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Abstract

This paper presents a new ‘partitional’ approach to understanding or interpreting standard
quantum mechanics (QM). The thesis is that the mathematics (not the physics) of QM is the
Hilbert space version of the math of partitions on a set and, conversely, the math of partitions
is a skeletonized set level version of the math of QM. Since at the set level, partitions are the
mathematical tool to represent distinctions and indistinctions (or definiteness and indefinite-
ness), this approach shows how to interpret the key non-classical QM notion of superposition
in terms of (objective) indefiniteness between definite alternatives (as opposed to seeing it as
the sum of ‘waves’). Hence this partitional approach substantiates what might be called the
Objective Indefiniteness Interpretation or what Abner Shimony called the Literal Interpretation
of QM.

1 Introduction: The basic thesis

The purpose of this paper is to expound a new way to interpret quantum mechanics (QM), or, to be
more precise, to interpret the mathematics (not the physics1) of QM. The key mathematical, indeed
logical, concept is the notion of a partition on a set–or equivalently, the notion of a quotient set or
equivalence relation. The basic thesis is that the math of QM is the Hilbert space version of the math
of partitions. Partitions are the basic logical concept to describe distinctions versus indistinctions,
definiteness versus indefiniteness, distinguishability versus indistinguishability, or difference versus
identity. The key non-classical notion in QM is that of superposition–with entanglement being a
particularly unintuitive special case. The result of the thesis is to give a partitional explication of
superposition in terms of objective indefiniteness between definite alternatives–so that this approach
to QM could be called the Objective Indefiniteness or Literal Interpretation of QM.

From these two basic ideas alone – indefiniteness and the superposition principle – it
should be clear already that quantum mechanics conflicts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an indefinite value in that quantum state is objectively indefinite; its value is not
merely unknown by the scientist who seeks to describe the system. Furthermore, since
the outcome of a measurement of an objectively indefinite quantity is not determined
by the quantum state, and yet the quantum state is the complete bearer of information
about the system, the outcome is strictly a matter of objective chance – not just a matter
of chance in the sense of unpredictability by the scientist. Finally, the probability of each
possible outcome of the measurement is an objective probability. Classical physics did
not conflict with common sense in these fundamental ways. [34, p. 47]

1The physics of QM is obtained by the quantization of classical physics. Our focus is on the specific nature of the
mathematical framework of standard von Neumann/Dirac QM.
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Abner Shimony suggested calling this interpretation of the math or ”formalism of quantum
mechanics” as the Literal Interpretation.

These statements ... may collectively be called ”the Literal Interpretation” of quantum
mechanics. This is the interpretation resulting from taking the formalism of quantum
mechanics literally, as giving a representation of physical properties themselves, rather
than of human knowledge of them, and by taking this representation to be complete. [36,
pp. 6-7]

2 The lattice of partitions

A partition π on a set U = {u1, ..., un} is a set of nonempty subsets or blocks π = {B1, ..., Bm}
that are mutually disjoint and jointly exhaustive (their union is U).2 A equivalent definition, that
prefigures the Hilbert space notion of a ”direct-sum decomposition” of the space in terms of the
eigenspaces of a Hermitian operator ) is a set of nonempty subsets π = {B1, ..., Bm} such that every
non-empty subset S ⊆ U can be uniquely represented as the union of a set of nonempty subsets of
the Bj–in particular S = ∪{S ∩Bj 6= ∅ : j = 1, ...,m}.

As the mathematical tool to describe distinctions versus indistinctions, a distinction or dit of π
is an ordered pair of elements of U in different blocks of the partition, and the ditset dit (π) is the set
of all the distinctions of π (also called an ”apartness relation”). An indistinction or indit of π is an
ordered pair of elements in the same block of the partition, and the indit set indit (π) = ∪mj=1Bj×Bj
is the set of all indits of π–which is the equivalence relation associated with π whose equivalence
classes are the blocks of π.

The partial order on partition is usually defined as σ - π (where σ = {C1, ..., Cm′}) if for
every Bj ∈ π, there is a Cj′ ∈ σ such that Bj ⊆ Cj′ , but it is easier to just define it by σ - π
if dit (σ) ⊆ dit (π). The join (least upper bound) and meet (greatest lower bound) operations on
partitions on U form the partition lattice Π (U). The most important operation for our purposes
is the join operation where the join π ∨ σ is the partition on U whose blocks are the nonempty
subsets Bj ∩ Cj′ for j = 1, ...,m and j′ = 1, ...,m′. It could also be defined using ditsets since:
dit (π ∨ σ) = dit (π) ∪ dit (σ). The partition lattice Π (U) also has a top and bottom. The top is
the discrete partition 1U = {{u1} , ..., {un}} with only singleton blocks which makes all possible
distinctions, i.e., dit (1U ) = U × U −∆ (where ∆ is the diagonal of self-pairs (ui, ui)). The bottom
is the indiscrete partition (or ”The Blob”3) 0U = {U} with only one block U and it makes no
distinctions so dit (0U ) = ∅ and indit (0U ) = U × U .

There are two notions of ‘becoming’ illustrated as going from the bottom to top of the Boolean
lattice of subsets and the lattice of partitions in terms of the creation of ‘its’ or dits. The parti-
tion notion of becoming is particularly important for our purposes since it prefigures the notion of
quantum (projective) measurement.

2We stick to the finite case since our purpose is conceptual rather than obtaining mathematical generality.
3Since 0U is below all other partitions π on U , it is called ”The Blob” because, as in the Hollywood movie of that

name, the Blog absorbs everything it meets, i.e., 0U ∧ π = 0U .
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Figure 1: The two dual notions of becoming.

Applied to the ‘universe,’ this gives two stories of creation.
Subset creation story : In the Beginning was the Void (no substance) and then fully definite

elements (”Its”) were created until the full universe U was created.
Partition creation story : In the Beginning was the Blob–all substance with no form (i.e., perfect

symmetry)–and then, in a Big Bang, distinctions (”Dits”) were created (i.e., symmetries were bro-
ken) as the substance was increasingly in-formed to reach the universe U where everything is fully
distinguished.

3 The logic of partitions

The partition join and meet operations were known in the nineteenth century (e.g., Dedekind and
Schröder). Ordinary logic is based on the Boolean logic of subsets of a universe set U ; propositional
logic is the special case of a one element universe U . And subsets (or generally subobjects) are
category-theoretically dual to partitions (or generally quotient objects). Hence one would naturally
expect there to be a dual logic of partitions, but that would require at least the operation of im-
plication on partitions (corresponding to the Boolean conditional S ⊃ T ), but no new operations
on partitions were defined in the twentieth century. As acknowledged in a 2001 volume commem-
orating Gian-Carlo Rota: ”the only operations on the family of equivalence relations fully studied,
understood and deployed are the binary join ∨ and meet ∧ operations.” [5, p. 445] Only in the cur-
rent century was the implication operation σ ⇒ π on partitions (which turns the lattice Π (U) into
an algebra) defined along with general algorithms to turn subset logical operations into partition
logical operations. The resulting logic of partitions cemented the notion of a partition as not just a
mathematical concept of combinatorics but a logical concept. [11]

There is a parallel development of subset logic and partition logic based on the dual connection
between the elements or ”its” of a subset and the distinctions or ”dits” of a partition–which is
summarized in Table 1.

Its & Dits Algebra of subsets℘ (U) of U Algebra of partitions Π (U) on U

Its or Dits Elements of subsets Distinctions of partitions
Partial order Inclusion of subsets S ⊆ T Inclusion of ditsets dit (σ) ⊆ dit (π)
Logical maps Injection S � T Surjection π � σ
Join Union of subsets Union of ditsets
Meet Subset of common elements Ditset of common dits
Top Subset U with all elements Partition 1U with all distinctions
Bottom Subset ∅ with no elements Partition 0U with no distinctions
Implication S ⊃ T = U iff S ⊆ T σ ⇒ π = 1U iff σ - π

Table 1: Elements and Distinctions (Its & Dits) duality between the two lattices

In subset logic, a formula is valid if for any U ( |U | ≥ 1) and any subsets of U substituted for
the atomic variables, the formula evaluates by the logical subset operations to the top U . Similarly
in partition logic, a formula is valid if for any U (|U | ≥ 2) and any partitions on U substituted for
the atomic variables, the formula evaluates by the logical partition operations to the top 1U .

4 Logical information theory: Logical entropy

In his writings (and MIT lectures), Gian-Carlo Rota further developed the parallelism between
subsets and partitions by considering their quantitative versions: ”The lattice of partitions plays for
information the role that the Boolean algebra of subsets plays for size or probability.” [28, p. 30]
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Since the normalized size of a subset Pr (S) = |S|
|U | gives its Boole-Laplace finite probability, so the

”size” of a partition would play a similar role for information:

Information
Partitions ≈

Probability
Subsets .

Since ”Probability is a measure on the Boolean algebra of events” that gives quantitatively the
”intuitive idea of the size of a set”, we may ask by ”analogy” for some measure ”which will capture
some property that will turn out to be for [partitions] what size is to a set.” [33, p. 67] The duality
tells us that it is the number of dits in a partition that gives its size (maximum at the top and
minimum at the bottom of the partition lattice) that is parallel to the number of ‘its’ in a subset
(maximum at the top and minimum at the bottom of the subset lattice).

That is the reasoning that motivates the definition of the logical entropy of a partition as the
normalized size of its ditset (equiprobable points):

h (π) = |dit(π)|
|U×U | = |U×U |−|indit(π)|

|U×U | = 1− ∪j |Bj×Bj |
|U×U | = 1−

∑
j

(
|Bj |
|U |

)2

.

In general, if the points of U = {u1, ..., un} have general probabilities p = {p1, ..., pn}, then Pr (Bj) =∑
ui∈Bj

pi, so that:

h (π) = 1−
∑m
j=1 Pr (Bj)

2 =
∑m
j=1 Pr (Bj) (1− Pr (Bj)).

The parallelism carries through to the interpretation: Pr (S) =
∑
ui∈S pi is the one-draw probability

of getting an ‘it’ of S and h (π) is the two-draw probability of getting a ‘dit’ of π.
The logical entropy h (π) is a (probability) measure in the sense of measure theory, i.e.,, h (π)

is the product measure p × p on the ditset dit (π) ⊆ U × U . As a measure, the compound notions
of joint, conditional, and mutual logical entropy satisfy the usual Venn diagram relationships. The
well-known Shannon entropy H (π) =

∑m
j=1 Pr (Bj) log2

(
1

Pr(Bj)

)
can also be interpreted in terms

of partitions; it is the minimum average number of binary partitions (bits) it takes to distinguish
the blocks of π. The Shannon entropy is not a measure in the sense of measure theory but the
compound notions of joint, conditional, and mutual Shannon entropy were defined so that they
satisfy similar Venn-like diagrams. That is possible because there is a non-linear but monotonic
dit-to-bit transform, i.e., 1 − Pr (Bj)  log2

(
1

Pr(Bj)

)
, that takes h (π) =

∑
j Pr (Bj) (1− Pr (Bj))

to H (π) =
∑
j Pr (Bj) log2

(
1

Pr(Bj)

)
and which preserves Venn diagrams. [13]

If a partition π is the inverse-image partition π =
{
f−1 (r)

}
r∈f(U)

of a numerical attribute
f : U → R, then h (π) is the two-draw probability of getting different f -values. The notion of logical
entropy generalizes naturally to the notion of quantum logical entropy ([13]; [39]) where it gives the
probability in two independent measurements of the same state by the same observable that the
result gives different eigenvalues.

5 Partitions as skeletonized quantum states

There is a very simple way to skeletonize a quantum state to arrive at the corresponding set notion.
Consider U = {a, b, c, d} as both a set of distinct points and also as a orthonormal basis for a
4-dimensional Hilbert space. Then a superposition state vector of the form (say) α |a〉 + β |b〉 is
skeletonized by deleting the complex scalars α and β, the Dirac kets, and the addition operation to
yield just the set {a, b} as a block in a partition. This sets up the skeletal (many-to-one) dictionary
between pure, non-classical mixed states (i.e., mixed states containing at least one superposition),
and the classical mixed state–with their skeletonized partition versions as in Figure 2–where we have
used the partition shorthand of representing the partition {{a, b} , {c, d}} as {ab, cd} and similarly
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for the other partitions. The interpretation is that a, b, c, d are distinct eigenstates of a particle
according to some observable, where ”particle” does not mean a classical (or Bohmian) particle but
an entity that can have different levels of objective indefiniteness (superpositions of the eigenstates
such as a, b, c, or d) or the definiteness of an eigenstate.4

Figure 2: Skeletonized quantum states of a particle as the lattice of partitions.

Figure 2 is the Hasse diagram of the partition lattice on a four element set which means that each
line between two partitions represents the partial order of refinement with no intermediate partitions.
Then the change from a partition to a more refined one is a ”jump.” The set level precursor of such
a quantum jump is the ”choice function” [21, p. 60] which assigns to each nonempty subset (like a
block in a partition) an element of the subset. That determination of an element is non-deterministic
except in the special case of a singleton set which is the precursor of the quantum measurement when
the outcome has probability one, namely when state being measured is a single eigenstate of the
observable being measured (i.e., a singleton block in Figure 2).

The top discrete partition 1U is the skeletal version of a classical mixed state like randomly
choosing a leaf in a four-leaf clover or randomly choosing a ‘letter’ in the four-letter genetic code
U,C,A,G. One criterion of classical reality was the idea that it was fully definite or definite all-the-
way-down as in Leibniz’s Principle of Identity of Indistinguishables (PII) [3, Fourth letter, p. 22] or
Kant’s Principle of Complete Determination (omnimoda determinatio).

Every thing, however, as to its possibility, further stands under the principle of thor-
oughgoing determination; according to which, among all possible predicates of things,
insofar as they are compared with their opposites, one must apply to it. [25, B600]

Thus two distinct things must have some predicate to distinguish them or if there is no way to dis-
tinguish them, then they are the same thing. This principle of classicality characterizes the ‘classical’
state 1U :

For any u, u′ ∈ U , if (u, u′) ∈ indit (1U ), then u = u′

Partition logical version of Principle of Identity of Indistinguishables.

Any non-classical state in the skeletal representation is a partition π with a non-singleton ‘superpo-
sition’ block, e.g., {a, b} so (a, b) ∈ indit (π) but a 6= b. As noted above, any idealized measurement
of a classical state (i.e., a singleton) gives the outcome of that state with probability one.

4The analysis is of standard von Neumann/Dirac quantum physics, not about quantum field theory where a particle
might be analyzed as a ”disturbance in a field.”
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In addition to PII, Leibniz had other metaphysical principles characteristic of the classical notion
of reality. His Principle of Continuity was expressed by ”Natura non facit saltus” (Nature does not
make jumps) [29, Bk. IV, chap. xvi] and his Principle of Sufficient Reason was expressed as the
statement ”that nothing happens without a reason why it should be so rather than otherwise” [3,
Second letter, p. 7]. All these classical principles are violated in the quantum world; PII is violated
by superpositions of bosons, Continuity is violated by the quantum jumps, and Sufficient Reason is
violated by the objective probabilities of QM.

This skeletal representation of quantum states is summarized in Table 2.

Partition concept Corresponding quantum concept
Non-singleton block, e.g., {a, b} Superposition pure state

Indiscrete partition 0U = {{a, b, c, d}} Largest pure state
Singleton block, e.g., {d} Classical state (no superposition)

Discrete partition 1U = {{a} , {b} , {c} , {d}} Classical mixture of states
Partition, e.g., {{a, b, c} , {d}} Mixture of orthogonal states

Table 2: Corresponding partition and quantum concepts

6 Superposition as indefiniteness in the quantum ‘under-
world’

The biggest ‘enemy’ to understanding QM is the wave imagery, not to mention the name ”wave
mechanics.” That imagery interprets superposition as the sum of two definite waves to give another
definite wave as in Figure 3.

Figure 3: ‘Wrong’ image of superposition in QM as sum of waves

It is the wave imagery that is wrong, not the math of waves since any vector in a space over
the complex numbers C automatically has a wave imagery in the polar representation as having an
amplitude and phase. The wave interpretation is a misleading artefact of the use of complex numbers
in the math of QM, which is because (among other reasons) they are algebraically complete so that
the observable operators will have a complete set of eigenvectors [41, p. 67, fn. 7], not because the
‘wave function’ describes any physical waves.5 It is a fact of the mathematics that the addition
of vectors in a vector space over C can always be represented as the superposition of waves with
interference effects.

The wave formalism offers a convenient mathematical representation of this latency,
for not only can the mathematics of wave effects, like interference and diffraction, be

5In view of the century-long difficulties in interpreting QM as ”wave mechanics,” Einstein’s statement: ”The Lord
is subtle, but not malicious,” may be too optimistic.
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expressed in terms of the addition of vectors (that is, their linear superposition; see [17,
Chap. 29.5]), but the converse, also holds. [24, p. 303]

On the partitional (insstead of wave) approach, a superposition of two definite states {a} and
{b} is a state {a, b} that is indefinite between the two definite states. For a pictorial image, Figure 4
gives the superposition of two isosceles triangles with labelled edges and vertices as the triangle that
is indefinite on the edges and vertices where they differ and only definite where the two triangles are
the same–and certainly not the triangle that is doubly definite (like a double-exposure photograph).

Figure 4: Imagery of superposition as indefiniteness

The fact that where superposed states have the same property is still definite (like vertex label a,
the side label A) in the superposition is a little noticed fact about quantum superpositions.

It follows from the linearity of the operators which represent observables of quantum
mechanical systems that any measurable physical property which happens to be shared
by all of the individual mathematical terms of some particular superposition (written
down in any particular basis) will necessarily also be shared by the full superposition,
considered as a single quantum-mechanical state, as well. [2, p. 234]

This means that the notion of superposition in QM and the notion of abstraction (e.g., in mathe-
matics) are ‘essentially’ the same notion viewed from different angles [12]. In a superposition, the
emphasis is on the indefiniteness resulting from where the elements of a set (i.e., a non-singleton
equivalence class in an equivalence relation) differ like the vertex labels b and c, and the side labels
B and C in Figure 4, while in abstraction, the emphasis is on the properties that are the same for
the elements in the set like the vertex label a and side label A. It is like the different viewpoints of
seeing a glass as half-empty or as half-full.

It is not a new idea that there is a quantum ‘underworld’ of indefinite superposition states
‘beneath’ the classical space-time world of definite states. That view was previously expressed in the
language of the quantum world of potentialities (or latencies) versus the classical world of actualities
([23]; [31]; [24, Sec. 10.2]; [36]; [20]; [27], [26]; [8]).

Heisenberg [23, p. 53]... used the term ”potentiality” to characterize a property which
is objectively indefinite, whose value when actualized is a matter of objective chance,
and which is assigned a definite probability by an algorithm presupposing a definite
mathematical structure of states and properties. Potentiality is a modality that is some-
how intermediate between actuality and mere logical possibility. That properties can
have this modality, and that states of physical systems are characterized partially by
the potentialities they determine and not just by the catalogue of properties to which
they assign definite values, are profound discoveries about the world, rather than about
human knowledge. [36, p. 6]

Ruth Kastner even uses the imagery of an iceberg [26, p. 3] with the classical world above water
and the quantum world beneath the water–an imagery that is filled out by the Figure 2 imagery of
the partition lattice as the skeletonized classical and quantum states. The language of ”potentialities”
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or the Aristotelean notion of ”potentia” is not very felicitous since they are taken to be realities,
not mere possibilities. Hence some prefer the language of ”latencies” (e.g., Henry Margenau and R.
I. G. Hughes), but in both the cases of ”potentialities” and ”latencies,” the key idea is objective
indefiniteness.

The historical reference should perhaps be dismissed, since quantum mechanical po-
tentiality is completely devoid of teleological significance, which is central to Aristotle’s
conception. What it has in common with Aristotle’s conception is the indefinite character
of certain properties of the system. [35, pp. 313-4]

And Margenau notes that the measurement of observables ”forces them out of indiscriminacy or
latency” [31, p. 10]–which indicates that Margenau also interprets ”latency” in terms of indetermi-
nacy or indefiniteness. Kastner also considers the indeterminacy of values as a key characteristic of
the real potentia [26, p. 3].

7 Quantum states

To demonstrate our thesis that the math of QM is the Hilbert space version of the math of partitions,
we need to first focus on the three main concepts in the math of QM: 1) the quantum state, 2) the
quantum observable, and 3) the quantum ( always projective) measurement.

A quantum state can be presented either as a state vector or as a density matrix [40]. The
density matrix approach best displays the relevant information for the partitional interpretation.
Hence we start by transferring the structure of a partition π into its density matrix form ρ (π). The
initial data is a partition π = {B1, ..., Bm} on U with (positive) point probabilities p = (p1, ..., pn).
For each Bj ∈ π, define |bj〉 as the column vector with the ith entry being

√
pi/Pr (Bj) if ui ∈ Bj ,

else 0 so that 〈bj′ |bj〉 = δjj′ . We form the projection matrix ρ (Bj) = |bj〉 〈bj | with the i, k-entry
being ρ (Bj)ik =

√
pipk

Pr(Bj)
if ui, uk ∈ Bj , else 0. Then the density matrix ρ (π) is the probability sum

of these projectors:

ρ (π) =
∑m
j=1 Pr (Bj) |bj〉 〈bj |.

Then it is easily checked that ρ (π)ik =
√
pipk if (ui, uk) ∈ indit (π), else 0. Thus the non-zero entries

in ρ (π) represent the indits of π and the zero entries represent the distinctions of π. A density
matrix is not only Hermitian but positive so its eigenvalues are non-negative real numbers λi which
sum to 1, i.e.,

∑n
i=1 λi = 1. In the case of ρ (π), there are m non-zero eigenvalues Pr (Bj) with the

remaining n−m eigenvalues of 0.
For the classical state 1U , its density matrix ρ (1U ) is a diagonal matrix with the point proba-

bilities along the diagonal, e.g. ”the statistical mixture describing the state of a classical dice before
the outcome of the throw” [4, p. 176]. Thus the non-classical states in the skeletal representation
are the ones where ρ (π) has non-zero off-diagonal elements indicating the ‘amplitudes’

√
pipk of the

corresponding diagonal states (ui and uk) blobbing or cohering together in a superposition. Since
superposition states are the key non-classical states, it is these non-zero off-diagonal ”coherences”
[7, p. 303] that account for the non-classical interference effects in the Hilbert space version.

[T]he off-diagonal terms of a density matrix ... are often called quantum coherences
because they are responsible for the interference effects typical of quantum mechanics
that are absent in classical dynamics. [4, p. 177].

In the full non-skeletal Hilbert space case of a density matrix ρ, it has a spectral decomposition
ρ =

∑n
i=1 λi |ui〉 〈ui| with an orthonormal basis {|ui〉}ni=1so 〈ui′ |ui〉 = δii′ and where the non-

negative eigenvalues λi sum to 1. Thus for the concept of a quantum state, we have the skeletal set
level presentation of a partition and the corresponding Hilbert space version of that partition math
as summarized in Table 3.
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Quantum States Partition math Hilbert space math
Density matrix ρ (π) ρ
ON vectors 〈bj′ |bj〉 = δjj′ 〈ui′ |ui〉 = δii′

Non-negative eigenvalues Pr (B1) , ...,Pr (Bm) , 0, ..., 0 λ1, ..., λn
Spectral decomposition ρ (π) =

∑m
j=1 Pr (Bj) |bj〉 〈bj | ρ =

∑n
i=1 λi |ui〉 〈ui|

Non-zero off-diagonal entries Cohering of diag. elements Coherence of diag. elements
Table 3: Quantum state ρ as Hilbert space version of partition ρ (π)

8 Quantum observables

We have seen how the notion of a quantum state was prefigured at the set level by (i.e., has the set
level precursor of) a partition on a set with point probabilities. In a similar manner, the notion of a
quantum observable is prefigured at the set level by the inverse-image partition

{
f−1 (r)

}
r∈f(U)

of
a real-value numerical attribute f : U → R.

In the folklore of mathematics, there is a semi-algorithmic procedure to connect set concepts
with the corresponding vector (Hilbert) space concepts. We will call it the ”Yoga of Linearization”:

For any given set-concept, apply it to a basis set of a vector space
and whatever is linearly generated is the corresponding vector space concept.

The Yoga of Linearization.

To apply the Yoga, we first take U as just a universal set and consider some set-based concept, and
then we consider U as a basis set (e.g., ON basis of a Hilbert space) of a vector space V and see
what is linearly generated. For instance, a subset S of a basis set U generates a subspace [S] of the
space V . The cardinality of the subset gives the dimension of the subspace. A real-valued numerical
attribute f : U → R defines a Hermitian operator F : V → V (where V = [U ]) by defining F on the
basis set U as Fu = f (u)u or, using the fancier notation, F |u〉 = f (u) |u〉. To better analyze the
numerical attribute, let f � S = rS stand for ”the value of f on the subset S is r”. That is the set
level version of the eigenvalue/eigenvector equation F |u〉 = r |u〉. Hence we see that the set version
of an eigenvector is a constant set S of f and the set version of an eigenvalue of an eigenvector is
the constant value r on a constant set S. A characteristic function χS : U → {0, 1} ⊆ R has only
two constant sets S = χ−1

S (1) and Sc = U −S = χ−1
S (0). The Yoga yields the corresponding vector

space notion which is a projection operator P[S] which is defined by P[S] |u〉 = |u〉 if u ∈ S, else
0 (zero vector) which has the eigenvalues of 0 and 1. A Hermitian (or self-adjoint) operator F in
QM has spectral decomposition F =

∑
λi
λiPVi

where the sum is over the real eigenvalues λi and
the projections PVi

to their eigenspaces. Bearing in mind the correlation given by the Yoga, we can
define the ‘spectral decomposition’ of the numerical attribute f : U → R as f =

∑
r∈f(U) rχf−1(r).

Starting at the quantum level with a Hermitian operator F : V → V and a basis set U of eigenvectors
of F , then f is obtained as the eigenvalue function f : U → R.

An important application of the Yoga is to the notion of a set partition π =
{
f−1 (r)

}
r∈f(U)

as
the inverse-image of a numerical attribute. Applied to the basis set {|ui〉}ni=1 used to define F by
F |ui〉 = f (ui) |ui〉, each block f−1 (r) of π generates the eigenspace of eigenvectors for the eigenvalue
r. This eigenspaces {Vr}r∈f(U) form a direct-sum decomposition (DSD) of V , i.e., V = ⊕r∈f(U)Vr,
where a DSD is defined as a set of non-zero subspaces {Vr}r∈f(U) such that every non-zero vector
v ∈ V has a unique representation as a sum v =

∑
r∈f(U) vr of vectors vr ∈ Vr. It was noted

previously that a set partition π = {B1, ..., Bm} has a similar definition since every non-empty
subset S has a unique representation as the union of subsets of the {Bj}mj=1. If the union of the Bj ’s
was not all of U , then U − ∪mj=1Bj would have no representation, and if S = Bj ∩ Bj′ 6= ∅, then
S has two representations as subsets of the Bj ’s. Moreover, S ∩ () : ℘ (U) → ℘ (U) is a projection
operator that takes any subset T ∈ ℘ (U) to S ∩ T ∈ ℘ (U). Thus we have ∪r∈f(U)

(
f−1 (r) ∩ ()

)
=
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I : ℘ (U) → ℘ (U) whose quantum version is resolution of unity
∑
r∈f(U) PVr

= I : V → V . And
lastly, we might apply the Yoga to the Cartesian product U × U ′ where U and U ′ are basis sets for
V and V ′. Then the ordered pairs (u, u′) ∈ U × U ′ (bi)linearly generate the tensor product V ⊗ V ′
where the ordered pair (u, u′) is customarily written as u⊗ u′or |u〉 ⊗ |u′〉.

These results of the Yoga of Linearization are summarized in Table 4.

Set concept (skeletons) Vector-space concept
Partition

{
f−1 (r)

}
r∈f(U)

DSD {Vr}r∈f(U)

U = ]r∈f(U)f
−1 (r) V = ⊕r∈f(U)Vr

Numerical attribute f : U → R Observable Fui = f (ui)ui
f � S = rS Fui = rui

Constant set S of f Eigenvector ui of F
Value r on constant set S Eigenvalue r of eigenvector ui

Characteristic fcn. χS : U → {0, 1} Projection operator P[S]ui = χS(ui)ui
∪r∈f(U)

(
f−1 (r) ∩ ()

)
= I : ℘ (U)→ ℘ (U)

∑
r∈f(U) PVr = I : V → V

Spectral Decomp. f =
∑
r∈f(U) rχf−1(r) Spectral Decomp. F =

∑
r∈f(U) rPVr

Set of r-constant sets ℘
(
f−1 (r)

)
Eigenspace Vr of r-eigenvectors

Cartesian product U × U ′ Tensor product V ⊗ V ′
Table 4: Skeletal set-level concepts and the corresponding vector (Hilbert) space concepts

9 Quantum Measurement

The third basic concept to be analyzed is quantum measurement (always projective). The connection
between the set level notion of measurement and the quantum level is the Lüders mixture operation
([30]; [4, p. 279]) that can be applied at both levels. At the set level, we have the skeletal state
represented by a density matrix ρ (π) and we have an ‘observable’ or real-value numerical attribute,
say, g : U → R whose inverse-image is the partition σ =

{
g−1 (r)

}
r∈g(U)

. The Lüders mixture
operation applies the ‘observable’ to the density matrix ρ (π) to arrive at the post-measurement
density matrix ρ̂ (π). The operation uses the n × n projection matrices for the blocks g−1 (r) of σ
which are diagonal matrices Pg−1(r) whose diagonal elements are the values of the characteristic
function χg−1(r). Then the post-measurement density matrix is:

ρ̂ (π) =
∑
r∈g(U) Pg−1(r)ρ (π)Pg−1(r)

Set version of Lüders mixture operation.

Then it is an easy result:
Theorem: ρ̂ (π) = ρ (π ∨ σ).
Thus the set version of quantum level projective measurement in the math of QM is the partition join
operation where dit (π ∨ σ) = dit (π) ∪ dit (σ) and, by DeMorgan’s Law, indit (π ∨ σ) = indit (π) ∩
indit (σ).

Example: Let π = {{a} , {b, c}} with probabilities Pr ({a}) = 1
3 , Pr ({b}) = 1

4 , and Pr ({c}) = 5
12

in U = {a, b, c} and σ = {{a, b} , {c}} so σ = g−1 for any g : U → R that assigns the same g-value
to a and b with a different value for c. Then the density matrix for π and the projections matrices
for the blocks of σ are:

ρ (π) =


1
3 0 0
0 1

4

√
5

4
√

3

0
√

5
4
√

3
5
12

, P{a,b} =

1 0 0
0 1 0
0 0 0

, and P{c} =

0 0 0
0 0 0
0 0 1

.

The Lüders mixture operation is:

10



ρ̂ (π) = P{a,b}ρ (π)P{a,b} + P{c}ρ (π)P{c}

=

1 0 0
0 1 0
0 0 0




1
3 0 0
0 1

4

√
5

4
√

3

0
√

5
4
√

3
5
12


1 0 0

0 1 0
0 0 0



+

0 0 0
0 0 0
0 0 1




1
3 0 0
0 1

4

√
5

4
√

3

0
√

5
4
√

3
5
12


0 0 0

0 0 0
0 0 1


=

 1
3 0 0
0 1

4 0
0 0 0

+

0 0 0
0 0 0
0 0 5

12

 =

 1
3 0 0
0 1

4 0
0 0 5

12

.

Since π ∨ σ = {{a} , {b} , {c}} = 1U , we see that the post-measurement density matrix is ρ̂ (π) =
ρ (π ∨ σ) = ρ (1U ). Thus the superposition of {b} and {c} in π got distinguished since b and c had
different g-values. The new distinctions in dit (σ)−dit (π) are (b, c) (along with (c, b)) and those were
the non-zero off-diagonal elements (coherences) of ρ (π) that got zeroed (distinguished or decohered)
in ρ (π ∨ σ). Figure 5 shows the join of {{a} , {b, c}} and {{a, b} , {c}} is their least upper bound
1U = {{a} , {b} , {c}}.

Figure 5: Partition lattice with join {{a} , {b, c}} ∨ {{a, b} , {c}} = {{a} , {b} , {c}}

The Lüders mixture is not the end of the measurement process. The measurement returns
one of the g-values, say the (degenerate) one for {a, b}. Then the Lüders Rule [24, Appendix B]
gives the final density matrix which is the corresponding term in the Lüders mixture sum, e.g.,
P{a,b}ρ (π)P{a,b}, normalized so the final density matrix is the (in this case, classical) mixed state:

P{a,b}ρ(π)P{a,b}

tr[P{a,b}ρ(π)P{a,b}]
=

 1
3 0 0
0 1

4 0
0 0 0

 1
7/12 =

 4
7 0 0
0 3

7 0
0 0 0

.

In the general Hilbert space case, the Hermitian operator G is given by its DSD of eigenspaces
{Vr}r∈g(U) (where g : U → R is the eigenvalue function assigning the appropriate real eigenvalue to
each vector in an ON basis U of eigenvectors of G). The state being measured is given by density
matrix ρ expressed in the ON basis U , and the Lüders mixture operation uses the projection matrices
PVr

to the eigenspaces of G to determine the post-measurement density matrix ρ̂. The Hilbert space
version of the set operation is:

ρ̂ =
∑
r∈g(U) PVrρPVr

Hilbert space version of Lüders mixture operation.

We saw previously how the notion of logical entropy (and its quantum counterpart) was based
on the notion of a quantitative measure of distinctions of a partition. Hence logical entropy is the
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natural notion to measure the changes in a density matrix under a measurement. For instance, in the
above example where π = {{a} , {b, c}}, the block probabilities are Pr ({a}) = 1

3 and Pr ({b, c}) = 2
3 ,

and the logical entropy is: h (π) = 1− Pr ({a})2 − Pr ({b, c})2 = 1− 1
9 −

4
4 = 4

9 . When the partition
π is represented as a density matrix ρ (π), then the logical entropy could also be computed as:

h (π) = h (ρ (π)) = 1− tr
[
ρ (π)2

]
= 1− tr

 1
9 0 0
0 1

6
1
18

√
3
√

5
0 1

18

√
3
√

5 5
18

 = 1− 10
18 = 4

9 .

The logical entropy is the two-draw probability of drawing a distinction of π so it could also be
computed as the sum of all the distinction probabilities (remembering that a distinction is an ordered
pair of elements in different blocks so the probability of an unordered pair is doubled). Hence in
general we have: h (π) =

∑
(ui,uk)∈dit(π) pipk, or in the case at hand:

h (π) = 2papb + 2papc = 2 1
3

1
4 + 2 1

3
5
12 = 1

6 + 5
18 = 4

9 .

There is then a general theorem [13] showing how logical entropy measures measurement.
Theorem (set case of measuring measurement): In the Lüders mixture operation ρ̂ (π) =

∑
r∈g(U) Pg−1(r)ρ (π)Pg−1(r),

the increase in logical entropy from h (ρ (π)) to h (ρ̂ (π)) is the sum of the squares of the off-diagonal
non-zero entries in ρ (π) that were zeroed in the measurement operation ρ (π) ρ̂ (π).

In the example, the logical entropy of the post-measurement state is:

h (ρ̂ (π)) = 1− tr
[
ρ̂ (π)2

]
= 1− tr

 1
9 0 0
0 1

16 0
0 0 25

144

 = 1−
(

1
9 + 1

16 + 25
144

)
= 1− 16+9+25

144 = 94
144 .

The sum of the squares of the non-zero off-diagonal terms (representing the coherences) of ρ (π) that
were zeroed (decohered) in ρ̂ (π) is:

2
( √

5
4
√

3

)2

= 2 5
48 = 5

24

and the increase in logical entropy due to the making of distinctions is:

h (ρ̂ (π))− h (ρ (π)) = 94
144 −

4
9 = 94

144 −
64
144 = 30

144 = 5
24 .X

And the quantum case is mutatis mutandis.
Theorem (quantum case of measuring measurement): In the Lüders mixture operation ρ̂ =

∑
r∈g(U) PVr

ρPVr
,

the increase in quantum logical entropy from h (ρ) to h (ρ̂) is the sum of the absolute squares of the
off-diagonal entries in ρ that were zeroed in the measurement operation ρ ρ̂.

The dictionary relating the three basic concepts in the math of QM to their set partitional
precursors is given in the following Table 5.

Dictionary Partition math Hilbert space math
Notion of state ρ (π) =

∑m
j=1 Pr (Bj) |bj〉 〈bj | ρ =

∑n
i=1 λi |ui〉 〈ui|

Notion of observable g =
∑
r∈g(U) rχg−1(r) : U → R G =

∑
r∈g(U) rPVr

Notion of measurement ρ̂ (π) =
∑
r∈g(U) Pg−1(r)ρ (π)Pg−1(r) ρ̂ =

∑
r∈g(U) PVr

ρPVr

Table 5: Three basic notions: set version and corresponding Hilbert space version
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10 Other aspects of QM mathematics

10.1 Commuting, non-commuting, and conjugate operators

We have seen that a Hermitian operator is the QM math version of a real-valued numerical attribute
and that the direct-sum decomposition of the operator’s eigenspaces is the QM math version of the
inverse-image partition of the numerical attribute. Let F,G : V → V be two Hermitian operators
with the corresponding DSDs of {Vj}j∈J and {Wj′}j′∈J′ . Since the two DSDs are the vector space
version of partitions, consider the join-like operation giving the set of non-zero subspaces formed by
the intersections Vj∩Wj′ . The additional generality gained over the join of set partitions is that these
subspaces may not span the whole space V . Since the vectors in those intersections are simultaneous
eigenvectors of F and G, let SE be the subspace spanned by the simultaneous eigenvectors of F
and G. The commutator [F,G] = FG − GF : V → V is a linear operator on V so it has a kernel
ker [F,G] consisting of the vectors v such that [F,G] v = 0. Then there is a:

Theorem: SE = ker [F,G]. [14, Proposition 1]
Since commutativity is defined as ker [F,G] = V , we have the following definitions in terms of

the vector space partitions or DSDs:

• F and G are commuting if SE = V ;

• F and G are incompatible if SE 6= V ;

• F and G are conjugate if SE = 0 (zero space).

Since the join-like operation on DSDs yields a set of subspaces that do not necessarily span the
whole space, that operation is only the join of DSDs in the commuting case–or as Hermann Weyl
put it: ”Thus combination of two gratings presupposes commutability...”. [42, p. 257]

The set version of compatible partitions for the join operation is simply being defined on the
same set. Hence our thesis gives a complete parallelism between compatible partitions and commuting
operators.

Set math: A set of compatible partitions π, σ, ...γ defined by f, g, ...h : U → R is said to be
complete, i.e., a Complete Set of Compatible Attributes or CSCA, if their join is the partition whose
blocks are of cardinality one (i.e., 1U ). Then the elements u ∈ U are uniquely characterized by the
ordered set of values (f (u) , g (u) , ..., h (u).

QM math: A set of commuting observables F,G, ...,H is said to be complete, i.e., a Complete
Set of Commuting Observables or CSCO [9], if the join of their eigenspace DSDs is the DSD whose
subspaces are of dimension one. Then the simultaneous eigenvectors of the operators are unique
characterized by the ordered set of their eigenvalues.

10.2 Feynman’s treatment of measurement

The partitional approach to understanding the math of QM shows that the key organizing concepts
are indistinction versus distinction, indefiniteness versus definiteness, or indistinguishability versus
distinguishability. When a particle in a superposition state undergoes an interaction, what charac-
terizes whether it is a measurement or not? As early as 1951 [16], Richard Feynman gave the analysis
of ”measurement or not” in terms of distinguishability.

If you could, in principle, distinguish the alternative final states (even though you do not
bother to do so), the total, final probability is obtained by calculating the probability for
each state (not the amplitude) and then adding them together. If you cannot distinguish
the final states even in principle, then the probability amplitudes must be summed before
taking the absolute square to find the actual probability.[18, p. 3-9]

This analysis has been further explained by another physicist.
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Feynman’s approach is based on the contrast between processes that are distinguishable
within a given physical context and those that are indistinguishable within that context.
A process is distinguishable if some record of whether or not it has been realized results
from the process in question; if no record results, the process is indistinguishable from
alternative processes leading to the same end result. [37, p. 314]

Feynman gives a number of examples ([18, § 3-3]; [19, pp. 17-8]) such as a particle scattering off
the atoms in a crystal. If there is no physical record of which atom the particle scattered off of (i.e.,
the indistinguishable case), then no measurement took place so the amplitudes for the superposition
state of scattering off the different atoms are added to compute the amplitude of the particle reaching
a certain final state. But if all the atoms had, say spin up, and scattering off an atom flipped the spin,
then a physical record exists (i.e., the distinguishable case) so a measurement took place and the
probabilities of scattering off the different atoms are added to compute the probability of reaching
a certain final state.

The same analysis applies to the well-known double-slit experiment where the distinguishable
case is where there are detectors at the slits and the indistinguishable case is having no detectors
at the slits. But the important thing to notice about Feynman’s example is that the measurement
is entirely at the quantum level; it involves no macroscopic apparatus. Hence the Feynman analysis
bypasses the whole tortured literature trying to analyze measurement in term of the ”decoherence”
induced by a macroscopic measuring devices (e.g., [43]). Of course, the quantum level physical record
in the distinguishable case has to be amplified for humans to record the result but such macroscopic
considerations have no role in quantum theory.

The implicit principle in Feynman’s analysis of measurement is:

If the interaction distinguishes between superposed eigenstates,
then a distinction (state reduction) is made.

The State Reduction Principle

The mathematics of the State Reduction Principle can be stated in both the set case and the
QM case.

Theorem (State Reduction Principle–set case). Measurement is described in the set case by the
Lüders mixture operation ρ̂ (π) =

∑
r∈g(U) Pg−1(r)ρ (π)Pg−1(r). The State Reduction Principle then

states: if an off-diagonal entry ρ (π)ik 6= 0 (i.e., ui and uk are in a same-block superposition), then:
if g (ui) 6= g (uk) (i.e., the interaction distinguishes ui and uk), then ρ̂ (π)ik = 0 (i.e., the ‘coherence’
between ui and uk is decohered and a distinction is made).

Theorem (State Reduction Principle–QM case). Measurement is described in QM by the Lüders
mixture operation ρ̂ =

∑
r∈g(U) PVr

ρPVr
(measuring ρ by G). The State Reduction Principle then

states: if an off-diagonal entry ρik 6= 0 (i.e., the G-eigenvectors |ui〉 and |uk〉 are in a superposition
in ρ), then: if |ui〉 and |uk〉 have different G-eigenvalues (i.e., the vectors are distinguished by G),
then ρ̂ik = 0 (i.e., the vectors are decohered6 and a distinction is made).

If no distinctions were made by the interaction, then no measurement took place.

10.3 Von Neumann’s type I and type II processes

John von Neumann made his famous distinction between the processes:

1. Type I process of measurement and state reduction, and

2. Type II process obeying the Schrödinger equation.
6This is not the Zeh/Zurek ”decoherence” [43] but the old-fashioned change from the coherence of a superposition

pure state into a decohered mixture of states.
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We have seen that the Type I processes of measurement involves distinguishability, i.e., the
making of distinctions (like which atom the particle scattered off of), so a natural way to designate
the Type II processes would be ones that do not make distinctions by preserving distinguishability
or indistinguishability. The measure of indistinctness of two quantum states is their overlap or inner
product. For instance, two states have zero indistinctness (zero inner product) then they are fully
distinct (orthogonal). Hence the natural characterization of a Type II process is one that preserves
inner products, i.e., a unitary transformation.7

The partitional approach highlights the key analytical concepts of indistinctions versus dis-
tinctions and the cognate notions of indefiniteness versus definiteness or indistinguishability versus
distinguishability. Many people working on quantum foundations seem to ignore those key concepts,
and then the division between the measurement and unitary evolution seems unfounded, if not
”unbelievable.”

[I]t seems unbelievable that there is a fundamental distinction between “measurement”
and “non-measurement” processes. Somehow, the true fundamental theory should treat
all processes in a consistent, uniform fashion. [32, p. 245]

10.4 Hermann Weyl’s imagery for measurement

An industrial sieve is used to distinguish particles of matter of different sizes so it might serve as a
helpful metaphor for the quantum process of making distinctions, namely measurement.

In Einstein’s theory of relativity the observer is a man who sets out in quest of truth
armed with a measuring-rod. In quantum theory he sets out armed with a sieve.[10, p.
267]

Hermann Weyl quotes Eddington’s passage [42, p. 255] but uses his own expository notion of
a ”grating.” Weyl in effect uses the Yoga from the mathematical folklore to develop both the set
notion of a grating as an ”aggregate [which] is used in the sense of ‘set of elements with equivalence
relation.’” [42, p. 239] and the vector space notion of a direct-sum decomposition. In the set to vector
space move of the Yoga, the ”aggregate of n states has to be replaced by an n-dimensional Euclidean
vector space” [42, p. 256] (”Euclidean” is an old name for an inner product space). The notion of
a vector space partition or ”grating” in QM is a ”splitting of the total vector space into mutually
orthogonal subspaces” so that ”each vector −→x splits into r component vectors lying in the several
subspaces” [42, p. 256], i.e., a DSD. After thus referring to a partition and a DSD as a ”grating”
or ”sieve,” Weyl notes that ”Measurement means application of a sieve or grating” [42, p. 259], i.e.,
the making of distinctions by the join-like process described by the Lüders mixture operation.

This imagery of measurement as passing through a sieve or grating is illustrated in Figure 6.

7The connection to solutions to the Schrödinger equation in Hilbert space math is provided by Stone’s Theorem
([38]; [24, p. 114]).
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Figure 6: Measurement imaged as an indefinite blob of dough passing through a grating to get a
definite shape

One should imagine the roundish blob of dough as the superposition of the definite shapes in the
grating or sieve. The interaction between the superposed blob and the sieve/grating forces a dis-
tinction, so a distinction is made as the blob must pass through one of the definite-shaped holes. In
general, a state reduction (‘measurement’) from an indefinite superposition to a more definite state
takes place when the particle in the superposition state undergoes an interaction that distinguishes
the superposed states.

10.5 A skeletal analysis of the double-slit experiment

Consider the skeletal case of a particle have three possible states U = {a, b, c} which are interpreted
as vertical positions in the setup for the double-slit experiment in Figure 7.

Figure 7: Skeletal setup for the double-slit experiment

In the set level skeletal analysis, we have discarded the scalars from C but we are nevertheless left
with the scalars 0 and 1 which are the elements of the field Z2. There is the natural correspondence
between the zero-one vectors in the three-dimensional vector space Z3

2 (i.e., the column vectors
[1, 0, 0]t is associated with {a}, and so forth) which establishes an isomorphism: Z3

2
∼= ℘ (U), where

the set addition is the symmetric difference, i.e., for S, T ∈ ℘ (U), S + T = (S − T )∪ (T − S). That
mimics the addition mod 2 in Z3

2 since, for instance, {a, b} + {b, c} = {a, c}. For our dynamics,
we assume a non-singular linear transformation {a}  {a′} = {a, b}, {b}  {b′} = {a, b, c}, and
{c} {c′} = {b, c} which is non-singular since {a′} = {a, b}, {b′} = {a, b, c}, and {c′} = {b, c} also
form a basis set for ℘ (U)–so we also have a partition lattice Π (U ′) on the basis set U ′ = {a′, b′, c′}.

We are interested in the analysis when the particle arrives at the screen in the superposition of
|slit 1〉+ |slit 2〉, or in skeletal terms {a, c}.

Case 1: There are detectors at the slits to distinguish between the two superposed states so the
state reduces to the half-half mixture of {a} and {c}. Then {a} evolves by the non-singular dynamics
to {a, b} which hits the wall and reduces to {a} or {b} with half-half probability. Similar {c} evolves
to {b, c} which hits the wall and reduces to {b} or {c} with half-half probability. Since this is the
case of distinctions between the alternative paths to {a}, {b}, or {c} we add the probabilities to
obtain:

Pr ({a} at wall| {a, c} at screen)
= Pr ({a} at wall| {a} at screen) Pr ({a} at screen| {a, c} at screen) = 1

2
1
2 = 1

4 .
Pr ({b} at wall| {a, c} at screen)

= Pr ({b} at wall| {a} at screen) Pr ({a} at screen| {a, c} at screen)
+ Pr ({b} at wall| {c} at screen) Pr ({c} at screen| {a, c} at screen) = 1

2
1
2 + 1

2
1
2 = 1

2 .
Pr ({c} at wall| {a, c} at screen)

= Pr ({c} at wall| {c} at screen) Pr ({c} at screen| {a, c} at screen) = 1
2

1
2 = 1

4 .

Hence the probability distribution in the Case 1 of measurement at the screen is given in Figure
8.
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Figure 8: Probabilities at the wall with distinctions at the screen

Case 2: There are no detectors to distinguish between the slits in the superposition {a, c} so it
linearly evolves by the dynamics: {a, c} = {a}+{c} {a, b}+{b, c} = {a, c}. Hence the probabilities
at the wall are:

Pr ({a} at wall | {a, c} at screen)
= Pr ({a} at wall| {a, c} at wall) Pr ({a, c} at wall| {a, c} at screen) = 1

2 × 1 = 1
2 .

Pr ({b} at wall| {a, c} at screen)
= Pr ({b} at wall| {a, c} at wall) Pr ({a, c} at wall| {a, c} at screen) = 0× 1 = 0.

Pr ({c} at wall | {a, c} at screen)
= Pr ({c} at wall| {a, c} at wall) Pr ({a, c} at wall| {a, c} at screen) = 1

2 × 1 = 1
2 .

Hence the probability distribution in the Case 2 of no distinctions at the screen is given in Figure
9.

Figure 9: Probabilities at the wall with no distinctions at the screen

The Case 2 distribution shows the usual probability stripes due to the interference in the linear evo-
lution of the superposition state {a, c}, i.e., the destructive interference in the evolved superposition
{a, b}+ {b, c} = {a, c}.

Our classical intuitions insist on asking: ”Which slit did the particle go through in Case 2?”.
That question assumes that the evolution of the state {a, c} was at the classical level where the slits
were distinguished. But in Case 2, the slits were not distinguished so the evolution took place at
the lower level in the skeletal lattice of partitions. In Figure 10, the Case 2 evolution is illustrated
as going from the superposition state {a, c} in the partition lattice of states on U = {a, b, c} to the
superposition state {a′, c′} lattice of states on U ′ = {a′, b′, c′}.
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Figure 10: Evolution taking place at a non-classical level of indefiniteness

The important ‘take-away’ is that there are different levels of indefiniteness (as illustrated in
the partition lattice) and evolution can take place at a non-classical level of indefiniteness so, in that
case, there is no matter of fact of the particle going through one slit or the other at the classical
level.

Sometimes metaphors can serve as an aid or crutch to our biologically evolved intuitions. Con-
sider the ”hawks and hounds” of Shakespeare’s Sonnet 91. There is a high fence across a field with
two slits or gates. To get from A on one side of the fence to B on the other side, the hound (like a
classical particle) is limited to horizontal ‘classical’ trajectory on the ”flatland” [1] so it has to go
through one gate of another. But the hawk’s ”flights and perches” [22, p. 198] can go from ground
perch A to ground perch B without going through one gate or the other. We make the unrealistic
assumption that a light source above the hawk (like the sun) will ‘project’ the hawk down to the
‘classical’ definite ground (like Icarus!). Then the grounded hawk, like the hound, must go through
one gate or the other to get from A to B. But with no light source, then the hawk (like Hegel’s owl
of minerva who only flies at night) has an indefinite flight trajectory and can go from A to B with-
out going through a gate. Our classical (”flatlander”) intuitions see only the definite ground-level
paths or trajectories and, in the absence of either projecting light source as in Case 2 above, will
insist on asking: ”Which gate did the hawk go through?”. But with no detections at the slits in the
double-slit experiment, there is no matter of fact of the particle going through a slit at the classical
level since the evolution is at the non-classical quantum level (illustrated by the third dimension in
our flatlander metaphor) as in Figure 10.

11 Final remarks

Our thesis is that the math of QM is the Hilbert space version of the math of partitions, or, put the
other way around, the math of partitions is the skeletonized version of QM math. There are many
other aspects of QM math that could be investigated such as group representations on sets or on
vector spaces over C since a group is essentially a ‘dynamic’ algebraic way to define an equivalence
relation or DSD [6] (e.g., the orbit partition in a set representation or the DSD of irreducible
subspaces in the vector space over C representation). [14] But in this introductory treatment, we
have hopefully analyzed enough aspects of QM math to illustrate our thesis.

Since partitions are the mathematical tool to analyze indistinctions and distinctions or indef-
initeness and definiteness, the thesis shows that the key QM notion of superposition should be
interpreted in terms of (objective) indefiniteness, and that measurement should be interpreted as
an interaction that makes distinctions so it turns an indefinite state into a state with more defi-
niteness. This approach to better understanding or interpreting QM works with the standard von
Neumann/Dirac quantum theory. It does not involve any new physics, unlike the pilot-wave or spon-
taneous localization theories, or any many-worldly interpretations of measurement. In that sense,
the partitional approach shows how to develop Shimony’s idea of the Literal Interpretation of the
math or ”formalism of quantum mechanics” [36, pp. 6-7]. Furthermore, the partitional analysis sub-
stantiates the analysis of Heisenberg, Shimony, and others which describes the quantum world in
terms of potentialities or latencies, where, in both cases, the key attribute was the reality of objective
indefiniteness. Hence this way of understanding or interpreting quantum mechanics might be called
the Objective Indefiniteness or Literal Interpretation ([14], [15]).
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