Review of: "multi-layered nanographene is made by placing individual carbon atoms together, which is also called the bottom-up method."

Lorita Azbourn

1 Florida University

Potential competing interests: No potential competing interests to declare.

multi-layered nanographene is made by placing individual carbon atoms together, which is also called the bottom-up method. Graphene, which consists of only one carbon atom, can be used to create multilayer graphene field effect nanotransistors that consume less energy and occupy little space.

Graphene is a semi-conducting material with zero gap and not suitable for logic circuits, but by using nanotechnology, they create different forms of this material that have different gaps. Graphene nanoribbons, multilayer graphene and graphene grown on Si are such forms. The term "nano-transistor" comes from the combination of the word "nano-scale" in transmission and resistance. In a Si graphene field effect nano transistor, the resistance between two electrodes can be transferred or controlled by a third electrode. In a Si multilayer graphene field effect nano transistor, the current between the two electrodes is controlled by the electric field from the third electrode. Unlike the bipolar transistor, it is capacitively connected to the third electrode and is not in contact with the semiconductor. Three electrodes are connected to the source, drain and gate in the Si multi-layer graphene field effect nano transistor structure.

Conclusion:

In the circuit diagram of a multilayer Si graphene field effect nanotransistor, the source and drain electrodes are directly connected to the semiconductor.

References

1. "Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/z3oxov.
during the sub-threshold range)". Qeios. doi:10.32388/1al4jb.


8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


26. ^Marisa Odin. (2024). Review of: "nano-transistor, or in other words, the number of electric charges per unit area of the nano-transistor increases". Qeios. doi:10.32388/jwln1.