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Geometric constructions are widely used in computer graphics and engineering drawing. A right generalized cylinder is a

ruled surface whose base curve is a plane curve perpendicular to the rulings. The paper discusses relations between the

base curve and the non-planar space curve on the right generalized cylinder. Based on these relations, a method for

obtaining a new space curve from a given plane curve parameterized about an arbitrary parameter is presented. At first,

we define a non-planar space curve on the right generalized cylinder whose base curve is the considered plane curve,

parameterized about an arbitrary parameter. Later on, we examine the focal curve of the obtained cylindrical curve which

is also a non-planar curve. The Frenet-Seret system of the cylindrical curve and its focal curve are expressed in terms of

the signed curvature of the abovementioned plane curve and its derivatives. Finally, we obtained the parametric

representation of orthogonal projection of the focal curve onto the Euclidean plane via before mentioned plane curve and

its derivatives. That curve is called generalized focal curve of a plane curve. The proposed method is demonstrated for

several closed plane curves used in engineering practice. These curves include: epicycloid, hypocycloid and a curve that

is orthogonal projection of toroidal helix onto the Euclidean plane.
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I. Introduction

A closed curve is a mathematical concept used in geometry and topology. It is a continuous and connected curve that begins

and ends at the same point. In other words, a simple closed curve is a curve that returns to its starting point without

intersecting itself, whereas a complex closed curve intersects itself at one or more points. Closed curves can have various

shapes and forms, and they are fundamental in many areas of mathematics and science, including physics, engineering, and

computer graphics. One of the most basic examples of a closed curve is a circle. A circle is a curve that is defined by a set of

points that are equidistant from a central point. The circle is a simple closed curve because it forms a complete loop, and it is

continuous because it has no gaps or breaks. Other examples of closed curves include ellipses, squares, rectangles, and

polygons. These curves can have more complex shapes, and they are often defined by mathematical formulas or equations. A

cardioid is another simple closed curve that is defined as the set of all points in a plane that are at a fixed distance from a

given point, called the focus, and whose paths are traced by a point on a circle rolling around a fixed circle. The cardioid has

many important applications in mathematics, physics, and engineering. One important characteristic of a closed curve is its

perimeter or circumference. The perimeter is the total length of the curve, and it is measured in units such as meters,

centimeters, or inches. For a circle, the circumference is given by the formula  , where r is the radius of the circle and 
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  is the mathematical constant pi. For other closed curves the perimeter can be calculated using various formulas and

methods, depending on the shape and size of the curve. Closed curves also have a topological property known as

orientability. An orientable closed curve is a curve that has a consistent orientation, which means that the curve can be

traced in a single direction without crossing over itself. For example, a circle is an orientable curve because it has a consistent

clockwise or counterclockwise direction. However, some closed curves are non-orientable, which means that they cannot be

consistently traced in a single direction without crossing over themselves. An example of a non-orientable closed curve is

the Möbius strip, which is a twisted loop that has only one side and one edge.

Closed curves are used in many practical applications, such as in the design of buildings, bridges, and roads. For example,

architects and engineers use closed curves to design arches, domes, and other curved structures that are aesthetically

pleasing and structurally sound. Closed curves are also used in computer graphics and animation to create smooth and

continuous shapes and movements. In addition, closed curves are used in physics and engineering to model the behavior of

fluids, electromagnetic fields and other physical phenomena.

Geometric constructions are widely used in computer graphics and engineering drawing. A right generalized cylinder is a

ruled surface whose base curve is a plane curve perpendicular to the rulings. In this paper, relations between the base curve

and the non-planar regular curve on the right generalized cylinder are discussed. Based on these relations, a method for

obtaining a new space curve from a given regular plane curve parameterized about an arbitrary parameter is presented.

Furthermore a new curve associated with given plane curve, parameterized about an arbitrary parameter is defined.

In this research we consider examples of two popular classes of plane curves known as epicycloid and hypocycloid. An

epicycloid is a plane curve produced by tracing the path of a chosen point on the circumference of a circle called an epicycle,

which rolls without slipping around a fixed circle. An hypocycloid is a plane curve traced by a point on the circumference of a

circle rolling internally on the circumference of a fixed circle. An epicycloid (an hypocycloid) and its evolute (a focal curve)

are similar. In addition we examine another popular space curve called toroidal helix and its projection onto Euclidean plane.

Initially, we proposed a method for obtaining a new space curve lying on a torus from a given plane curve. After that we

apply this method for abovementioned closed plane curves. Then we calculate the focal curves of obtained space curve

which is an intersection curve of right generalized cylinder and a torus. Finally, we received a generalized focal curve of

closed plane which is totally different from its evolute (a focal curve).

II. Preliminaries

This section introduces some basic concepts of the classical differential geometry of curves and surfaces in two and three

dimensional Euclidean space. More details can be found in "Modern Differential Geometry of Curves and Surfaces" (see[1])

and "Differential Geometry of Curves and Surfaces" (see[2]).

Definition 1.[2](p.18) A parameterized differentiable curve is a differentiable map   of an open interval   of the real

line   into  .

The word differentiable in this definition means that    is a correspondence which maps each    into a point 

, in such a way that the functions   are differentiable. The variable    is called the

parameter of the curve.

π

α : I → E
3 I ⊆ R

R E
3

α t ∈ I

α(t) = (x(t),y(t), z(t)) ∈ E
3 x(t),y(t), z(t) t
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Definition 2.[2](p.22) A parameterized differentiable curve   is said to be regular if   for all  .

Given  , the arc length of a regular parameterized curve  , from the point  , is by definition  ,

where    is the length of the vector  . Since  , the arc length    is a differentiable

function of   and  .

A map    is called a curve of class    if each of the coordinate functions in the expression   has

continuous derivatives up to order  . If   is merely continuous, we say that   is of class  . A curve   is called simple if the map   is

one-to-one.

II.1. Curves in Euclidean 2-space

The image of any parameterized curve in the Euclidean plane   under an orientation-preserving affine map in 

  is also a parameterized curve in  . Now we will discuss the differential-geometric invariants of regular plane curves

with respect to the group of orientation-preserving rigid motions.

A closed plane curve is a regular parameterized curve   such that   and all its derivatives agree at   and  , that

is 

The curve   is simple if it has no further self-intersections, that is, if  , then  .

Consider a regular plane curve   of class   that is defined on the open interval   by

Definition 3. [1](p.3) The complex structure is the linear map    given by    Geometrically,    is

rotation by   in a counterclockwise direction.

We use the symbols  ,   for differentiation about an arbitrary parameter  . The scalar product of two vector

functions    and    is given by  . The norm of

vector function   is given by   for  .

Definition 4. [1](p.11) Let   be a regular curve. The signed curvature   of   is given by the formula  .

The function   is called the radius of curvature of

Remark 1. The signed curvature    defined by the equation in Definition 4 above is invariant under orientation-preserving rigid

motions in  .

II.2. Curves in Euclidean 3-space

The Frenet-Seret system of a regular space curve   consists of a vector and scalar invariants of a curve:

where vector invariants   called a tangent, a principal and a binormal unit vector fields of  , scalar invariants   and 

 called curvature and torsion of  .

Definition 5. (p.241)[1] The focal curve of a regular   space curve   is the curve given by 

α : I → E
3 (t) = ≠ 0α̇

dα(t)

dt
t ∈ I

∈ It0 α : I → E
3 t0 s(t) = ∥ (t)∥dt∫ t

t0
α̇

∥ (t)∥ =α̇ (t) + (t) + (t)ẋ
2

ẏ
2

ż
2

− −−−−−−−−−−−−−−−
√ (t)α̇ (t) ≠ 0α̇ s(t)

t ds/dt = ∥ (t)∥α̇

α : I → E
3 Ck α(t) = (x(t),y(t), z(t))

k α α C0 α α

≡ OE
2 e ⃗ 1e ⃗ 2

E
2

E
2

α : [a, b] → E
2 α a b

(a) = (b), (a) = (b), (a) = (b), . . .α̇ α̇ α̈ α̈ α̇̈ α̇̈

α , ∈ [a, b], ≠t1 t2 t1 t2 α( ) ≠ α( )t1 t2

α : I → E2 C3 I ⊆ R

α : α(t) = (x(t),y(t), 0). (1)

J : →E
2

E
2 J( , ) = (− , ).p1 p2 p2 p1 J

π/2

=α̇
dα(t)

dt
=α̈

d (t)α̇

dt
t

x(t) = ( (t), (t))x1 x2 y(t) = ( (t), (t))y1 y2 ⟨x(t),y(t)⟩ = (t) (t) + (t) (t)x1 y1 x2 y2

x(t) ∥x(t)∥ = =⟨x,x⟩
− −−−−

√ (t) + (t)x2
1 x2

2

− −−−−−−−−−
√ t ∈ R

α : I → E
2 K α K(t) =

⟨ (t),J (t)⟩α̈ α̇

∥ (t)α̇ ∥3

R = 1
K

α.

K

E
2

γ

T = , N = , B = , κ = , τ = ,
γ̇

∥ ∥γ̇

( × ) ×γ̇ γ̈ γ̇

∥( × ) × ∥γ̇ γ̈ γ̇

×γ̇ γ̈

∥ × ∥γ̇ γ̈

∥ × ∥γ̇ γ̈

∥γ̇∥3

γ̇γ̈γ̇̈

∥ ×γ̇ γ̈∥2

T ,N,B γ ϰ

τ γ

C3 γ : I → E
3

(t) = γ(t) + (t)N(t) + (t)B(t),Cγ c1 c2 (2)
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where   is a principal unit normal vector field of  ,   is a binormal unit vector field of   The coefficients   and   are smooth

functions called focal curvatures of  , and given by

where   and   are the Euclidean curvatures of  .

In other words, the focal curve of an immersed smooth curve  , in Euclidean space  , consists of the centres of its

osculating spheres.

Remark 2. The functions   and   are well defined because   and   are non-zero functions.

II.3. Surfaces in Euclidean 3-space

Definition 6.[1](p.438)  Let    be a surface. Then    is a generalized cylinder over a curve    if    can be

parameterized as

where   is a fixed vector.

We consider a case of right generalized cylinder over the plane curve  , when its rulings are perpendicular to the generating

plane curve. That means, the fixed vector is a unit vector    and parameter    is replaced by function 

. Then parametrisation of a right generalized cylinder is

III. Previous results

Theorem 3.[3] Let    be regular plane curve of class    with a nonzero signed curvature, and let 

 be a real-valued function. Suppose that   is the unit vector on  -axis and

is a parameterized space curve. Then,   is a regular curve whose curvature and torsion are given by

IV. Research results

The next statement gives us the relations between the Frenet-Seret frame of   and the signed curvature as well as the arc-

length prime of  , parameterized about an arbitrary parameter  .

N γ B γ. (t)c1 (t)c2

γ

(t) = , (t) = − = ,c1
1

κ(t)
c2

κ(t)d

dt

∥ ∥κ(t τ(t)
dγ(t)

dt
)2

d (t)c1

dt

∥ ∥τ(t)
dγ(t)

dt

(3)

ϰ(t) τ(t) γ

γ E
3

(t)c1 (t)c2 κ(t) τ(t)

S ⊂ E
3 S α : I → E

3 S

S : S(u, v) = α(u) + v. ,q ⃗  (4)

∈q ⃗  E
3

α

= (0, 0, 1)e ⃗ 3 ∥Oz v

f(v) ∈ R,f(v) ∈ C3

(u, v) = α(u) + f(v) .S1 e ⃗ 3 (5)

α(t) = (x(t),y(t), 0), t ∈ I ⊂ R C3

f(t) ∈ C3 e ⃗ 3 Oz

γ(t) = α(t) + f(t) , t ∈ Ie ⃗ 3

γ(t)

κ =
⟨ ,J + ⟨ − , − ⟩α̈ α̇⟩2 f̈ α̇ ḟ α̈ f̈ α̇ ḟ α̈
− −−−−−−−−−−−−−−−−−−−−−−−−

√

( )⟨ , ⟩ +α̇ α̇ ḟ
2− −−−−−−−−

√
3

(6)

τ =
⟨ ,J ⟩ + ⟨−J , ⟩ + < ⟨J , ⟩f

...
α̈ α̇ f̈ α̇ α

...
ḟ α̈ α

...

⟨ ,J + ⟨ − , − ⟩α̈ α̇⟩2 f̈ α̇ ḟ α̈ f̈ α̇ ḟ α̈
(7)

γ

α t
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Theorem 4. Let   be a regular  -plane curve in   and    is the Euclidean signed curvature of  . Let 

 be the corresponding cylindrical curve over the right generalized cylinder with a base

curve  . If   are vector invariants of  , then they can be expressed by the derivatives of  , the scalar function   and the unit

vector   with the following equations

where   is the arc-length prime of   with respect to arbitrary parameter  .

Proof: We apply a differentiation about arbitrary parameter  . From   it follows that

Since  ,  ,    and  ,  ,    forms a right-handed orthogonal frame of the curve    and cross vector product 

, then for cross vector product of the first and second derivatives of   we have

Then the norms of tangent vector   and binormal vector   of   are given by

Finally, from  ,   and   we get equations (8), (9), (10). 

The next statement gives us the relations between the focal curvatures of   and the signed curvature of  , parameterized

about an arbitrary parameter  .

Theorem 5. Let   be a regular  -plane curve in   and    is the Euclidean signed curvature of  . Let 

 be the corresponding cylindrical curve over the right generalized cylinder with a base

curve  . If   and   are the focal curvatures of  , then

where   is the arc-length prime of   with respect to arbitrary parameter  .

Proof: From equation (6) and    immediately follows equation (11). After differentiating equation (11) and replacing it

along with equation (7) in   we get (12). 

α = α(t), t ∈ I ⊆ R C3
E

2 K ≠ 0 α

γ(t) = α(t) + f(t). , t ∈ I ⊆ R,f(t) ∈e ⃗ 3 C2

α T ,N,B γ α f

e ⃗ 3

T =
+ṡ ḟ e ⃗ 3

+ṡ
2

ḟ
2− −−−−−

√
(8)

N =
( + ) − ( + ) + ( − ( ))ṡ

2
ḟ

2
α̈ 1

2
d

dt
ṡ

2
ḟ

2
α̇ f̈ ṡ

2
ḟ d

dt

ṡ
2

2
e ⃗ 3

+ṡ
2

ḟ
2− −−−−−

√ + ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

(9)

B =
−J( − ) +f̈ α̇ ḟ α̈ ṡ

6
K2e ⃗ 3

+ ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

(10)

ṡ α t

t γ(t) = α(t) + f(t). e ⃗ 3

= = + . ,   = = + . and = = + . .γ̇
dγ

dt
α̇ ḟ e ⃗ 3 γ̈

γd2

dt2
α̈ f̈ e ⃗ 3 γ̇

γd3

dt3
α̇ ḟ e ⃗ 3

α̇ J( )α̇ e ⃗ 3 α̈ J( )α̈ e ⃗ 3 α

× = ⟨ ,J ⟩. = K.α̇ α̈ α̈ α̇ e ⃗ 3 ṡ
3

e ⃗ 3 γ

× = ( + . ) × ( + . ) = × − J( − ) = ⟨ ,J ⟩. − J( − ) = K. − J( − ).γ̇ γ̈ α̇ ḟ e ⃗ 3 α̈ f̈ e ⃗ 3 α̇ α̈ f̈ α̇ ḟ α̈ α̈ α̇ e ⃗ 3 f̈ α̇ ḟ α̈ ṡ
3

e ⃗ 3 f̈ α̇ ḟ α̈

γ̇ ×γ̇ γ̈ γ

∥ ∥ = = = , ∥ × ∥ = .γ̇ ⟨ , ⟩γ̇ γ̇
− −−−−

√ ⟨ , ⟩ +α̇ α̇ ḟ
2− −−−−−−−−

√ +ṡ
2

ḟ
2− −−−−−

√ γ̇ γ̈ + ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

T = γ̇

∥ ∥γ̇
B =

×γ̇ γ̈

∥ × ∥γ̇ γ̈
N = B × T □

γ α

t

α = α(t), t ∈ I ⊆ R C3
E

2 K ≠ 0 α

γ(t) = α(t) + f(t). , t ∈ I ⊆ R,f(t) ∈e ⃗ 3 C2

α c1 c2 γ

(t) = ,c1

+ṡ
2

ḟ
2− −−−−−

√

+ ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

(11)

(t) = ,c2

3( + ∥ − ) ( + ) − ( + ) ( + ∥ − )ṡ
6
K2 f̈ α̇ ḟ α̈∥2 d

dt
ṡ

2
ḟ

2
ṡ

2
ḟ

2 d

dt
ṡ

6
K2 f̈ α̇ ḟ α̈∥2

2 ( K − ⟨J( − ), ⟩)+ ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√ f

...

ṡ
3

f̈ α̇ ḟ α̈ α
...

(12)

ṡ α t

=c1
1
κ

(t) = − =c2

κ(t)d

dt

∥ ∥κ(t τ(t)
dγ(t)

dt
)2

d (t)c1

dt

∥ ∥τ(t)
dγ(t)

dt

□
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Theorem 6. Let   be a regular  -plane curve in   and    is the Euclidean signed curvature of  . Let 

 be the corresponding cylindrical curve over the right generalized cylinder with base

curve   and   are the focal curvatures of   defined by equations (11) and (12). Then the focal curve of   has vector-parametric

representation 

where   is the generalized focal curve of ,   is the arc-length prime of with respect to arbitrary parameter .

Proof: The proof follows immediately from the parametric representation of the focal curve given in equation (2)

, using Theorem 4 and Theorem 5. 

V. Applications

V.1. Closed toroidal curves

Let us consider a torus with parametric equation 

where  . The Cartesian equation of this surface of revolution obtained by the rotation

of a circle in the   plane with center   and radius   around the   axis is  . Let   be

the intersection curve of right generalized cylinder   over a regular plane curve   and a torus  . Then the two equations

that the scalar function   satisfies are  .

Proposition 7. Since functions   and  ,   satisfy the inequalities   then

functions   given by   have continuous partial derivatives of all orders.

Proof: The proof immediately follows from the condition    which is true when functions 

 and   satisfied the inequalities  . 

Theorem 8. Let    be a regular  -plane curve in    and    is a differentiable scalar

function    when  . Then non-planar toroidal curve 

 given by   is a curve of class  .

Proof: The vector function    is of class    when its coordinate functions 

 are of class  . The fact that the functions   are continuously differentiable up to order   immediately

follows from the condition that    is a regular  -plane curve in  . By Proposition 7 the function 

  has continuous partial derivatives of all orders therefore 

,    and 

α = α(t), t ∈ I ⊆ R C3
E

2 K ≠ 0 α

γ(t) = α(t) + f(t). , t ∈ I ⊆ R,f(t) ∈e ⃗ 3 C3

α ,c1 c2 γ γ

(t) = β(t) + (t).Cγ f
~

e ⃗ 3

β(t) = α(t) + ,
(( + ) − ( + ) ) − J( − )c1 ṡ

2
ḟ

2
α̈ 1

2
d

dt
ṡ

2
ḟ

2
α̇ c2 +ṡ

2
ḟ

2− −−−−−
√ f̈ α̇ ḟ α̈

+ṡ
2

ḟ
2− −−−−−

√ + ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

(13)

(t) = f(t) + ,f
~ ( − ( )) + Kc1 f̈ ṡ

2
ḟ d

dt

ṡ
2

2
c2 +ṡ

2
ḟ

2− −−−−−
√ ṡ

3

+ṡ
2

ḟ
2− −−−−−

√ + ∥ −ṡ
6
K2 f̈ α̇ ḟ α̈∥2

− −−−−−−−−−−−−−−−−
√

(14)

β α ṡ α t

, i. e. (t) = γ(t) + (t)N(t) + (t)B(t)Cγ c1 c2 □

(u, v) = ((a + b cosu) cos v, (a + b cosu) sinv, b. sinu),S2 (15)

a, b = const,a > b > 0, (u, v) ∈ D ⊆ E
2

Oxz a b Oz (a − + =+x2 y2− −−−−−
√ )2 z2 b2 γ = ∩S1 S2

S1 α S2

f : I → R, I ⊆ R (t) = ±f1,2 − (a −b2 (t) + (t)x2 y2− −−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−
√

x : I → R y : I → R I ⊆ R (a − b < (t) + (t) < (a + b)2 x2 y2 )2

: I → Rf1,2 ± − (a −b2 (t) + (t)x2 y2− −−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−
√

(a − <(t) + (t)x2 y2− −−−−−−−−−
√ )2 b2

x : I → R y : I → R (a − b < (t) + (t) < (a + b)2 x2 y2 )2
□

α(t) = (x(t),y(t), 0), t ∈ I ⊆ R C3
E

2 f : I → R

f(t) = ± − (a −b2 (t) + (t)x2 y2− −−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−
√ (a − b < (t) + (t) < (a + b)2 x2 y2 )2

γ : I → E
3 γ(t) = α(t) + f(t). e ⃗ 3 C3

γ(t) = α(t) + f(t). = (x(t),y(t),f(t))e ⃗ 3 C3

x(t),y(t),f(t) C3 x(t),y(t) 3

α C3
E

2

f(t) = ± − (a −b2 (t) + (t)x2 y2− −−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−
√

(t) = (x(t),y(t)) = + = +ḟ
df

dt

df

dx

dx

dt

df

dy

dy

dt
f ′
xẋ f ′

y ẏ (t) = (x(t),y(t) = + 2 + + +f̈
fd2

dt2
f ′
xxẋ

2
f ′
xyẋẏ f ′

yy ẏ
2

f ′
xẍ f ′

y ÿ
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are continuously differentiable and then  . 

It can be shown that if the rulings of the generalized cylinder that passes though a cusp of the plane curve (generating the

cylinder) are tangent to the meridians of the torus at the corresponding cusp, then the curve is connected.

V.2. A helical curve over torus

A curve that is orthogonal projection of a helix, wrapped into a torus (toroidal helix)

onto the Euclidean plane has parametric equation 

By Proposition 6 the focal curve of toroidal helix  is given by

Figure 1.

The images of orthogonal projection of toroidal helix  (in red) and its corresponding generalized focal curve  (in purple)

are in Figure 1(a). The images of toroidal helix  (in blue) and its corresponding focal curve  (in green) are in Figure 1(b)

for  .

(t) = (x(t),y(t)) = + (2 + ) + ( + 2 ) +f
... fd3

dt3
f ′
xxxẋ

3
f ′
xyx f ′

xxy ẋ
2
ẏ f ′

yyx f ′
xyy ẋẏ

2

+ 3( + ( + ) + ) + +f ′
yyy ẏ

3
f ′
xxẋẍ f ′

xy ẍẏ ẋÿ f ′
yy ẏ ÿ f ′

x x
...

f ′
y y

...

f(t) ∈ C3
□

γ(t) = (cos(t)(a + b cos(nt)), sin(t)(a + b cos(nt)), b sin(nt)),a, b,n, )

α(t) = (cos(t)(a + b cos(nt)), sin(t)(a + b cos(nt)), 0), t ∈ R.

(t) = β(t) + (t).Cγ f
~

e ⃗ 3

= ,xβ
4ab (cos(t) (a ( − 1) − b (2 + 1) cos(nt)) + 3bn sin(t) sin(nt))n2 n2 n2

(4 ( − 1) − (8 + 13 + 3)) cos(nt) + b (4a ( − 1) − 4a (2 + 1) cos(2nt) + b ( − 1) cos(3nt))a2 n2 b2 n4 n2 n4 n2 n2

= ,yβ
4ab (sin(t) (a ( − 1) − b (2 + 1) cos(nt)) − 3bn cos(t) sin(nt))n2 n2 n2

(4 ( − 1) − (8 + 13 + 3)) cos(nt) + b (4a ( − 1) − 4a (2 + 1) cos(2nt) + b ( − 1) cos(3nt))a2 n2 b2 n4 n2 n4 n2 n2

(t) = .f
~ 2a sin(nt) (−2 ( − 1) + 4ab (2 + 1) cos(nt) − ( − 1) cos(2nt) + (11 + 1))a2 n2 n2 b2 n2 b2 n2

(4 ( − 1) − (8 + 13 + 3)) cos(nt) + b (4a ( − 1) − 4a (2 + 1) cos(2nt) + b ( − 1) cos(3nt))a2 n2 b2 n4 n2 n4 n2 n2

α β

γ Cγ

a = 4, b = 1,n = 12
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V.3. Epicycloids over torus

Let us now consider the epicycloid given by 

where   is the radius of the larger circle centered at the origin around which the smaller circle with radius   rolls. We will

take    and the larger circle to have radius  . Then the corresponding epicycloid    will be

contained in the closed disk centered at the origin with radius   (see [4](p.4)) and the rulings of the generalized cylinder

that passes though a cusp of the epicycloid (generating the cylinder) will be tangent to the meridians of torus at the

corresponding cusp and the toroidal epicycloid   will be connected.

The form of the curve of a epicycloid depends on the ratio  :

For   the epicycloid   is called a cardioid and   is a toroidal cardioid with parametric equation 

Let us take    and without losing of the generality let  . Then 

 In this case   is non-planar when  . The point   is a cusp of  .

If    then    and    is non-planar when 

 and the points  ,   are cusps of  .

Figure 2. (a) cardioid   (in red),   (in purple); (b) curve   (in blue),   (in green)

The images of a cardioid   (in red), corresponding toroidal cardioid   (in blue) over torus, the focal curve of toroidal

cardioid  (in green) and the generalized focal curve of the cardioid  (in purple) are in Figure 2(a) (when  )

and Figure 2(b) (when  ) for  .

α(t) = ((r + R) cos( )− r cos( ), (r + R) sin( )− r sin( ), 0) ,  t ∈ [0, 2kπ],  k = 1, 2, . . . ,
rt

R

t(r + R)

R

rt

R

t(r + R)

R

R r

R + 2r ≤ a + b R = a − b,  a > b α

a + b

γ

= mr

R

R = r ⇔ ≤ b < aa

2
α γ

γ(t) = (r(2 cos(t) − cos(2t)), r(2 sin(t) − sin(2t)), ) ,  t ∈ [0, 2π].(a − r − (a − r)2 5 − 4 cos(t)
− −−−−−−−−

√ )2
− −−−−−−−−−−−−−−−−−−−−−−−−

√

R + 2r < a + b ⇔ b > a

2
b = a ⇔ R = r = a − b = =3

4
a

4
b

3

= r .zγ 9 − (4 − 5 − 4 cos(t)
− −−−−−−−−

√ )2
− −−−−−−−−−−−−−−−−−−

√ γ t ≠ 0, 2π γ(0) = γ(2π) γ

R + 2r = a + b ⇔ a = 2b ⇔ r = = ba

2
= rzγ 1 − (2 − 5 − 4 cos(t)

− −−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−
√ γ

t ≠ 0,π, 2π γ(0) = γ(2π) γ(π) γ

α β γ Cγ

α γ

Cγ β R + 2r < a + b

R + 2r = a + b r = 1
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For   the epicycloid   is called a nephroid and   is a toroidal nephroid with parametric equation 

Let us take    and without losing of the generality let  . Then 

 In this case   is non-planar when  . The points   and   are

cusps of  . If    then    and    is non-planar when 

  and the points  ,  ,  ,    are cusps of  . In conclusion, we can say that if the

epicycloid touches the circle of a torus with an equation    then the cusps of the corresponding toroidal

epicycloid are doubled.

Figure 3.The images of a nephroid   (in red), corresponding toroidal nephroid   (in blue) over torus, the focal curve of toroidal nephroid 

 (in green) and the generalized focal curve of the nephroid   (in purple) are in Figure 3a (when   for  ) and Figure

3b (when   for  ).

V.4. Hypocycloids over torus

Let us now consider the hypocycloid given by 

where   is the radius of the larger circle centered at the origin on which the smaller circle with radius   rolls internally. We

will take   and the larger circle to have radius  . Then the corresponding hypocycloid, will be

contained in annulus   (the region lying between two concentric circles centered at the origin

with radii    and  ). It is easy to see that from    and    follows the inequality 

. Then corresponding toroidal hypocycloid have representation 

 Let us take  .

R = 2r ⇔ ≤ b < aa

3
α γ

γ(t) = (r(3 cos( )− cos( )) , r(3 sin( )− sin( )) , ) ,  t ∈ [0, 4π].
t

2

3t

2

t

2

3t

2
(a − 2r − (a − r)2 10 − 6 cos(t)

− −−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−
√

R + 2r < a + b ⇔ b > a

3
b = a ⇔ R = 2r = a − b = =2

3
a

3
b

2

= r .zγ 16 − (6 − 10 − 6 cos(t)
− −−−−−−−−−

√ )2
− −−−−−−−−−−−−−−−−−−−−

√ γ t ≠ 0, 2π, 4π γ(0) = γ(4π) γ(2π)

γ R + 2r = a + b ⇔ a = 3b = 3r = rzγ 1 − (3 − 10 − 6 cos(t)
− −−−−−−−−−

√ )2
− −−−−−−−−−−−−−−−−−−−

√ γ

t ≠ 0,π, 2π, 3π, 4π γ(0) = γ(4π) γ(π) γ(2π) γ(3π) γ

+ = (a + bx2 y2 )2

α γ

Cγ β R + 2r < a + b r = 1/2

R + 2r = a + b r = 1

α(t) = (r cos( )+ (R − r) cos( ), (R − r) sin( )− r sin( ), 0) , t ∈ [0, 2kπ],k = 1, 2, . . . ,
t(R − r)

R

rt

R

rt

R

t(R − r)

R

R r

|2r − R| ≥ a − b,a > b R ≤ a + b

(a − b ≤ + ≤ (a + b)2 x2 y2 )2

a + b a − b |2r − R| ≥ a − b,a > b R ≤ a + b

R − r ≤ 2b

γ(t) = α(t) ± .− (a −b2 (R − r + 2r(R − r) cos(t) +)2 r2− −−−−−−−−−−−−−−−−−−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
√ e

→
3 R = a + b
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The form of the curve of a hypocycloid depends on the ratio  :

For   the hypocycloid   is called a deltoid and   is a toroidal deltoid with parametric equation 

If    then    and if we take    then  . In this case 

  and    is non-planar when    and the points  ,  , 

  are cusps of  . If    then  . In this case   and 

 is non-planar when  . The points  ,  ,  ,  ,  ,   are cusps of  .

Figure 4. (a) The images of deltoid   (in red), the corresponding toroidal deltoid   (in blue) over torus, the focal curve of toroidal deltoid 

 (in green) and the generalized focal curve of the deltoid   (in purple) are in Figure 4(a) (when   for  ) and

Figure 4(b) (when   for  ).

For   the hypocycloid   is called an astroid and   is a toroidal astroid with parametric equation

If   then   and if we take   then  . In this case 

and    is non-planar when    and the points  ,  ,  ,    are cusps of  . If 

  then  . In this case    and    is non-planar when 

 and the points  ,  ,  ,  ,  ,  ,  ,   are cusps of  .

In conclusion, we can say that if the hypocycloid touches the circle of a torus with an equation   then the

cusps of the corresponding toroidal hypocycloid are doubled.

= mr

R

2R = 3r α γ

γ(t) = ( (cos( )+ 2 cos( )) , (sin( )− 2 sin( )) , ) , t ∈ [0, 6π].
r

2

2t

3

t

3

r

2

2t

3

t

3
−( − a)

3r
2

2

(a − )
r

2
5 + 4 cos(t)
− −−−−−−−−

√
2

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−

√

|2r − R| > a − b,  a > b < b < aa

2
b = 2a

3
R = = a + b =3r

2
5a
3

=zγ
r

10
36 − (9 − 5 5 + 4 cos(t)

− −−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−−−
√ γ t ≠ 0, 2π, 4π, 6π γ(0) = γ(6π) γ(2π)

γ(4π) γ 2r − R = a − b,  a > b b = = =a

2
r

2
R

3
=zγ

r

2
1 − (2 − 5 + 4 cos(t)

− −−−−−−−−
√ )2

− −−−−−−−−−−−−−−−−−−
√

γ t ≠ 0,π, 2π, 3π, 4π, 5π, 6π γ(0) = γ(6π) γ(π) γ(2π) γ(3π) γ(4π) γ(5π) γ

α γ

Cγ β |2r − R| > a − b,  a > b r = 10

|2r − R| = a − b,  a > b r = 2

R = 4r α γ

γ(t) = (r(3 cos( ) + cos( )), r(3 sin( ) − sin( )), ) ,  t ∈ [0, 8π].t

4
3t
4

t

4
3t
4

(4r − a − (a − r)2 10 + 6 cos(t)− −−−−−−−−−√ )2
− −−−−−−−−−−−−−−−−−−−−−−−−−−

√

|2r − R| > a − b,  a > b < b < aa

3
b = a

2
R = 4r = a + b = 3a

2

γ(t) = (4r ( ), 4r ( ), )cos3 t

4
sin3 t

4
r

3
16 − (8 − 3 10 + 6 cos(t)− −−−−−−−−−√ )2
− −−−−−−−−−−−−−−−−−−−−−

√

γ t ≠ 0, 2π, 4π, 6π, 8π γ(0) = γ(8π) γ(2π) γ(4π) γ(6π) γ

|2r − R| = a − b,  a > b b = r = =a

3
R

4
= rzγ 1 − (3 − 10 + 6 cos(t)− −−−−−−−−−√ )2

− −−−−−−−−−−−−−−−−−−−
√ γ

t ≠ 0,π, 2π, 3π, 4π, 5π, 6π, 7π, 8π γ(0) = γ(8π) γ(π) γ(2π) γ(3π) γ(4π) γ(5π) γ(6π) γ(7π) γ

+ = (a − bx2 y2 )2
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Figure 5. The images of astroid   (in red), the corresponding toroidal astroid   (in blue) over torus, the focal curve of toroidal astroid   (in

green) and the generalized focal curve of the astroid   (in purple) are in Figure 5(a) (when   for  ) and Figure

5(b) (when   for  ).

VI. Conclusion

In this paper, we discuss relations between differential geometric invariants of non-planar space curve on the right

generalized cylinder over regular base curve and differential geometric invariants of corresponding base curve. Based on

these relations, a method for obtaining a new space curve from a given plane curve parameterized about an arbitrary

parameter is presented. At first, we define a non-planar space curve on the right generalized cylinder whose base curve is the

considered plane curve, parameterized about an arbitrary parameter. Later on, we examine the focal curve of the obtained

cylindrical curve which is also a non-planar curve. The Frenet-Seret system of the cylindrical curve and its focal curve are

expressed in terms of the signed curvature of the abovementioned plane curve and its derivatives. Finally, we obtained the

parametric representation of orthogonal projection of the focal curve onto the Euclidean plane via aforementioned plane

curve and its derivatives. That curve is called generalized focal curve of a plane curve. The proposed method is demonstrated

for several closed plane curves used in engineering practice. These curves include: epicycloid, hypocycloid and a curve that is

orthogonal projection of toroidal helix onto the Euclidean plane. Moreover, depending on the type of closed plane curves,

conditions are derived where their corresponding space curves on the torus are also closed.
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