tr>
<td>3. The police head clicks on the post-missing criminal link.</td>
<td>4. The system displays browsing Button.</td>
</tr>
<tr>
<td>5. The police head uploaded a missing criminal file.</td>
<td>6. The system displays "the missing criminal successfully posted" message.</td>
</tr>
<tr>
<td>7. Use case-end.</td>
<td></td>
</tr>
</tbody>
</table>

Alternative course of action
A1. If the user enters the wrong username or password, the system notifies "the wrong input" and the process continues from step 1.

Post condition
User's logout from the system.

Use Case Name
Send complain

Use Case ID
Uc31

Include
Login

Actor
Complaint

Description
The complainant sends their complaint to the preventive police, and the preventive police examine it and send a response to the complaint.

Precondition
The customer knows how to use the system.

Basic course of Action

<table>
<thead>
<tr>
<th>Actor action</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The complaint logged in to the system.</td>
<td>2. The system directs to the complaint page.</td>
</tr>
<tr>
<td>3. Fill out the complaint form and submit it.</td>
<td>4. The system displays the form.</td>
</tr>
<tr>
<td>5. The complainant fills out the form and sends a request.</td>
<td>6. The system displays a "successfully" message.</td>
</tr>
<tr>
<td>7. Use case-end.</td>
<td></td>
</tr>
</tbody>
</table>

Alternative course of action
A1. If the user enters the wrong username or password, the system notifies "the wrong input," and the process continues from step 1.

Post condition
User's logout from the system.

Table 8. Send Complaint use case description

2.3. Sequence Diagram

A sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what
order in a system. It shows object interactions arranged in a time sequence. UML sequence diagrams model the flow of logic within your system in a visual manner, enabling you to both document and validate your logic. They are commonly used for both analysis and design purposes. Sequence diagrams are the most popular UML artifact for dynamic modeling, which focuses on identifying the behavior within your system.

UML Sequence Diagrams Description

- Capture the interaction between objects in the context of a collaboration.
- Show object instances that play the roles defined in a collaboration.
- Show the order of the interaction visually by using the vertical axis of the diagram to represent time, what messages are sent, and when.
- Show elements as they interact over time, showing interactions or interactions, for instance.

![Sequence Diagram for User Login](image)

Figure 1. Sequence diagram for User Login
Figure 2. Sequence diagram for Give Nomination

1. Open()
2. Click Give Nomination Link
3. Display
4. Fill The Form And Click Send Button
5. Check Validity
6. Incorrect Input
7. Send
8. Click Saved or not
9. Failed to Send Try Again!
10. Send Successfully

Figure 3. Sequence diagram for Assign Police

1. Open()
2. Open Login Menu
3. Display
4. Fill The Form And Click Login Button
5. Check if invalid
6. Incorrect Input
7. Else Check Registered
8. If not Exist
9. Wrong UserName And Password Try Again
10. Display
11. Click Assign Police Link
12. Display
13. Fill The Form And Check Assign
14. Save
15. Invalid
16. Try Again
17. Valid
18. Successfully Assigned
Figure 4. Sequence diagram for Update User Profile

Figure 5. Sequence diagram for Posts Missing Criminal
2.4. Class Diagram

This class diagram shows the detailed associations and attributes of the proposed system. A class diagram in the Unified
Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes,

1. Objects
2. Their attributes
3. Operations (methods)
4. And the relationships among the classes

A class diagram is an illustration of the relationships and source code dependencies among classes in the Unified Modeling Language (UML). It provides an overview of the target system by describing the objects and classes within the system and the relationships between them.
Chapter Three

3. System Design

System design is the transformation of the analysis model into a system design model. System design is the first part to get into the solution domain in software development. This chapter focuses on transforming the analysis model into a design model that takes into account the non-functional requirements and constraints described in the problem statement.
and requirement analysis sections discussed earlier.

3.1. Design Goal

The objectives of design are to model the system with high quality. The design goals are derived from non-functional requirements, which means a non-functional requirement is the description of the feature characteristics and attributes of the system as well as any constraints that may limit the boundary of the proposed solution.

3.2. System Decomposition

To reduce the complexity of the solution domain, we decompose a system into simpler parts, called subsystems, which are made of a number of solution domain classes. In the case of complex subsystems, we recursively apply this principle and decompose a subsystem into a set of loosely dependent parts that make up the system. Subsystem decomposition is the way that helps us to distinguish the parts of the operations that take place within the organization.

![Figure 9. System decomposition](image)

3.3. System Architecture

The purpose of design is to show the direction in which the application is being developed and to obtain clear and sufficient information needed to derive the actual implementation of the application. The work is based on the services provided on the internet to customers. Once the services are available based on customer requests, they will be delivered with specific privileges to access, receive, and visit the site. The architecture used for the system is a client-server architecture where a client can use internet browsers to access the web-based crime file management system within the local area network of the agency or anywhere using the internet. It stores this data in a relational database management system. The middle tier (web/application server) implements the business logic, controller logic, and presentation logic to control the interaction between the application's clients and data. The controller logic processes client requests, such as
requests for reservations and show services provided by the printing enterprise system from the database.

![System Architecture](image)

Figure 10. System Architecture

3.4. Component Diagram

Component modeling shows which components or objects will be accessed by the user. In this modeling of the system’s components, it will be shown that there is a relationship among components.

By this diagram, components of the system will be wired, showing that there is a relationship among components: management of the system, database operations performed on databases, and security issues.

![Component Diagram](image)

Figure 11. Component diagram

3.5. State Chart Diagram
A state chart diagram describes the flow of control of the Samara police station criminal management proposed system from one state to another to describe the system dynamically. States are defined as a condition in which an object exists and changes when some event is triggered. So the most important purpose of a state chart diagram is to model the life of an object from creation to termination.

Figure 12. State Chart Diagram for Login
Figure 13. State Chart Diagram for Update Criminal Status
Figure 14. State Chart Diagram for Add Criminal Information

Figure 15. State Chart Diagram for View Post Criminal
Figure 16. State Chart Diagram for Update Profile

Figure 17. State Chart Diagram for Register Employee
3.6. Deployment Diagram

A deployment diagram shows the execution architecture of systems that represent the assignment (deployment) of software artifacts to deployment targets (usually nodes). Nodes represent either hardware devices or software execution environments.

Deployment diagrams are used to model the hardware that will be used to implement the system, the link between different items of hardware, and the deployment of software on that hardware.

Through the deployment diagram, we are able to model:

- Where hardware is located
- Where software is located
- What the communication path is between various hardware parts

Deployment Diagram Description:

Browser: Online viewers will be able to communicate with the web server using a browser.

Web Server: Using Apache as the web server, it will be responsible for accepting and responding to requests sent by the browsers.

Database: This will be responsible for storing information on the computer.

![Deployment Diagram](image)

Figure 18. Deployment Diagram

3.7. Persistence Data Management

The persistent data model describes the persistent data stored by the system and the data management infrastructure
required for it. This section typically includes the description of data schemas, the selection of a database, and the
description of the encapsulation of the database. Here, as the system includes a large amount of data received from
users and is implemented in large organizations, it needs persistent data storage. Therefore, our software system uses a
database called SQL Server to manage and store data persistently. Information related to admin, preventive officer, case,
news, feedback, and others is persistent data and is hence stored on a database management system. Moreover, storing
data in a database enables the system to perform complex queries on large data sets. In order to store data persistently in
a database, those class objects identified in the class diagram of CMS are mapped into tables, and the attributes are
mapped into fields for the respective tables. The tables of the system with their respective fields and the relationships that
exist between the tables are expressed in this portion of the project.

![Class Diagram](image)

Figure 19. Persistence data management

3.8. Access Control and Security

In these aspects of the system design issues of the Samara police station crime management system, we are concerned
about two things: protecting the system from external threats and ensuring that the normal day-to-day operation of the
system processes data in a controlled manner. Therefore, we are focusing on the design to ensure the secure operation of the information system and safeguard the information and assets stored in it so that the Samara police station crime management system runs properly. This means that in the design, we are concerned with information security and application controls.

<table>
<thead>
<tr>
<th>Table 9. Access control and security for WBCMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actors</td>
</tr>
<tr>
<td>Administrator</td>
</tr>
<tr>
<td>Manage account</td>
</tr>
<tr>
<td>Create account</td>
</tr>
<tr>
<td>-View-user activity View missing person</td>
</tr>
<tr>
<td>-View Employee View placement</td>
</tr>
<tr>
<td>Take backup</td>
</tr>
<tr>
<td>-Post notice</td>
</tr>
<tr>
<td>-Register criminal</td>
</tr>
</tbody>
</table>
characteristics of some interfaces between the system and the users.

Figure 20. Home Page user interface

Figure 21. Police Head Post Notice Form user interface
Figure 22. Detective Officer Accuser Registration Form user interface
Chapter Four

4. Implementation and Testing

4.1. Implementation Overview

Implementation is the execution of any idea, model, or method in information technology. It refers to the process of setting up new software and hardware after a purchase is made. Implementation in the system includes implementing the attributes and methods of each object and integrating all the objects in the system to function as a single system. The implementation activity spans the gap between the detailed object design model and a complete set of source code files that can be compiled together.

The objective of the system implementation phase is to convert the final physical system specification into working and reliable software and hardware, document the work that has been done, and provide help for current and future users.

While we were thinking about developing this web-based application system, we encountered a number of constraints,
but the following are the most common:

- Lack of fast internet access
- Lack of time
- Lack of resources such as computers, laptops, etc.

converting a logical design into an application using selected programming languages. To develop this project, the team members used the following programming languages: PHP, HTML, JavaScript, and CSS.

PHP is a server-side scripting language that is embedded in HTML. It is used to manage dynamic content, databases, session tracking, and even to build entire e-commerce sites.

It is integrated with a number of popular databases, including MySQL, PostgreSQL, Oracle, Sybase, Informix, and Microsoft SQL Server.

4.2. Algorithm Design

An algorithmic view of a problem gives insight that may make a program simpler to understand and to write. Every algorithm needs a process in order to be created and utilized, and they need the four stages of algorithm analysis: design, implement, and experiment.

4.3. Sample Code and Description

```php
<?php
session_start();
include("connection.php");
?>
<!DOCTYPE html>
<html>
<head>
<title>home page</title>
<link href="css/mystylesheethome.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="wrapper">
<table width="100%" cellspacing="0px">
<tr>
//Sample codes for home page or index
```
SAMARA CITY MAIN POLICE STATION

Samara city main police station is a building that serves to accommodate police officers and other members of staff. These buildings often contain offices and accommodations for personnel and vehicles, along with locker rooms, temporary holding cells, and interview and interrogation rooms.

LOCATION

Samara city main police station is found in Samara city, which is located in Afar Regional State. It was established in 1984 E.C. for the purpose of protecting local communities from criminal activities. Samara city police station found near the diesel suppliers in Samara city.

4.4. Testing Overview
The test design is done by giving a possible combination of inputs in order to find out what the system's response would be for a particular input and to compare the expected result with the actual output. We used the following fault detection technique: In order to identify the possible faults that may occur during and after developing the system, it helps us to assure the quality of our project.

4.4.1. Testing Procedures and Features to Be Tested

Testing is a process to demonstrate the correctness of the program and is designed to analyze the logic used in the implementation of the system.

Testing by Requirements: The requirements that are tested by the group members during the implementation are correctness, performance, accuracy, security, and others.

Testing for correctness: Correctness determines how users can interact with the software and how the software should behave when it is used correctly. Users can easily interact with the application since it has an easily understandable interface, and the application responds correctly.

Performance testing: The team members measure the system parameters in terms of system responsiveness, which is related to time availability and scalability.

Security Testing: The team members ensure the security of the system by authenticating users when they log in with the correct username and password. The system allows only authorized users to log in to accounts that have previously been created through their username and password. The system also uses session management, time management, and requires changing passwords if the user is logging in for the first time.

Chapter Five

5. User Manual

5.1. Getting Started

In this chapter, we discuss in detail the installation process, how you have installed or are planning to install the system, and what difficulties or modifications were made during the installation. Our system installs some features on the computer.

5.2. Installation Guide

As our system is a web-based system, it needs to be launched on a web server; in our case, a XAMPP server. Therefore, the installation guide starts from installing the server system to uploading our project, which is a web-based crime
management system for Samara City's main police station.

Installation of XAMPP Server:

- **Step 1:** Open the executable file

![Figure 24. Open executable file of XAMPP server](image)

- **Step 2:** Select next without changing default values

![Figure 25. Select next without changing default values](image)
Step 3: Select next

Figure 26. Select next during execution

Step 4: Select next

Figure 27. Select next during execution

Step 5: Select next
Step 6: After installation finishes, open the XAMPP icon from the toolbar expansion.

Step 7: The next step will guide you in uploading and launching our system.

- Locate our system source code folder.
- Copy the contents to the XAMPP server's htdocs directory (typically located at C:\Xampp\htdocs).
- Launch the XAMPP server and click on the "Start" button to initiate services for both Apache and MySQL.

Step 8: Finally, after clicking both Apache and MySQL, they show a green color or indicate they have started.
Chapter Six

6. Conclusion and Recommendation

6.1. Conclusion

As a central part of this study, a detailed analysis and design were conducted to develop an automated criminal records system for the Samara police station. The project aims to develop a simple and user-friendly automated criminal records system for the Samara police station. The project is almost simple, interactive, and a time-saving system, and this project encourages us to think broadly and hopefully. Before this time, it was thought that developing projects in different programming languages was very difficult work. But now, it has become easy to understand and develop such systems.

6.2. Recommendation
The system that we developed is a web-based criminal record system for the Samara City Police Station. While using this system, the team members have faced different challenges. However, with the cooperation of all the group members, the team is now able to reach the final result; that is, all the group members have strongly fought these challenges and taken the lead. We strongly recommend it to everyone involved in the criminal record system; our new system has provided better service than the existing system by fostering better interaction among them. Our recommendation to other system developers is to develop an Android part for the system.

Reference