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Land use changes can majorly affect many parameters that are directly or

indirectly interlinked to various human-environmental systems, including

hydrological processes and �ood risks. The knowledge of future land cover

changes is crucial for better managing human-environmental interactions and

addressing potential environmental challenges, such as �oods. In this work,

the impact of future land cover changes in �ood inundation is assessed, using

a case study in northeast Indiana, US. A Cellular Automata Markov (CAM)

model is applied, combining Geographic Information Systems (GIS) and

Python, to predict land changes and provide future land cover maps, along

with statistical validation measures. The land use map outputs are then used

in a HEC-RAS hydraulic model, to test the different �ooding impacts under a

design storm, using the rain-on-grid routine. The results indicate that even

slightly more urbanized and deforested areas can increase the potential �ood

extent. Furthermore, the impacts of these forecasted land cover changes are

quanti�ed in monetary terms, based on a spatial Ecosystem Services Valuation

(ESV) model. The �ndings indicate that as certain land uses (mainly wetlands,

followed by forests) give their place to build-up areas, barren land, or even

agricultural lands, the ‘lost’ value due can reach 1.5 million USD in 2051. The

novelty of this study lies in int integrated character, combining for the �rst

time to our knowledge land cover forecast with hydrologic-hydraulic

modelling and spatial ESV, showing thus the future changes, risks, and

potential economic losses, respectively. This application uses the minimum

necessary input data to perform the analyses, and all data and codes are

publicly available, contributing thus to the transferability and reproducibility

of the approach.
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1. Introduction

Studying the future alterations in land cover within

speci�c areas is essential, given their intricate

connections with various factors dynamically

in�uencing human-environmental systems. Land cover

changes exert a profound impact on urban planning,

environmental sustainability, resource management,

and overall quality of life (Liu et al., 2022; Hassan and

Nazem, 2016). Understanding these changes is critical

for making well-informed decisions that in�uence

population growth, resource availability and utilization,

infrastructure development, and the conservation of

natural capital and biodiversity, among other aspects

(McDermott et al., 2022). Knowledge of shifts in land

use patterns empowers policymakers to confront

challenges like urban sprawl, deforestation, water �ow

dynamics - potentially exacerbating the risks of �oods,

and habitat loss (Hassan and Nazem, 2016; McDermott

et al., 2022).

The most common technique to explore future land

cover is the Cellular Automata (CA), based on Markov-

chain modelling, called Cellular Automata Markov

(CAM) models (Aburas et al., 2019). The logic of CA

models is to simulate land cover changes by

considering the local interactions between cells

(geographic units in spatial datasets). They are based on

transition rules (e.g., changes over a period of time), and

initial conditions (i.e., compared to an initial base-year).

Markov chain models rely on the assumption that

future land cover depends on the current state (base

year map) and is independent of past states. Thus, CAM

models use historical data, usually in the form of maps,

to derive transition rules, namely transition probability

matrices among the land use categories, and generate

future maps by applying these matrices as rules,

iteratively to the historic data (Corner et al., 2013). The

�eld is fast developing, and more complex

methodologies occur, such as combinations of CAM and

Geographic Information Systems (GIS) with Remote

Sensing observations (Islam and Ahmed, 2012),

machine learning techniques (Xing et al., 2020;

Zambrano-Asanza et al., 2023), and Multi-Criteria

Analysis techniques (Addae and Dragićević, 2022), for

improved prediction accuracies and/or the

consideration of more factors in the analyses. The

validation of the projections is performed statistically,

comparing the historic data with the predicted ones, for

the same year(s), and the most commonly used measure

is the Kappa statistics, assessing the accuracy of the

projections (Saputra and Lee, 2019; Liu et al., 2021).

There have been several CAM modelling applications,

for urbanization projections (Ulloa-Espíndola and

Martín-Fernández, 2021; Mansour et al., 2020), for the

evaluation of different development scenarios (Han et

al., 2015), agriculture and biodiversity management

(Halmy et al., 2015), the impact of climatic parameters

(Tariq and Shu, 2020; Al Kafy et al., 2021), etc. Moreover,

future land uses can be necessary for a variety of other

analyses, such as soil and hydrological assessments

(Anard et al., 2018; Dai et al., 2023), wetland

management (Ansari and Golabi, 2019; Alamanos and

Papaioannou, 2020), urban and rural development

(Agustina et al., 2022; Alamanos et al., 2022a; 2022b),

�ood risk assessments (Roy et al., 2020; Papaioannou et

al., 2023), ecological assessments (Qin and Fu, 2019),

optimal agricultural management (Garcia and

Alamanos 2022; 2023), management of transboundary

environmental and economic assets (Englezos et al.,

2023; Mendoza-Poce et al., 2021), and many more.

However, the impact of land cover changes in potential

�ood risks is still poorly understood (Rogger et al.,

2017), and the need for models simulating such impacts

has been long recognized (Tollan, 2002). There are

studies exploring this topic, but mainly from the

perspective of different land use scenarios or speci�c

management practices (e.g. focusing on agricultural

land uses), rather that land use predictions (Hounkpè et

al., 2019; Sagha�an et al., 2008). There are also very few

studies examining the effect of multiple factors in

future �ooding, such as land use, climate, topography

etc., as for example in the paper by Avand et al. (2021).

There are also very limited applications where actual

land use prediction models have been applied to

investigate their impacts on �ood risks (Roy et al.,

2020), with the exception of the paper by Adnan et al.

(2020) who developed a CAM model to predict future

land uses and explore the associated future �ooding

implications. So far, the main tools for assessing �oods

in response to altered land uses have been SWAT,

WaSiM, or other custom approaches, including machine

learning (Hounkpè et al., 2019; Schilling et al., 2013;

Avand et al., 2021). However, to our knowledge there has

not been any application where predicted land uses are

analyzed as part of a hydraulic modelling approach to

showcase potential �ood risks. This is one gap that this

work aims to �ll.

Another gap this works aim to bridge, is the mapping of

the monetary value of these land cover changes, in the

future, based on the Ecosystem Services (ES) they can

provide. Environmental valuation studies are based on

the concept of Total Economic Values, considering the
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use values (direct, indirect, and option values) and

nonuse values (existence and bequest values), of

environmental assets (Koundouri et al., 2023).

Practically, Ecosystem Services Valuation (ESV) assigns

monetary values to environmental impacts/changes,

re�ecting the value of ES such as provisioning services

(food, raw materials); supporting services (life-cycle

maintenance for �ora, fauna, biodiversity); regulating

services (climate, carbon sequestration and storage,

erosion prevention, nutrient treatment, moderation of

extreme events); and cultural services (tourism,

recreational, aesthetic, and spiritual bene�ts)

(Koundouri et al., 2022). ES are closely related to land

use changes, so linking them is critical for better land

use planning and sustainable provision of ES (Fu et al.,

2015). The importance of mapping the ES has long been

recognized (Troy and Wilson, 2006), and value transfer

methods are increasingly utilized, to increase the

reproducibility of such studies (Tammi et al., 2017; Xue

and Luo, 2015). Value transfer practically is the

application of economic values derived from one study

area to another context, often to estimate the economic

value of ES (Koundouri et al., 2022). The ability of

providing integrated assessments considering the ESV

(Alamanos, 2021), especially as related to land cover

changes, and their future evolution is rare in the

literature, but crucial for strategic planning, decision

prioritization and optimal investment allocation (Rajsic

et al., 2023; Alamanos and Brouwer, 2020). In contrast to

previous studies considering land cover changes trends

and management scenarios (Schirpke et al., 2020), in

this work, the CAM model’s forecasts are used as the

basis for the ESV. There is a handful of applications

considering CAM models to estimate ESV, including the

paper by Zhang et al. (2021) focusing on urbanization

effects, the study by Gao et al. (2021) exploring past

alterations, the paper by Zhong et al. (2022) showing

how CAM can be combined with InVEST Models, and

Zhang et al. (2023) who combined CAM with system

dynamics modelling to forecast the ES values under

alternative scenarios.

In this paper, a CAM model is presented, as a

combination of processes in GIS environment and

open-source coding, using Python. A hydraulic model is

developed in HEC-RAS software to produce �ood

inundation maps under the different future land uses,

for a watershed that has received limited attention with

respect to �oods. The ESV is performed based a value

transfer method from established values found in the

literature. All the future values (land cover, �ood risks,

ESV) refer to 2051. Showing information of the impacts

of land use changes in future exposure to natural

phenomena (e.g. �ooding), together with their

evolution of economic value (e.g. ESV) is presented for

the �rst time to our knowledge, and is a comparative

advantage to previous studies, as the results provide

signi�cant insights for informed and holistic decision-

making regarding future planning and sustainable

landscape management.

Another contribution of the presented approach is that

it can work effectively with limited data: the CAM tool

uses the minimum number of inputs, namely historic

land use maps, and generates future land use maps. The

future �ooding estimations are based also on the

minimum necessary input, considering a design-storm

under a rain-on-grid approach. Finally, the value

transfer approach considers the values obtained from

the existing literature. Thus, the overall framework can

be easily applied in other case studies, even with limited

data.

2. Study Area

The Cedar Creek Watershed (CCW) in Indiana, US, is

used as a case study. CCW in northeastern Indiana is an

area within the St. Joseph River watershed, with a

diverse landscape of farms, urban areas with cities and

settlements, and notable geological features (CCW

Management Plan, 2005). The land uses have been

traditionally agricultural, with a slight increase of urban

areas, while forests and water bodies are also present

(Figure 1). The degree of urbanization in the CCW has

slightly increased over the past 15 years, as rural areas

transform into suburban or urban spaces, accompanied

by residential areas and transportation networks.

Figure 1. The land uses of CCW from 2006 to 2021,

classi�ed in �ve main categories.
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Positioned just north of Fort Wayne, Indiana's second-

largest city, Cedar Creek �ows into the St. Joseph River,

where Fort Wayne sources its drinking water

downstream. CCW covers approximately 700 km², it has

a gentle sloping topography and is primarily used for

agriculture (mainly corn, soybeans, and other crops)

(Pignotti et al., 2017). The region experiences an

average temperature range of -1 to 28°C with an annual

precipitation of 940 mm (Wallace et al., 2018). The

greater CCW area has experienced some �ood events, in

the past. The �ood of 1982 (Glatfelter and Chin, 1987),

and the �ood of 2009 (Fowler, 2017) are the most

signi�cant ones (Bassett et al., 2009).

The CCW has been studied extensively from a

hydrologic and soil assessment point of view focusing

on stream�ows and sediment (Larose et al., 2007; Jiang

et al., 2008; Kumar and Merwade, 2009; Kang and

Merwade, 2011; Pathak and Kalra, 2015), with HEC-HMS

and SWAT models. However, the area has received little

attention regarding its land use evolution, as well as

�ood risks, and to our knowledge this is the �rst paper

presenting a land use prediction model, and a hydraulic

model for CCW.

3. Methodology

3.1. The Cellular Automata Markov (CAM) model

Creating a Cellular Automata Markov (CAM) model for

land use change prediction involves the estimation of

the transition probability matrix, and simulation of

land use changes over time. The CAM model can be

mathematically represented as follows (Equation 1):

Where   and   are the land use maps at the year t

and t+1 respectively, and   is the transition probability

matrix expressing the probability of each cell (pixel) to

change from the land use type i in the year t to the land

use type j in year t+1. So, this matrix can be expressed as

shown in Equation 2 below:

= ∙ ,  for land use types i, j = 1,2,…, nLt+1 Pij Lt (1)

Lt Lt+1

jPi
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The transition probability matrix is estimated by

assessing the changes among land uses from different

years (t, t+1). This process can be done in a spatial

analysis software �rst by determining the number of

pixels in a land-use class i that changed into another

class j during that time.

The input data of land uses were obtained from the

United States Geological Survey (USGS) website (USGS,

2021), as shape �les for the years 2006, 2011, 2016 and

2021, following the National Land Cover Database

(NLCD) categorization. The main land use categories

were grouped for simplicity in classes of: 'Water': 1,

'Urban': 2, 'Barren Land': 3, 'Forest': 4 and 'Crops': 5.

This (indicative for this example) approach signi�cantly

reduces the computational load and effort, and allows to

handle easier the land use changes from year to year.

The CAM model was used to generate the future land

use maps for every �ve years until 2051. The validation

of the predicted land use maps was achieved by the

following statistical tests:

Percentage of Accurate Results (Overall Accuracy):

This is a straightforward measure that calculates the

percentage of correctly classi�ed pixels compared to

the total number of pixels, according to the relation

expressed in Equation 3:

= , with 0 ≤ ≤ 1, and Pij

⎡

⎣

⎢⎢
⎢

P11

P21

…

Pn1

P12

P22

…

…

…

…

…

Pnn

P1n

P2n

…

⎤

⎦

⎥⎥
⎥

Pij

= 1∑
i,j=1

n

Pij

(2)
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Mean Absolute Error (MAE): Expressing the

magnitude of errors between predicted and actual

land use values (Equation 4):

 Accuracy  =
 Number of Correctly Classified Data Points 

 Total Number of Data Points 
× 100%

(3)
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Root Mean Square Error (RMSE): This measures the

square root of the average squared difference

between predicted and observed values, penalizing

thus larger errors more heavily (Equation 5):

Kappa (κ): Kappa coef�cient measures the level of

agreement between two rasters or classi�ers, often

used in the context of classi�cation tasks like land

use mapping. It quanti�es the agreement between

the predicted and true labels while taking into

account the possibility of agreement occurring by

chance (Equation 6):

  is the observed agreement between the predicted

and true land use categories. It represents the

proportion of instances where the predicted and true

labels match.    is the expected agreement between

the predicted and true land use categories, if their

agreement were purely due to random chance.

3.2. The Hydraulic Model

For the hydraulic model, the Digital Elevation Model

(DEM) of CCW is required to delineate the watershed

into sub-basins and de�ne all the necessary elements

for the spatial analysis of the data. This process can be

done in a GIS software, e.g. with tools such as ArcHydro

(ESRI, 2014) or GeoHEC-HMS (HEC, 2023). However, the

recent versions of HEC-HMS and HEC-RAS (HEC, 2022)

provide GIS tools for doing such analyses within the

software. In this case, HEC-HMS was used to create the

basin model and delineate it, processing the drainage,

producing the reaches, junctions and outlet (streams)

(Figure 2A). The DEM of the area was retrieved from the

Open Topography website (OpenTopography, 2023).

The outputs of the HEC-HMS can be exported and used

as inputs in the HEC-RAS software, where further

re�ning can be done within the RAS-Mapper

environment. The model with its ‘Geometry’ is

developed there (Figure 2B), with the 2D Flow Area grid

and its computational mesh (Figure 2C). A rain-on-grid

approach was followed for the analysis as a way to

easily show the impact of rainfall in the gridded terrain.

The method leverages numerical methods to solve the

Saint-Venant equations, which describe the

conservation of mass and momentum in open channel

�ows, solving them in every cell of the computational

mesh (HEC, 2022). By discretizing the terrain into a

grid, the software calculates water depth, velocity, and

discharge in each cell while considering factors like

channel geometry (from the DEM), boundary

conditions (e.g. outlet), and the effects of the rainfall.

Figure 2. The development of the hydraulic model: A)

Data preprocessing, sub-basins and streams in HEC-

HMS. B) Input data in HEC-RAS. C) Development of the

computational mesh (50x50) for the 2D Flow Area. D)

Inserting the land use map layer in the model.

The land use maps can be also inserted in the model as

a map layer (Figure 2D), allowing the model to assign

varying Manning’s roughness coef�cients (n) per land

use category, and also taking this into account for the

calculations. There are publicly available tables

providing values for the Manning’s roughness

coef�cients (n) based on the NLCD for the USA (HEC,

2016; Chow, 1959; Barnes, 1987), which were used in this

study.

For the rain-on-grid simulation an indicative 24-hour

design-storm was used for a return period T=50 years,

to make more straightforward the examination the

 MAE  = ∣  actual 
1

 Total Number of Data Points 
∑

point 1

point N

−  predicted ∣

(4)

 RMSE  =
1

 Total Number of Data Points 

( predicted  −  actual ∑
point 1

point N

)2

− −−−−−−−−−−−−−−−−−−−−−−−−

⎷








(5)

κ =
Po − Pe

1 − Pe
(6)

Po

Pe
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effect of different land use maps, under common

precipitation conditions. The NOAA Atlas 14 (NOAA,

2022) provides information on precipitation frequency

and depth-duration-frequency curves for US locations,

including the CCW study area (Table 1).

Table 1. PDS-based point precipitation frequency

estimates for the CCW, with 90% con�dence intervals

(in inches). Source: NOAA Atlas 14.

3.3. Ecosystem Services Valuation and Mapping

The valuation of Ecosystem Services (ESV) is a tool

increasingly found in several environmental studies.

There are many techniques for assigning monetary

values to ES, mainly survey-based, which however are

not easy to perform every time in different contexts.

Thus, value transfer methods can be used for that

purpose. Costanza et al. (1997) developed a robust

method for ESV, estimating global economic values for

ES based on existing literature and original calculations

considering 17 ES from 16 biomes. Several papers

valuating land cover changes have used this method

(e.g. Chuai et al., 2016; Tolessa et al., 2017; Xue and Luo,

2015; Rahman and Szabó, 2021). The most

straightforward way to apply this method is to compare

the 16 biomes identi�ed by Constanza et al. (1997) and

assign their ESV coef�cients (as estimated by

Constanza et al.) to the respective land cover category

(Rahman and Szabó, 2021) (Table 2).

Table 2. Biome equivalents for the �ve land-use

categories and their corresponding ecosystem values

(Constanza et al., 1997; Rahman and Szabó, 2021).

The ESV can be then estimated spatially by multiplying

the areas of each category ( ) with their respective

ESV coef�cients from Table 2 ( ), as expressed

in Equation 7, for a given year.

In this paper, this was estimated for each historic year

(2011, 2016, 2021), and each predicted year (2026, 2031,

2036, 2041, 2046, 2051), to assess the ESV changes. The

differences between the estimated ESV for each land

use category ( ), between two speci�c years (e.g.

a ‘�nal year’, and a ‘starting year’) can then be

estimated with the formula of Equation 8 (Xue and Luo,

2015; Rahman and Szabó, 2021).

Where T is the study period.

4. Results and Discussion

An open-source Python model (script in Spyder,

Anaconda) was used to process the historic land use

maps, estimate the transition probability matrix, and

generate the predicted maps (Alamanos, 2023). The

script allows the user to import the results of a GIS

software, namely the land use change matrices and it

returns the transition probability matrices for each year

studied. The model can also read the spatial data (land

use maps) in order to apply the CAM model and its

validation, as expressed in Equations 1-6. Finally, it

provides directly a map with all predicted years, so the

user does not need to do this through GIS (Figure 3).

Ac

ESVcoef

ESV = ∑ ( × ES )Ac Vcoef  (7)

ESVdif

ES = ×Vdif 

ES − ESVfinal year  Vstarting year 

ESVstarting year 

1

T
(8)
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Figure 3. The predicted land use maps for CCW in a 5-

year time-step for the period 2026 to 2051.

The validation statistics resulted as follows: Accuracy:

99.63%; MAE: 0.0094; RMSE: 0.1613; Kappa: 99.25%.

These high values of accuracy and Kappa, as well as the

MAE and RMSE values that are close to zero, indicate

that the model achieved a satisfactory performance.

The predicted land uses show an increase of urban areas

over crops and some forest areas, while water and

barren land remain almost stable during the predicted

years (Figure 4).

Figure 4. The predicted land use areas as number of

pixels predicted by the CAM model for CCW.

The hydraulic model was formulated in HEC-RAS and

the necessary data preprocessing was performed in

HEC-HMS, which is often combined with other tools for

hydrological data analysis and hydraulic modelling

(Pathak and Kalra, 2015; Alamanos and Papaioannou,

2022). The rain-on-grid simulation run with the Full

Momentum method, which is more detailed compared

to the Diffusion Wave method. The Full Momentum

method takes into account the conservation of both

momentum and energy as water �ows through the

channels, while it considers the in�uence of all the

other input factors such as channel shape, roughness,

and slope.

Figure 5. Maximum water depth and �ood extent for

each predicted land use simulation for the period 2026

to 2051.

The simulation results are presented in Figure 5 and the

zonal statistics for each case are shown in Figure 5. The

�ood extent and water depth differences are not easily

evident in Figure 5 because of the relatively small scale

that these changes occurred. However, from the results’

statistics, one can see a slight increase in the �ood

extent as well as minor increases in the water depths

(Figure 6).

Figure 6. Flooded area (km2) and �ood depth (m)

under the predicted land uses.

Jiang et al. (2008) had studied the historic land use

changes in CCW and observed substantial changes for

the period 2000 to 2004, where at least 49% of land

cover types changed into other types. However, this
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behaviour was not the case in the subsequent years, and

the present study found that the historic and predicted

land uses did not signi�cantly vary. Jiang et al. report

that more heavy rainfall does not always mean more

runoff because the combination of different land cover

types always modi�es the runoff coef�cients. Although

in this work the same design storm was considered in

all scenarios, the mixed effects in the �ood extent were

also observed in certain parts of the watershed. This

�nding is in line with similar behaviours reported in

the literature of land use change impacts in runoff. For

example, Hounkpè et al. (2019) �nd that the expansion

of agricultural and pasture lands leads to a slight

increase in �ooding, while Schilling et al. (2013) �nd

that the greatest �ood risk reduction is achieved in

perennial vegetation areas. In the present study it was

also observed that deforestation can cause increased

�ooding.

The mapping of ESV is shown in Figure 7, where the

lower value ‘white’ and ‘orange’ areas very slowly and

gradually replace the ‘blue’ areas of higher value.

Figure 7. Spatial distribution of ESV (USD/ha/year) for

the study period 2011-2051.

In order to estimate the evolution of the ES value, the

calculated areas per category and year were converted

into hectares (Table 3 - upper), since the ESV

coef�cients are in USD/ha/year, and then Equations 7

and 8 were applied (Table 3 - lower).

Table 3. The evolution of the different land use types

(ha), their ESV (million USD, 2022 values), and the

estimated yearly changes of ESV.

The total estimated ESV of CCW in 2011 was 211.69

mil.USD, and the projected value in 2051 is 210.19

mil.USD, which is 1.5 mil.USD less. The loss of forests

and wetlands might be the reason. The water bodies

have been accounted for approximately of the 81.27% of

the total CCW’s ESV, on average, every year. Thus, water

bodies have been the greatest contributor to ESV, given

the multiple and diverse services they can provide.

Conclusions

This exercise showcased how a CAM model using GIS

and Python can be applied to future land use

predictions, as well as their validation. As explained in

the introductory section, this analysis can �nd multiple

applications in a variety of studies on human-

environmental systems. Such an example is the

examination of the impacts of future land use changes

to �ood extent, and the evolution of their monetary

value according to their ES, which are overlooked

applications. This paper examined these impacts,

working with the minimum necessary inputs for the

CAM, the hydraulic, and the ESV models, in order to

showcase a simple way to assess them in data-scarce

areas. Although this approach is often necessary in

data-scarce areas, it comes with certain limitations.

It is important to keep in mind that the behavior of a

CAM model always depends on the speci�c rules and

parameters set for the model. For example, one could

expect a concentrated urbanization around the existing

urban centers rather than a more scattered picture. The

CAM model works on a pixel-by-pixel basis and does
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not inherently consider the spatial distribution of land

use changes unless explicitly programmed to do so. It

uses factors such as the current land use category of a

pixel, its neighboring pixels and the transition

probabilities (according to the estimated matrices). For

more re�ned changes, factors like proximity to existing

urban centers, can be included in the code. In this case,

we kept the example simple, given the purpose to show

how a limited-data approach would work, as proximity

to existing urban centers would require additional data

(e.g. shape �les or point data of urban centers), and

extra analysis (e.g. raster-distance tools, using the

proximity as an additional layer, and incorporate it in

the CAM). Machine Learning can also assist in

improving the prediction accuracy. In any case, the

validation over historic land use observations helps

ensure a degree of accuracy of the model and make

improvements by further adjusting it (mainly through

the transition probability matrices). In this example, the

validation showed a good performance of the model.

Moreover, the results are in line with the general

perception that more urbanized and deforested areas

can increase the potential extent and severity of �oods.

Limited input data is often a practical and modelling

consideration, so in this example, a design storm is

used for the hydraulic model. Although this is a

common approach, it is a synthetic event that might

not capture the characteristics of real storms, and it also

simpli�es the modelling process. However, it allows us

to examine the sensitivity of �ooding solely based on

the land use changes, under the same storm conditions.

The relationship between land use changes, �ooding,

and ESV is complex and context-speci�c, depending on

factors such as topography, land uses, hydrological

conditions, storm characteristics, and bene�ts people

derive from ecosystems. Future analyses can consider

more data to provide more detailed assessments

considering more re�ned land use predictions with

more classes, improved adjustments of the transition

probability matrices, or considering the proximity to

neighboring cells, as well as more thorough

hydrological models and real storms. Also, future

research could also further explore the distribution of

ESV per land use type, breaking them down to more

speci�c ES, e.g. provisioning (production, supply, raw

materials), regulating (water regulation, waste

treatment, erosion control, climate regulation,

biological control, gas regulation, disturbance

regulation), supporting (nutrient cycling, pollination,

soil formation, habitat/refugia), and cultural (recreation,

cultural). The approach followed in this example,

indicates that the loss of the major ESV contributor (i.e.

water bodies), can be a factor highly related to the

increasing �ood risks, as water bodies and in particular

wetlands, exhibit important regulatory services, of

which climate regulation and water retention are

directly connected with �ooding.

The importance of having reliable land use change

models is widely recognized, and the provision of user-

friendly tools is crucial. However, there are very few

available free and publicly accessible tools for such

processes. This work contributes to the provision of

tools for land use prediction (data and models used are

publicly available), facilitating the integration of land

use changes in a variety of studies within the broader

context of human-environmental systems

management. The examples of �ooding and ESV prove

the multi-layered nature of such studies, which can be

highly insightful for policymakers and land use

planners for integrated assessments and decisions on

the optimum land use development patterns, ensuring

resilience and sustainable provision of ES.

Data and Code Availability

All data used for the analyses can be retrieved from

publicly available sources, which are cited in the paper.

The software used in this paper are also available (QGIS,

HEC-HMS, HEC-RAS).

The GIS guide to perform the necessary analyses and

the Python script for the CAM model and its validation

are accessible at:

https://github.com/Alamanos11/Land_uses_prediction.

The Python model developed provides also more tests

as validation options, such as Confusion Matrix, and

Confusion Matrix Classi�cation Report, which were not

presented in the paper to keep it concise.
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