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Detecting the transition from laminar to turbulent �ow in particulate pipe systems remains a complex

issue in �uid dynamics, often requiring sophisticated and costly experimental apparatus. This research

presents an innovative streak visualization method designed to o�er a simple and robust approach to

identify transitional turbulent patterns in particulate pipe �ows with neutrally buoyant particles. The

technique employs a laser arrangement and a low-cost camera setup to capture particle-generated streaks

within the �uid, enabling real-time observation of �ow patterns. Validation of the proposed method was

conducted through comparison with established techniques like Particle Image Velocimetry (PIV) and

pressure drop measurements, con�rming its accuracy and reliability. Experiments demonstrate the streak

visualization method’s capacity to di�erentiate between laminar, transitional, and turbulent �ow regimes

by analyzing the standard deviation of streak angles. The method is especially e�cient at low particle

concentration, ie precisely where other more established methods become less e�ective. Furthermore, this

technique enables us to identify a critical Reynolds number using Kullback-Leibler divergence built on the

statistical distribution of streak angles, which is consistent with previous studies. Because of it is e�ective

at low concentrations and robust, this streak visualization technique opens new perspectives for the

characterization of particulate pipe �ows not only in the con�nes of the laboratory, but also in less

controlled industrial multi-phase �ows where determining the laminar or turbulent nature of the �ow is a

prerequisite for �owmeter calibration.

Corresponding author: Alban Pothérat, alban.potherat@coventry.ac.uk

1. Introduction

We introduce a particle streak-based visualization technique that is simple, cost-e�ective, and accurate for

studying turbulence patterns and �ow transitions in particulate pipe �ows. The idea is to use minimal

instrumentation detecting particles only to circumvent the need for separation between particles and �uid

phase and o�er a simple, robust method that is easy to implement in a wide variety of environments. Hence,
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This method provides an accessible solution for research in engineering applications such as industrial

pipelines, biological systems, and environmental processes[1][2][3][4]. By analyzing particle streak angles,

which re�ect trajectory behavior[5][6], we use statistical tools to characterize �ow states and detect

turbulence with minimal disruption.

Classical single phase pipe �ows dynamics exhibit subcritical transitions, where turbulence arises abruptly

from �nite-amplitude perturbations[7][8]. While in�nitesimal disturbances decay due to stability at all

Reynolds numbers, �nite amplitude perturbations of su�cient amplitude trigger turbulence through

nonlinear mechanisms. This mechanism allows laminar and turbulent states to coexist[9][10]  so the

transition to turbulence involves localized turbulent structures such as ”pu�s” and ”slugs,” which

propagate through the pipe[11][12][13]. Pu�s remain con�ned in transitional regimes, while slugs expand and

lead to fully developed turbulence at higher Reynolds numbers[14][15][16].
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Technique
Measured Parameters (Two-Phase

Flow)
Limitations

Dye Injection
Qualitative visualization of �ow

patterns and mixing regions.

No velocity quanti�cation; ine�ective in uniform-

density �ows.

Schlieren Imaging
Visualizes density gradients and

large-scale �ow structures.

Ine�ective in �ows without signi�cant refractive

index or density variations; qualitative only.

Hot-Wire Anemometry
Fluid Velocity using temperature

�uctuations

Intrusive; unsuitable for particle-laden �ows; cannot

di�erentiate between particle and �uid velocities.

Particle Image

Velocimetry (PIV)

Velocity �elds of �uid phase using

seeded particles.

High cost; computationally intensive; limited spatial

coverage; particles must follow �ow accurately.

Laser Doppler

Velocimetry (LDV)

Point-wise velocity measurements

of �uid phase.

Limited to single points; requires precise alignment;

costly; unsuitable for dense particle suspensions.

Planar Laser-Induced

Fluorescence (PLIF)

Concentration and scalar �elds

such as density and temperature.

Ine�ective for direct velocity data; �uorescence

quenching; expensive and calibration-intensive.

Ultrasound Image

Velocimetry (UIV)

Velocity distribution of �uid phase

in opaque �ows.

Limited spatial resolution; calibration di�culties in

non-homogeneous particle-�uid systems.

Magnetic Resonance

Velocimetry (MRV)

3D velocity pro�les of �uid phase;

non-invasive.

Very slow; high cost; unsuitable for transient

phenomena or rapid �ow transitions.

Table 1. Comparison of Flow Visualization Techniques Their Limitations in Particulate Pipe Flow Systems

This classical problem of the laminar-turbulent transition in single-phase �ows is critical for predicting

�uid behavior, with Reynolds number as a key factor[17][18]. Yet, many applications involve the presence of

particles which may alter this scenario. Indeed, introducing even neutrally buoyant particles add complexity

by modifying �ow stability, altering thresholds for transition, and in�uencing the behavior of turbulent

structures[19][20]. At low concentration, neutrally buoyant particles tend to migrate to speci�c radial

locations[21][22], under the e�ect of the lift force incurred by shear-induced rotation[23][24][25][26][27][28].

This so-called Segré-Silberberg e�ect may even cause the base parabolic Poiseuille velocity pro�le to become

linearly unstable at Reynolds numbers as low as 400[29], but the subsequent nonlinear development of this

instability is still unclear. In practice, these e�ects are important for applications ranging from pipelines to
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environmental systems, where particle-�uid interactions play a signi�cant role, and where knowledge of

the �ow state is a key requirement to calibrate �owmeters[30][31].

Traditional techniques for studying the stability of particulate pipe �ow experimentally face signi�cant

limitations. Dye injection and schlieren imaging o�er qualitative observations but lack quantitative velocity

data and are ine�ective for detecting �ne-scale features, such as the Segre-Silberg e�ect[32][33][34][35][36].

Hot-wire anemometry provides high temporal resolution but is unsuitable for particle-laden �ows due to

contamination risks and the inability to di�erentiate particle and �uid velocities[37][38]. Its intrusive nature

also disturbs the �ow, limiting its e�ectiveness for sensitive transitional phenomena where �nite amplitude

perturbations need to be controlled[39].

Modern techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are

widely used for quantitative measurements. PIV, a planar optical technique, o�ers high-resolution velocity

�elds by analyzing the motion of seeded particles within the �ow[40][41]. However, it requires costly and

complex setups involving high-power lasers, relatively high-speed cameras, and synchronization systems,

which limit its applicability outside dedicated research laboratories[42]. Additionally, the data processing is

computationally demanding, and the system is sensitive to misalignments and calibration errors. LDV

provides point-wise velocity measurements with high temporal resolution but is limited to single-point

data acquisition, making it unsuitable for analyzing large-scale or spatially distributed �ow features[43][44].

Like PIV, LDV relies on high-power lasers and requires meticulous optical alignment, further complicating

its use outside the lab[45][46].

Advanced techniques like Planar Laser-Induced Fluorescence (PLIF), Ultrasound Image Velocimetry (UIV),

and Magnetic Resonance Velocimetry (MRV) are widely employed to study particle-laden �ows, each with

speci�c advantages and limitations. PLIF measures scalar �elds such as concentration or temperature using

laser-induced �uorescence but is unsuitable for direct velocity measurements and faces challenges like

�uorescence quenching, complex calibration, and high operational costs[47][48]. UIV tracks acoustic

scatterers using ultrasound waves, making it particularly suitable for optically opaque or dense particle-

laden systems, though it is limited by spatial resolution and calibration di�culties in non-homogeneous

�ows[49][50]. This technique however fails for diluted particles concentrations, especially where localisation

may leave large regions of the �ow free of particles. MRV o�ers 3D velocity measurements without optical

access, making it ideal for non-transparent systems, but it is hindered by high costs and long acquisition

times[51][52]. While these methods are e�ective, their reliance on expensive and complex setups restricts

their applicability. Furthermore, while the extensive data they deliver makes them suitable for detailed

mapping of the �ow, the limited purpose of deteting �ow patterns may be ful�lled with much less extensive
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datasets delivered by simpler setups. Additionally, existing methods often struggle to capture transient

structures like pu�s and slugs over the full pipe length due to high costs, accessibility issues, or safety

constraints. As shown in Table  1, various �ow visualization techniques have distinct limitations in

particulate pipe �ow systems. These challenges stress the need for scalable, versatile solutions for both

research and industrial applications.

Most existing methods are impeded by the coexistence of the solid phase (particles) and the liquid phase. To

circumvent these issues, we propose to use a less sensitive setup that only detects particles, and that is not

a�ected by the �uid phase. The main idea is that where turbulence exists in the �uid phase, neutrally-

buoyant particles should follow erratic trajectories, whereas in laminar regions their trajectories should be

close to straight lines aligned with the pipe axis. The challenges here are to introduce a meaningful way to

mathematically distinguish these two types of trajectories, and also to verify that they reliably map to

turbulent and laminar states of the �uid phase, respectively. For these purposes, the streak-based

visualization technique we present in this paper combines simplicity with robust statistical tools. Using the

standard deviation of particle streak angles, we classify �ow regimes and turbulent features, while the

Kullback-Leibler divergence provides a novel method for determining the critical Reynolds number,

e�ectively capturing the laminar-to-turbulent transition. This approach is particularly suited for low-

particle-concentration �ows and transparent �uids, where traditional methods are less e�ective. By

addressing these current limitations and o�ering a cost-e�ective alternative, this method o�ers new

perspectives to study transitional particulate �ows at low concentration. Its principle may also be

implemented to develop instrumentation capable of rapdidly identifying turbulent pattern in constrained

industrial environment.

The paper is laid out as follows: we �rst describe the experimental setup (section 2, the streak-visualisation

system and associated data processing technique (section 4). We then validate the identi�cation of �ow

patterns against classical PIV, PTV and pressure measurement techniques. Finally, we show how a simple

measure of the standard deviation of the angle of particle trajectories enables us to detect turbulence �ow

patterns. We also show that more re�ned properties of the statistical distribution of these angles o�er a way

to de�ne a critical Reynolds for the transition to turbulence consistent with previous studies (section 5).

2. Experimental Setup

The experimental setup is an upgrade of the setup described in detail in[53]. It consists of several

subsystems, all represented in Figure 1. The pipe and hydraulic elements form the main component, through

which the �uid and the particles travel. The glass pipe assembly comprises 10 cylindrical borosilicate glass

tubes, each   long, with a bell mouth inlet and an additional   glass section at the outlet. The pipe1.2 m 25 cm
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sections are of lengths      , an inner bore diameter of   , and a

wall thickness of        and are manufactured to high precision to minimize disturbances

caused by geometric irregularities. This setup is designed to experimentally study the e�ects of solid,

neutrally buoyant, spherical particles on the transition to turbulence in dilute particle-laden pipe �ows.

The �rst upgrade to the original system is a change of working �uid, tracers, and particles that makes the rig

now operable with water with the addition of a small amount of glycerol used to precisely match �uid and

particle densities. This adjustment results in a �uid density ( ) of  , composed of   water

and   glycerol. The dynamic viscosity of the �nal solution is approximately  .

This mixture is easier to handle than the aqueous solution of Sodium Polytungstate that was initially chosen

to match the density ( ) of glass particles used to seed it. This change is made possible by the

availability of opaque polyethylene particles of density close to that of water. Two types of particles are

required to study particulate �ows: the �rst ones are tiny silver-coated hollow glass particles (in the size

range of  ) that follow the �ow almost instantaneously and are used for Particle Image Velocimetry. For

the remainder of this paper, these particles are referred to as tracers. To act like tracers, the particles’

response time needs to be much smaller than the time scale of the �ow, or equivalently, their Stokes

number   has to be much smaller than unity.

In our experiments, the tracers’ Stokes number is within the range  , and so ful�lls this

criterion.

The second type of particles, on the other hand, are much larger particles, with St close to unity, alter the

dynamics of the �uid phase, and are used to study the particulate �ow dynamics that result from the

interaction between those two phases. Two ranges of diameter particles are utilized: the �rst type has

diameters   ranging from  , while the second type ranges from  . The

particle-to-pipe diameter ratios are respectively between    and  . The particle

concentration during experiments is kept at  , corresponding to a volume fraction of 

 in all cases.

1.2 m ± 10 µm~to~30 µm D = 20 mm ± 0.01 mm

3.1 mm ± 0.03 mm

ρf 1000 kg m−3 98.4%

1.6% μ = 1.13×  Pa s10−3

2500kg/m3

10 µm

St = ρ U/(18μD)d2
p

[7 × , 2 × ]10−6 10−4

dp 425 µm~to~500 µm 212 µm~to~250 µm

[0.0212, 0.025] [0.0106, 0.0125]

C = 1.2 kg m−3

Φ = 1.2 × 10−3
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Figure 1. A 2-D schematic diagram of the rig. (1) Fluid Reservoir, (2) Bell-mouth inlet,(3) Perturbation system,

(4) Di�erential pressure meter, (5)   visualization system, (6)   visualization system, (7) Mass �ow meter,

(8) Piston-cylinder arrangement, (9) Motor

Upstream of the pipe, the system is fed by a reservoir where the �uid is stored. A bell mouth inlet placed

inside this reservoir allows a smooth entry of the �uid into the pipe. The other end of the pipe is connected

to a piston-cylinder arrangement driven by a motor. The �uid from the reservoir is pulled through the pipe

when this motor pulls the piston, thus creating a pressure di�erence and driving the �ow.

The second subsystem is aimed at introducing precisely controlled velocity perturbations perpendicular to

the mean �ow. This perturbation subsystem is made of a syringe attached to a stepper motor, connected to

the main pipe    downstream of the inlet. The diameter of the perturbation injection inlet is 

. The stepper motor is controlled by an Arduino that sets the volume and �ow rate of the

injected perturbation. The e�ect of the introduced perturbation on the �uid-particle system is visualized at

two downstream locations by two di�erent measurement systems.

The 1st visualization system consists of a powerful    laser and a high-speed camera used for

simultaneous Particle Tracking Velocimetry (PTV) and Particle Image Velocimetry (PIV). The purpose of this

system is to independently and simultaneously track large particles and map �ow velocities by PIV in a

vertical plane aligned with the pipe axis, lit by the laser. The visualization section is located 400 pipe

diameters ( ) from the center of the section to the pipe inlet. The details of this technique can be found in

Ref. [53].

The newly developed streak visualization system, positioned as the   visualization setup, is centered 225

pipe diameters ( ) downstream from the center of the   visualization system, following the PTV/PIV

setup.

1st 2nd

4.5 m

= 2.2 mmdpert

1 W

8 m

2nd

4.5 m 1st
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Figure 2 shows a 2-D lateral view and a picture of this streak visualization setup placed in the rig. The

visualization system employs a   laser and a Flea camera (Black�y-FLIR). The camera’s resolution is

set to 1536 x 2048 pixels, and it is equipped with a   focal length lens. The sensor size is approximately 

. The gain is adjusted to prevent excessive brightness. The opaque particles,

introduced into the �uid under examination, re�ect the laser light sheet. The camera is oriented

perpendicular to the laser sheet and captures images with adjusted exposure time varying from 

, for the range of Reynolds number considered in this paper  . Here 

, used to calculate the Reynolds number, is the average velocity of the �uid across the entire cross-section

of the pipe, calculated by dividing the volumetric �ow rate by the cross-sectional area.

This camera setting is chosen to ensure that the captured images depict the particles as distinct streaks of

light, thus providing a visual representation of the angles subtended by the path of the particles, with

respect to the pipe axis.

Figure 2. 2-D diagram of the lateral view of streak visualization setup (left) and picture of the actual streak

visualization system (right) for streak-angle velocimetry. (a) laser, (b) laser sheet, (c) glass pipe, and (d) camera

and lens.

Lastly, the test rig is also �tted with a high-speed di�erential pressure transducer (Omega USBH Series). It

is a USB-based device and comes with its own software for direct recording in the computer. It has a range

of  , with an accuracy of   and a sampling frequency of  . The di�erential

pressure is measured across the pipe between the point of injection of the disturbance and the pipe’s end

50 mW

35 mm

4.8 × m × 3.6 × m10−3 10−3

15 ms~to~50 ms Re = ∈ [1120, 2980]UD
ν

U

0 mbar~to~70 mbar ±0.08% 1000 Hz
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section over a distance of  . An extra   glass section with a T-inlet is manufactured separately and

connected at the end of the pipe to connect it there.

8.3 m 20 cm
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Figure 3. Successive stages of image processing for the streak-angle velocimetry. In the vertical axis,

r/R means a location r from the centreline for the given pipe radius R. In the horizontal axis, x/R is the

distance x from the left of the image with respect to R. (a) Raw image, (b) background frame obtained

from the average of all pictures within a run, (c) image after background subtraction, (d) image after

adaptive thresholding, (e) image after canny edge detection and (f) Lines detected by Hough transform

(showing the two lines counted as one per actual streak).
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2.1. Experimental Control Parameters

The problem is governed by the following non-dimensional numbers: As in the non-particulate pipe �ow,

the Reynolds number   measures the ratio of inertial to viscous forces outside the laminar regime

and is varied in the range  . The addition of neutrally buoyant spherical particles, of density   and

diameter  , introduces two additional parameters: the particle-to-�uid volume fraction ( ), set to 

, and the Stokes number   measuring the ratio of the particle’s relaxation

time under the e�ect of drag exerted by the �uid,  , to the �uid’s advection time  . For

the particles,    is in the range  . In practice,  ,  , and    are controlled through the piston’s

velocity that imposes the mass �ux, the volume of particles introduced in the �uid, and the particles’

diameter respectively.

Additionally, the �ow perturbation introduces a radial mass �ux through the perturbation inlet controlled

dimensionally through the total volume of �uid introduced  , here set to  ml  or  ml, and the time of

application of the perturbation  , here set to  ms. To non-dimensionally measure the perturbation

for a given  , we introduce the perturbation Reynolds number ( ), which is analogous to the

conventional Reynolds number and is de�ned using the averaged �uid velocity, obtained by dividing the

volumetric perturbation �ow rate with its pipe cross-sectional area calculated using its inner diameter. Two

distinct values,   and  , corresponding to perturbation volumes of 0.5 ml and 1 ml

respectively, are employed in this study. Table 2 provides an overview of the control parameters used in this

study.

Parameter Range / Value

Reynolds number (Re) [1120, 2980]

Particle-to-�uid volume fraction ( )

Particle Stokes number (St) [0.2, 0.6]

Perturbation Reynolds number ( ) 3200, 6400

Table 2. Experimental Control Parameters

The parameters are chosen to cover a su�ciently large range of �ow patterns for the purpose of their

characterization by the streak-angle visualization method.

Re = UD/ν

[1120, 2980] ρ

dp Φ

Φ = 1.2 × 10−3 St = ρ U/(18μD)d2
p

= ρ /18ντp d2
p = D/UτU

St [0.2, 0.6] Re Φ St

V ′ 1 0.5

τ ′ = 90τ ′

τ ′ Repert

= 3200Repert = 6400Repert

Φ 1.2 × 10−3

Repert
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2.2. Experimental procedure

We use the following experimental procedure: To initiate the experiment, the �uid-particles-tracers

mixture is circulated upstream and downstream of the pipe to ensure particle and tracer homogeneity. The

�ow is then gently reversed to expel air bubbles, directing them out at the reservoir side. Afterward, the

system is left idle for 25 minutes to allow the �uid to reach a standstill state. The motor, controlling the

piston-cylinder arrangement, is then set to a speci�c rotation speed to achieve the target Reynolds number 

.

Once the �ow is fully developed—ensured by positioning the perturbation system 225 D downstream of the

reservoir inlet[54]—a controlled perturbation is introduced. This placement does not simply indicate that

the �ow has exited the acceleration phase; rather, it con�rms that the �ow has reached a steady, fully

established state as dictated by the inlet conditions.

The �rst visualization system, combining Particle Tracking Velocimetry (PTV) and Particle Image

Velocimetry (PIV), captures high-resolution �ow images timed with the perturbation’s arrival and provides

us with a detailed analysis of the velocity �eld. Then, the second visualization system is used to perform

streak visualization on �ow patterns resulting from the downstream evolution of the �ow within the �uid

volume captured by the �rst system. Particle streaks are recorded to analyze downstream �ow patterns and

perturbation evolution.

The di�erential pressure transducer continuously monitors the pressure drop across the pipe during the

entire run. The system is reset, the �uid re-mixed, and allowed to settle as described above between each

run to ensure consistent experimental conditions.

3. Image Processing for the Streak Visualization System

The image processing for the streak visualization system is carried out using the OpenCV library in

Python[55]. The primary goal of this process is to detect the lines corresponding to the streaks visible in the

image and then accurately extract the angles that these lines form with the pipe axis. This information is

crucial for understanding the dynamics and �ow characteristics within the pipe.

The initial step in this process involves capturing raw images from the camera during the experiment

(Figure 3a). These raw images often contain various artifacts caused by the re�ection of light from the

surface of the pipe, which can interfere with the accurate detection of streaks. To address this issue, a

background frame (Figure 3b) is constructed by averaging all the frames captured during each experimental

run. The purpose of this background frame is to capture the persistent elements of the image that are not of

interest, such as static re�ections and uniform lighting patterns. By subtracting this background frame from

Re
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each raw image, we obtain a background-subtracted image (Figure 3c), which is signi�cantly cleaner and

free from most artifacts. This subtraction step is essential to isolate the dynamic features, i.e., the streaks,

from the static background.

After obtaining a cleaner, artifact-free image, the next step is to identify the streaks within the image. This

is accomplished by converting the image into a binary format, where the pixels corresponding to the streaks

are assigned a value of 1 (white), and the background pixels are assigned a value of 0 (black). This

binarization is typically achieved through thresholding techniques. In simple or global thresholding, a single

threshold value is applied across the entire image: pixels with values above this threshold are set to 1, and

those below are set to 0. However, this approach is often insu�cient for our application due to the uneven

lighting and varying brightness of the streaks across di�erent regions of the image.

To address these challenges, an adaptive thresholding algorithm is employed. Unlike global thresholding,

adaptive thresholding calculates the threshold for each pixel based on the pixel values in its local

neighborhood. In our methodology, we use a neighborhood de�ned by a square window with a side length of

101 pixels centered on the pixel of interest. The threshold for each pixel is set to the mean value of the pixels

within this window minus a constant  . For our experiments, we have empirically determined the optimal

value of   to be 8. The images captured have an 8-bit depth, meaning each pixel can have an intensity value

ranging from 0 (black) to 255 (white). The choice of the adaptive thresholding parameters, such as the

neighborhood size and the constant  , is made based on careful visualization and experimentation speci�c

to our setup, as illustrated in Figure 3d. These parameters are critical and are in�uenced by factors such as

the bit depth, sensitivity, and resolution of the camera, as well as the illumination conditions during the

experiment. In cases where the images are noisy or grainy, it is advantageous to apply Gaussian smoothing

before performing adaptive thresholding. This smoothing step reduces noise and enhances the quality of the

binary image, making the subsequent streak detection more accurate.

Once the binary image is obtained, the next step involves detecting the streaks as lines. A common approach

for line detection is the Hough transform[56][57], which is e�ective in identifying lines in binary images.

However, directly applying the Hough transform to our binary images can lead to multiple lines being

detected for a single streak due to the non-negligible thickness of the streaks. This multiplicity would skew

the analysis, as the number and angles of detected lines would incorrectly re�ect the streaks’ actual

characteristics. To prevent this, we �rst apply the Canny edge detection algorithm[58], which is designed to

detect the edges of objects in an image. By detecting the edges of the streaks (Figure 3e), we can then apply

the Hough transform to these edges, resulting in a more accurate representation of the streaks as lines. The

Canny edge detection algorithm, as implemented in OpenCV, involves several parameters, including the

minimum and maximum thresholds and the aperture size, which determines the size of the matrix used for

C

C

C
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the derivative computation. Since our image is binary, the results are relatively insensitive to the speci�c

threshold values, and we have selected the smallest aperture size of 3 to ensure precise edge detection.

For the line detection itself, we employ a probabilistic variant of the Hough transform[59]. This variant

signi�cantly reduces the computational load by considering only a random subset of points in the image for

line detection, with a minor trade-o� in accuracy. The parameters for the OpenCV implementation of this

probabilistic Hough transform are carefully chosen to balance detection accuracy and computational

e�ciency. Speci�cally, we set the distance resolution to 1 pixel, the angle resolution to 1 degree, an

accumulator threshold of 30 votes, a minimum line length of 30 pixels, and a maximum line gap of 20 pixels.

The term ”accumulator threshold” refers to the minimum number of votes required for a line to be detected.

Each vote indicates a point in the image supporting the presence of a line at a particular position and angle.

Setting a threshold of 30 votes ensures that only prominent lines, with su�cient supporting points, are

identi�ed. These parameters ensure that the detected lines correspond closely to the actual streaks in the

image while minimizing the detection of spurious lines due to noise or minor image imperfections.

In summary, the detection of streaks in images involves a sequence of well-de�ned steps: background

subtraction to remove artifacts, adaptive thresholding to create a binary image, Canny edge detection to

identify the edges of streaks, and the probabilistic Hough transform to detect the streaks as lines. Each step

is carefully tailored to the speci�c needs of the experimental setup, including the characteristics of the

imaging system and the environmental conditions. The empirical selection of parameters for adaptive

thresholding, edge detection, and Hough transform is crucial for the robustness of the system, ensuring that

the detected lines accurately represent the streaks and that the angles extracted are reliable for further

analysis.

4. Flow state identi�cation based on the �uid phase

4.1. Identi�cation of �ow pattern using PIV

We start by characterizing the �ow state using traditional techniques based on the full �ow �eld delivered by

PIV measurements from the �rst system. Patterns are identi�ed by analyzing centerline velocity, velocity

�uctuations, and average axial velocity pro�les from PIV data. In the laminar phase, the average velocity

pro�le matches closely with the Hagen-Poiseuille pro�le, indicating steady �ow with minimal �uctuations.

The transitional �ow features such as pu�s are identi�ed by analyzing characteristic velocity �uctuations.

Pu�s are detected as localized turbulent structures with distinct leading and trailing edges (fronts and tails).

As they pass a point along the pipe, they cause transient drops in centerline velocity while the �ow upstream

and downstream of a pu� remains laminar. In the turbulent phase, the pro�le is approximately aligned to
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the 1/7th power-law pro�le, with high-frequency �uctuations and irregular spatial variations. These

distinct pro�les and centerline changes enable the precise identi�cation of laminar, transitional, and

turbulent �ow states.

The �ow patterns observed in response to    and    ( , particle size

range = 212 – 250  ) when the �uid Reynolds number is increased, are reported in Table 3. For smaller  ,

i.e.   and  , the �ow is laminar. However, a transition to localized turbulence takes place

at at most  , as pu�s are detected for this value. In these cases, turbulent patches (’Pu�’) appear

within an otherwise laminar �ow, signifying the onset of turbulence within the system. For  , the

turbulent nature of �ow takes over.

The state of particulate pipe �ows is usually characterized using the perturbation intensity    =   

. The critical Reynolds number  , marking the onset of turbulence, scales as  . This inverse

relationship implies that as particle perturbations grow (via increased particle size or concentration),

turbulence initiates at lower Reynolds numbers[30]. For the parameters we consider,  , and

so the transition is expected to take place in the range  , when our measurements capture

the presence of pu�s at   and transition in the region  , well within the expected range.

On this basis, our results are consistent with the literature[30][60][20].

Parameters:  ,  , Particle size range = 212–250 

Reynolds Number 1120 1530 1980 2260 2550 2980

Flow State (PIV) Lam Lam Pu� Turb Turb Turb

Flow State (Streak Visualization) Lam Lam Pu� Turb Turb Turb

Table 3. Observed �ow patterns in a particulate �ow using PIV and Streak Visualization (described in section 5).

’Lam’ and ’Turb’ correspond to laminar and turbulent �ow states extending over several diameters, while ’Pu�’

corresponds to a small turbulent patch, typically less than a pipe diameter long inside an otherwise laminar �ow.

4.2. Utilization of Pressure Drop Measurements to Characterize Particulate Pipe Flow States

Identifying �ow patterns from measurements at a single observation point in the pipe su�ers from

uncertainty due to the evolution of the turbulence along the pipe: decaying regions of turbulence cannot be

distinguished from expanding ones, so laminar and turbulent states cannot be distinguished with full

certainty over long pipe ranges. The issue is alleviated by using the di�erential pressure meter to assess the

= 3200Repert = 6400Repert ϕ = 1.2 × 10−3

µm Re

Re = 1120 Re = 1530

Re = 1980

Re ≥ 2260

ϵ ( /D)dp
1

2

(ϕ)
1

6 Res,c ∼Rec ϵ−1

ϵ ∈ [0.033, 0.0515]

R ∈ [2200, 2400]ec

Re = 1980 R ≈ 2260ec

= {3200, 6400}Repert ϕ = 1.2 × 10−3 μm
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pressure drop between the point where the perturbation is injected into the �ow and the pipe’s outlet. The

pressure drop is controlled by the state of the �uid phase, and so o�ers a way to diagnose the turbulent or

laminar state of the �ow that is independent of the two visualization systems and crucially, regardless of

how turbulent patches may evolve when traveling between the two systems. Of course, this method still

misses the dynamics of turbulent patches decaying or growing over timescales much longer than the �nite

length of the rig can capture.

Using the di�erential pressure measurements, we calculate the friction factor based on the formula provided

in Eq. (1):

where   is the measured pressure di�erence. We then map the experimentally determined friction factors

with the theoretical friction factors for a pure �uid in both the laminar and turbulent regimes, as given by

Eqs. (2) and (3), respectively. In the laminar �ow region, the friction factor follows the Hagen-Poiseuille law

for a single �uid:

In contrast, in the turbulent �ow region, the friction factor for a smooth pipe is described by the Kármán–

Prandtl resistance equation[61]:

On this basis, we obtain friction from Eq. (1) and compare it with those of (2) and (3) respectively. This gives

an estimate of the �ow state across the pipe length.

f = ,
2DΔP

ρLU 2
(1)

ΔP

=flam
64

Re
(2)

= 1.930 log( ) − 0.537
1

f
−−

√

Re

f
−−

√
(3)
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Figure 4. Friction factor vs   based on the pressure drop readings obtained from the

particulate pipe �ow experiment ( , particle size range = 212–250  )

against theoretical laminar and turbulent �ows.

The measured friction factors for the cases of   and   ( , particle size

range = 212 – 250  ) are plotted against    in Figure 4. For  ,    and  , the

friction follows the law for a single-phase laminar �ow. At  , although the �ow exhibits pu�s

detected by the Particle Image Velocimetry (PIV), see Section 3, the friction still coincides with its predicted

laminar value, meaning that the pu� was a localized feature and did not grow over the pipe length. However,

for Reynolds numbers of 2260 and higher, the friction takes a value between the laminar law and the friction

law for a fully developed turbulent single-phase �ow, indicating that the �ow is turbulent in part of the

region between the two pressure measurement points. When the friction is close to the turbulent friction

value, the the �ow between the two measurement points is turbulent in most of the pipe.

Additionally, for  , the friction factor regime is similar to that obtained from 

 except for  , indicating that for a higher   the pu� probably survives and grows

to fully developed turbulence, and so a�ects the friction factor. Nonetheless, the intermediate value between

the fully laminar and the fully turbulent one tells us that turbulence occupies only part of the pipe length, so

the �ow is still in the transitional �ow regime and not fully turbulent.

Re

ϕ = 1.2 × 10−3 μm

= 3200Repert = 6400Repert ϕ = 1.2 × 10−3

μm Re = 3200Repert Re = 1120 1530

Re = 1980

= 6400Repert

= 3200Repert Re = 1980 Repert
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Figure 5. The depicted �gures illustrate the probability distribution

histograms of streak angles for two distinct Reynolds number scenarios (

, particle size range = 212 – 250  ). Figure (a) represents the

streak angle distribution for the case with   1120, while Figure (b) portrays

the streak angle distribution for the scenario with   2980.

ϕ = 1.2 × 10−3 µm

Re

Re
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The results in this section show that combining PIV and pressure drop measurements both validate and

complement each other. This enables us to reliably diagnose the �ow state and gives us con�dence in using

them to validate the streak visualization method, which is the main point of this work.

5. Characterisation of the �ow states using streak-visualisation

5.1. Streak visualisation

A key di�erence between streak visualization and the techniques used in the previous section is that it relies

on the movement of the particles, not the �uid phase. Hence, assessing the laminar or turbulent state of the

�ow in this manner demands that the motion of the particles re�ects these states in an unequivocal way.

While the particles (with  ) do not follow the trajectories of the �uid, the main question is whether

their trajectories display turbulent features (i.e. erratic, misaligned) when the �uid phase is turbulent and

laminar (i.e. rectilinear and aligned in the streamwise direction when the �uid phase is laminar). Hence we

�rst seek to characterise whether this is the case by intantaneous visualising snapshots of streaks

corresponding to either �ow regimes.

St ∼ 1
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Figure 6. The blue line is the temporal centreline velocity of the �uid obtained from the PIV system at   1980 (

, particle size range = 212 – 250  ) showing the passing of two pu�s. The two images (a and b)

shown here are obtained directly from the camera of the streak visualization setup and show the streaks produced

by the particles. Both images are taken at   1980, but (a) is the part where the �ow is laminar, and (b) captures

the turbulent pu�.

To this end, the images (a and b), as depicted in Figure 6, are captured directly from the camera of the streak

visualization setup, showcasing the streaks generated by the particles within the �uid �ow. An example is

shown in �gure 6. Two images are shown at   ( , particle size range = 212 – 250  ).

Image 6(a) corresponds to an instant where the �ow is laminar, where streaks are qualitatively well aligned

with the streamwise direction. Image 6(b) captures one instant during the passage of a turbulent pu� and

shows streaks at �nite angles with the streamwise direction. These images 6 (a and b) are approximately

taken at positions indicated by red circles overlaid on the centerline velocity pro�le obtained from the PIV

setup. This positioning highlights a visible variation in streak angles between the laminar and turbulent

regions of the �uid �ow. Speci�cally, the observed change in streak angle serves as a visual indicator of the

dynamics over the short exposure time of the camera, which compared to the global �ow timescale is nearly

instantaneous. This di�erent was noticeable in all examples and all instants where the �ow could be clearly

Re

ϕ = 1.2 × 10−3 µm

Re

Re = 1980 ϕ = 1.2 × 10−3 µm
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identi�ed as being laminar or turbulent. As such, streak visualization based on the particles potentially

makes it possible to follow the time evolution of the state of the �uid phase. To achieve this at every instant

of a series of recorded images and monitor the evolution of the �ow state in time, a large number of

consecutive images must be processed, so we need an quantitative criterion to identify the �ow state in each

streak snapshot.

5.2. Flow behavior identi�cation based on the standard deviation of streak angles

To quantify the distribution of streak angles with respect to the centreline, we plot the binned probability

distribution of angles for two typical cases. The result, illustrated in Figure 5, demonstrates a clear disparity

in the angle distributions between cases for two di�erent    numbers (   and    (

, particle size range = 212 – 250  )). In the histogram representation, angles cluster

towards zero degrees in laminar �ows, signifying a more uniform directionality of particle streaks.

Conversely, in relatively turbulent �ows, the angle distribution is notably wider, re�ecting the chaotic

nature of particle motion within the �uid. This re�ects the qualitative impression obtained by observing

snapshots of streaks in laminar and turbulent �ow states in the previous section. Indeed, di�erentiating

between the two cases is often easy by simply looking at the picture. There are, however, cases where

transitional features are di�cult to di�erentiate. Hence, there is a need for a more systematic approach to

the detection of patterns from pictures. The simplest approach to this problem is to imitate ”human

recognition” in its most basic form: when assessing whether streaks are mostly horizontally aligned or

more randomly distributed, we assess an average distribution and its scattering, i.e., the standard deviation

of the angles (the average is always expected to be close to 0 provided there is a su�ciently large number of

streaks in the picture considered).

However, to quantify the orientation of the streaks with su�cient statistical convergence, we consider the

distribution of streak angles over multiple frames. The mean and standard deviation of these angles are

calculated over a moving window of 5 frames. Increasing the number of frames used for computing the

statistics decreases the error and noise in the estimates but decreases the temporal resolution of various

features of interest. Decreasing the number of frames has the opposite e�ect. Hence, there is a trade-o�

between time resolution (which is improved by a higher sampling frequency, hence by reducing the number

of successive frames used for the determination of the standard deviation) and statistical convergence.

We denote the set of streak angles obtained from 5 consecutive frames as  , where   varies from 1 to 

  denotes the frame and    denotes the streak angles in the  th frame. The standard deviation    of these

values measures the dispersion or spread of the angles around their mean value. Mathematically, the sample

standard deviation   is calculated as follows:

Re Re = 1120 Re = 2980

ϕ = 1.2 × 10−3 µm

{ }θi,in i

5 in i σ

σ
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where   is the mean of the set of angles   given by:

A higher standard deviation   indicates greater variability in the streak angles across the frames. When the

�uid �ow is laminar, the streak angles tend to align parallel to the reference axis (e.g., horizontal), resulting

in a lower standard deviation. In contrast, turbulent �ow leads to irregular and chaotic movement of

particles, causing streaks with varying angles, resulting in a higher standard deviation.

We analyze the angles of streaks produced by particles in a �uid, focusing on their distribution

characteristics under laminar and turbulent �ow conditions. The angles of these streaks are indicative of the

underlying �ow properties, with laminar �ows typically exhibiting narrower angle distributions tending

towards zero degrees, while turbulent �ows display broader and more spread-out distributions.

σ = ,
( −∑5

i=1∑in
θi,in θ

¯̄̄
i)2

( 1) − 1∑5
i=1∑in

− −−−−−−−−−−−−−−−−

⎷



 (4)

θ
¯̄̄ { }θi,in

= .θ
¯̄̄

∑5
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Figure 7. Variation of Standard Deviation over Time for di�erent Reynolds Numbers for �uid-particle

mixture ( , particle size range = 212 – 250  ): Sub�gures depict the temporal evolution

of standard deviation values calculated from streak angles obtained through frame analysis for six

di�erent Reynolds numbers. The x-axis represents time (in seconds), while the y-axis represents the

standard deviation (in radians) of streak angles. Additionally, a red line at the standard deviation value

of 0.04 serves as a reference for distinguishing between laminar, transient, and turbulent �ow regimes.

ϕ = 1.2 × 10−3 μm
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We �rst conduct repeated measurements under conditions of relatively high and low Reynolds numbers (

 and  ), representing fully turbulent and fully laminar �ows respectively to assess lower

and upper bounds for the values of standard deviation. By plotting standard deviation values while

simultaneously validating them with the PIV setup, a reference red line ( ) separating both cases is

established (as depicted in Figure 7), serving as a benchmark for less obvious states between the fully

turbulent and fully laminar reference cases. We also cross-check the nature of the �ow for each value of 

  presented in Figure 7 using the PIV system and the pressure drop system to further con�rm the

e�ectiveness of using the statistical distribution of streak angles in precisely understanding the �ow

characteristics.

The examination of sub�gures in Figure 7 reveals more detailed information on the �ow dynamics: For

Figure 7(a) and (b), the �ow is laminar (the standard deviation value throughout the time is well below the

red line demarcation). As for the case within the transitional regime, found around  , shown in

Figure 7(c), clear peaks of standard deviation indicate intermittent turbulent patches (pu�s) amidst

predominantly laminar �ow conditions: these are also observed through the PIV system. As the �ow

gradually transitions towards turbulence, exempli�ed by sub�gure 7(d), the standard deviation

progressively approaches and eventually surpasses the red line reference, indicating the onset of turbulent

behavior. The turbulence invades a greater part of the signal and �nally all of it in �gures Figure 7(e) and

Figure 7(f), where the standard deviation consistently exceeds the red line, signifying fully turbulent �ow

conditions.

The outcomes of the �ow analysis conducted with the pressure drop setup (Figure 4) and the PIV system

(table 3) closely match the conclusions given by the proposed visualization system. The analysis and

comparison of each case to the reference plot shown in Figure 7 reinforce the identi�ed trends in �ow

dynamics by the streak visualization method in not only identifying the nature of the �ow but also detecting

the presence of any transitional �ow feature. Here, the identi�cation of a simple threshold in the value of

the standard deviation, calibrated from the purely laminar and purely turbulent state, makes it possible to

reliably detect transient features such as pu�s.

5.3. A new approach to the estimation of critical Reynolds number

The probability distribution of angles contains far more information on the �ow than we have used so far.

They contain a measure of how far the �ow stands from the laminar or the fully developed turbulent state.

Until now, we have only used a threshold on the standard deviation to detect whether any turbulence was

present but without quantifying ”how turbulent” the �ow was. Doing this enables us to �nd a threshold

where the �ow becomes ”closer” to the turbulent state than to the laminar state in the spirit of the approach

Re = 1120 Re = 7500

σ = 0.04

Re

Re = 1980
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proposed by  [15][62]  to de�ne a critical Reynolds number for the transition to turbulence. To quantify the

idea of proximity between states, we propose utilizing the Kullback-Leibler (K-L) divergence. This

statistical measure provides a means to quantify the di�erence between two probability distributions,

o�ering a rigorous method for comparing observed angle distributions with reference distributions

representing pure laminar and pure turbulent cases.

The KL divergence between two continuous distributions   and   is given by:

Here   and   represent the probabilities of outcome   under distributions   and  . By employing K-L

divergence, we can e�ectively evaluate the degree of similarity or dissimilarity between a given angle

distribution and the reference distributions  [63]. This approach enables a robust assessment of �ow

conditions based on the observed angle data, facilitating the identi�cation of laminar, turbulent, or

intermediate regimes within the �uid.

P Q

(P ∥ Q) = p(x) log( )dx.DKL ∫
∞

−∞

p(x)

q(x)
(6)

p(x) q(x) x P Q
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Figure 8. K-L divergence for the above-mentioned   having   and

particle size range = 212 – 250   where working �uid is introduced as perturbation

upstream of the setup. The solid markers in the illustration represent instances

where a laminar �ow streak angle probability distribution with   is taken as

the reference case for calculating the K-L divergence in subsequent scenarios.

Conversely, the hollow markers indicate situations where an   of 4500 is adopted

as the reference case.

As shown in Figure 8, for both the case of    and  , the values of KL divergence (

) increase with increasing    when the reference probability distribution    is taken from the

laminar �ow ( ).    takes higher values for higher    as the presence of turbulence

distorts the �ow state away from the reference laminar state. At smaller  , where �ow is mostly laminar,

the streak angle distribution is similar to that of the reference case at  .

Conversely, the K-L divergence values decrease with increasing   when the reference distribution   is that

of a turbulent case  . Laminar states at low   return a high K-L divergence, and those at higher 

 remain close to 0, indicating a close match with the streak angle distribution of the  , which is

turbulent.

Repert ϕ = 1.2 × 10−3
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= 3200Repert = 6400Repert

(P |Q)DKL Re Q
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Hence, the K-L divergence provides a quantitative measure of the turbulent state based on the knowledge of

particle angles of a reference case of either a pure laminar or pure turbulent �ow scenario.

To estimate the critical Reynolds number   using the graph (Figure 8), we sought a location where the K-

L divergence exhibits a pronounced shift for both choices of laminar and turbulent reference distributions 

.

Speci�cally, the graph shows that for both the laminar ( ) and turbulent ( ) reference

cases, there is a distinct crossover region where the divergence values change rapidly, right around the point

of intersection of K-L values calculated with either reference for each case. For the case of  ,

this crossover occurs at a higher    (see Figure 8 (b) in the graph), i.e.,  , suggesting that the

transition to turbulence happens at a higher Reynolds number with smaller  . This is con�rmed by the

friction factor measurements shown in Figure 4, where the friction factor corresponds to that in the

turbulent regime for  . Conversely, for the higher perturbation case of  , the crossover

occurs at a lower    (see Figure 8 (a) in the graph), i.e.,  . This indicates that larger upstream

perturbations induce an earlier transition to turbulence, which is also con�rmed by the Figure 4 graph

showing the friction factor in the transitional regime at these Reynolds numbers. This observation is

consistent with the experimental �ndings showing the Friction factor vs   graph by Ref. [30].

Hence, using the laminar and turbulent states as references o�ers a robust method to assess the point of

transition to turbulence and the corresponding critical Reynolds number, using the K-L divergence.

6. Conclusion

The study demonstrates that the streak visualization technique reliably distinguishes between laminar,

transitional, and turbulent �ow regimes in particulate pipe �ows through the quanti�cation of streak

angles, supported by validation from PIV and pressure drop measurements.

This �nding underscores the potential for accessible and cost-e�ective methods to complement or replace

traditional, resource-intensive techniques, broadening their �eld of application both in research and to

practical applications in �uid dynamics

The results demonstrate that the streak visualization technique is an e�ective tool for distinguishing

between �ow regimes in particulate pipe �ows. By analyzing streak angle distributions, the method reliably

identi�es laminar, transitional, and turbulent states. Validation through complementary methods,

including Particle Image Velocimetry (PIV) and pressure drop analysis, further supports its accuracy. The

use of statistical measures, such as the standard deviation of streak angles and the Kullback-Leibler

divergence, enhances the ability to detect �ow transitions and determine the critical Reynolds number,

Rec
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e�ectively addressing the challenge of distinguishing erratic trajectories resulting from underlying

turbulent �uid motion from regular trajectories associated to a laminar �ow.

Some limitations remain, in particular the need for manual steps in image processing, which introduce

subjectivity. However, automation of these steps and re�nements to improve the system’s robustness are

not expected to pose a major challenge and could extend the application of this method to a wider range of

scenarios. As such future developments of the method itself could focus on automated streak angle analysis

and exploring applications in non-circular geometries or single-phase �ows to expand the method’s utility.

The �ndings align with existing literature on turbulence and transitional �ow dynamics, in highlighting the

role of particle behavior in in�uencing �ow states. Compared to traditional methods like PIV and Laser

Doppler Velocimetry (LDV), the streak visualization technique o�ers a more accessible and cost-e�ective

alternative for the purpose of detecting laminar and turbulent �ow patterns, without sacri�cing reliability.

This broadens its potential application in cases where resources for high-cost methods are unavailable.

However, the main scope to expand this method probably lies in the processing of the data it generates:

while using a threshold on the standard deviation obtained by calibration against fully laminar and fully

turbulent states o�ers a reliable, objective method to identify �ow patterns, more advanced statistical

analysis could be used to eliminate the calibration step. Indeed, despite its simplicity, streak velocimetry

still collects extensive time-dependent �ow data that was not used for the purpose of detecting �ow

patterns. The reliable de�nition of a transitional Reynolds number based on the KL divergence, certainly

o�ers a glimpse of how more re�ned statistical analysis of the time-dependent statistical distribution of

streak angles may provide deeper insight into the �ow dynamics.
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