
Self-Replication, Spontaneous Mutations, and Exponential Genetic
Drift in Neural Cellular Automata

Lana Sinapayen

Sony Computer Science Laboratories, Kyoto, Japan
National Institute for Basic Biology, Okazaki, Japan

lana.sinapayen@gmail.com

Abstract

This paper reports on patterns exhibiting self-
replication with spontaneous, inheritable mutations
and exponential genetic drift in Neural Cellular Au-
tomata. Despite the models not being explicitly
trained for mutation or inheritability, the descen-
dant patterns exponentially drift away from ances-
tral patterns, even when the automaton is determin-
istic. While this is far from being the first instance
of evolutionary dynamics in a cellular automaton, it is
the first to do so by exploiting the power and con-
venience of Neural Cellular Automata, arguably in-
creasing the space of variations and the opportunity
for Open Ended Evolution.

Data Sharing
The experiments in this paper are executable online
with no other requirements than access to a web
browser; the data and the data analysis scripts are also
open access.

The code used to generate these experimental results
is available as an interactive Colab notebook at https:
//github.com/LanaSina/NCA_self_replication, as
well at the R code used to generate figures and se-
lected videos. The author apologizes in advance for
non-optimal code and crimes against Tensorflow.

The data is available on Figshare: https:
//figshare.com/projects/Self-replicating_
Neural_Cellular_Automata/167582

Videos are available at: https://youtube.
com/playlist?list=PLYuu1RcSnrYRhophmfolv_
lmx7Qz8AP1P

Introduction
Can a closed world, with unchanging rules and without
outside influences, produce seemingly endless novelty?
This concept called “Open Ended Evolution” is an un-
solved problem in Artificial Life: the Evolution Prize
for open-ended evolutionary innovation in a closed sys-
tem has been unclaimed for 17 years (Klyce (2006)).
The laws of physics in the time frame of the evolution

of Life on Earth can be considered unchanged, but as
pointed out in Klyce (2006), it is unclear if Earth can
be considered a closed system, due to its known (and
hypothetical) exchanges with the rest of the Universe.
By contrast, the “laws of biology” are sometimes consid-
ered to be continuously changing (Adams et al. (2017)),
despite being implemented using unchanging physical
laws. Is this a simple issue of definition, or a meaningful
contradiction? In this paper, we propose to use Neural
Cellular Automata (NCA, Mordvintsev et al. (2020))
to model closed worlds with unchanging rules, and find
out how close we can get to Open Ended evolutionary
dynamics. Cellular Automata are programs that run on
a grid where each cell is defined by its state. The state
of each cell is updated depending on this cell’s previous
state and the state of its neighbors, according to a fixed
set of rules.

Cellular automata have been used to model some
of the functions of Life from the very beginning of
their invention. Von Neumann, in his search for a
“complicated artificial automata” of which complexity
would grow under natural selection, used a cellular au-
tomaton to show that self-replication with inheritable
mutation is possible in an artificial system (Neumann
(1966)). Conway named his most famous cellular au-
tomaton “Life” (Izhikevich et al. (2015)), and was in-
terested in finding complex dynamics even before “Life”
was found to be Turing complete. In 2017, a biolog-
ical von Neumann cellular automata was even found
to be implemented on the back of a lizard (Manukyan
et al. (2017)). But most cellular automata have to be
hand designed by the experimenter, who either imple-
ments known rules driving a given phenomenon (e.g.
predator-prey systems (Cattaneo et al. (2006)), reac-
tion diffusion Weimar (1997)), or searches for rules
that give an output similar to a known phenomenon
(Schepers and Markus (1992)). To facilitate this te-
dious design process, even before early NCA (Li and
Yeh (2001)), there was some interest in automating the
discovery of relevant rules through optimization (Clarke

https://www.qeios.com/read/JPUWVB

https://github.com/LanaSina/NCA_self_replication
https://github.com/LanaSina/NCA_self_replication
https://figshare.com/projects/Self-replicating_Neural_Cellular_Automata/167582
https://figshare.com/projects/Self-replicating_Neural_Cellular_Automata/167582
https://figshare.com/projects/Self-replicating_Neural_Cellular_Automata/167582
https://youtube.com/playlist?list=PLYuu1RcSnrYRhophmfolv_lmx7Qz8AP1P
https://youtube.com/playlist?list=PLYuu1RcSnrYRhophmfolv_lmx7Qz8AP1P
https://youtube.com/playlist?list=PLYuu1RcSnrYRhophmfolv_lmx7Qz8AP1P

et al. (1997)). The recent advances in deep learning
may make this task easier, especially the open source,
fast converging model proposed by Mordvintsev et al.
(2020). NCA only require the experimenter to define
an initial state, a target state and a maximal number
of computation steps. The rules that make the trans-
formation possible are learned by the network, instead
of being designed by the experimenter. While they have
not yet been used to model evolution, NCA have proven
useful to implement biology-like functions in artificial
patterns. Patterns that grow from a seed (Mordvintsev
et al. (2020)), similar to the development of biological
organisms from egg to adult form; patterns that self-
repair (Mordvintsev et al. (2020); Horibe et al. (2021));
patterns that undergo metamorphosis (Najarro et al.
(2022)), or parasite and highjack other patterns (Ran-
dazzo et al. (2021)). Many non-neural cellular au-
tomata have explored the possibility of (Open Ended)
evolution, with several organisms controlled by one au-
tomaton (Sayama (1999); Oros and Nehaniv (2007)).
Evoloops in particular, while limited in their phenotype
diversity (square loops), show complex genetic evolu-
tionary dynamics. The “organisms” in Adams et al.
(2017), while highly abstracted from common defini-
tions of organisms or evolution, are even used to for-
mally define Unbounded Innovation and Unbounded
Evolution. Yet most publications on NCA use a one-
to-one mapping between automata and organisms: one
organism is modeled by one automata, and if two or-
ganisms interact (for example through parasitism) each
follows the rules of its own dedicated automaton. We
know of 3 exceptions: Otte et al. (2021), where a
NCA is trained to in-paint several images from edges,
Cavuoti et al. (2022), where two set of rules are ex-
plicitly encoded in the model using hand-designed con-
straints; and Cisneros et al. (2022) where several organ-
isms are grown and hybridized. Note that these works
are not about evolution and therefore do no not have
self-replication mechanisms, but Cisneros et al. (2022)
in particular (while not being a traditional publication)
shows interesting developmental modularity.

In this paper we merge the world-rule approach of
non-neural cellular automata and the convenience of
NCA: we consider each NCA as a world with rules
loosely equivalent to the laws of physics of that world,
and focus on the issue of self-replication, diversity of or-
ganisms, and evolution. In our experiments, we present
training techniques that result in self-replication, spon-
taneous mutations, inheritance, and exponential ge-
netic drift in NCA.

Methods
Neural Cellular Automaton
This project uses 2-dimensional Neural Cellular Au-
tomata (Mordvintsev et al. (2020)). Like many cel-
lular automata, NCA run on a grid where each cell is
defined by its state. This model is therefore fully spa-
tially discrete, not continuous. The state of a cell is
updated depending on the cell’s previous state and the
state of the cell’s neighbors, according to a fixed set of
rules. The main characteristic of a NCA is that these
update rules are encoded by a Neural Network (Noted
NN in Fig. 1). In this paper, the state is a vector of
16 real values between -1 and 1, with the first 4 val-
ues corresponding to RGBA channels used to render
an image on the NCA’s grid. The NCA can therefore
be trained using images as RGB targets that the grid
must reach from its initial state. The Alpha channel
determines whether a cell is alive (Alpha>0.1) or dead
(Alpha≤0.1). If the cell is alive, the update rules apply:
the cell’s state is recalculated by applying the neural
network to the neighborhood of the cell. If the cell is
dead, the state vector is reset to 16 zeros and no up-
date is applied. During training, the NCA’s life span,
i.e. one training step, is the number of updates (time
steps) allowed to reach the target state from the ini-
tial state (typically 1 training step = 96 time steps, in
keeping with the original NCA paper, except when indi-
cated otherwise). After one training step, the final state
of the NCA is evaluated against the target image using
the mean squared error as loss function. The weights
of the network are updated through gradient descent.
Training ends when the maximum number of training
steps has been reached (a number determined ad hoc
by judging loss convergence). The model is then ready
to be used and the rules do no change past this point.

Modified training for self-replication
Compared with the original NCA paper, we modify the
training procedure of the NCA for some of the experi-
ments: (a) Batch substitution. Like most modern neu-
ral networks, the NCA is trained by batches: rather
than one initial state, a batch of 8 copies of the ini-
tial state are updated at once. In the experiments with
“batch substitution”, we replace half of the batch with
the previous output of the NCA, as shown on Fig. 2. (b)
Target alternation. In experiments with several target
states instead of one target state, we alternate between
the targets at each training step. (c) Synchronous up-
date rules. The original update rules are asynchronous:
at each time step, half of the cells are chosen at random
to be updated and the other half remain unchanged. In
some experiments we instead use synchronous update
rules (all cells are updated simultaneously). The train-
ing of the asynchronous models succeeds the vast major-

n time steps

Seed, t=0 Fish, t = n

16ch

NN

t+1
t+n

16ch x 9px

16ch
x 1px

NN x n

Target

Loss = MSE(Fish, Target)

Figure 1: The NCA is trained to generate a tar-
get state in n time steps starting from an initial
seed state. Each cell of the automaton’s grid is rep-
resented by a pixel. A cell’s state is a vector or 16 real
numbers, 3 of which are used as RGB input to render
the image, and 1 is the Alpha channel used to deter-
mine if a cell is alive or dead. The remaining 12 values
are free parameters. A neural network (NN) takes the
9-cell neighborhood as input, and outputs the updated
state of the central cell. The NN is applied to alive
(Alpha>0.1) cells in the grid over n time steps, then
the loss is calculated between the RGB channels of this
final state and the target state.

ity of the time (i.e the loss converges), to the point that
it is difficult to produce statistics on the failure rate.
The synchronous models fail to converge much more of-
ten, however when they converge, the results are quan-
titatively similar to the asynchronous models, if pro-
ducing qualitatively smoother images transitions. (d)
Periodic boundary conditions. The grid size is slightly
more than twice the target pattern’s size. Other pa-
rameters are the same as Mordvintsev et al. (2020),
most importantly the neighborhood of radius 1 giving
a neighborhood of 9 cells, the threshold of 0.1 on the
Alpha channel to consider a cell alive rather than dead,
and the 2-layer neural network to learn the update rules.

Calculating the genetic drift
This model has no alleles or chromosomes in the DNA
representation, so our definition of genetic drift is dif-
ferent from the biological definition. We define genetic
drift as the accumulation of neutral mutations in the
genetic code through successive generations. In the ab-
sence of selection, all mutations in the model are neu-
tral, except from the rare mutations that prevent an
organism from replicating; the possibility of these mu-
tations is largely eliminated during training and there-
fore rare after convergence of the model.

To calculate genetic drift, we use models were organ-
isms have two clear life phases: growth and replication.

Input
batch

Output

Training step = 0 Training step = 1

copy

G0 G0

G1 G1

G1 G0

Figure 2: Batch substitution. We replace half of the
input batch at training step 1 with the output of the
NCA at training step 0. This allows the NCA to learn to
self-replicate its own output while simultaneously stay-
ing close to the target image. There are 8 batches but
for simplicity only 2 are shown here.

Growth is the development of an egg (a small, square
clump of black pixels) into a fully formed organism.
Replication is the phase where an organism lays a new
egg. We record the value of the state of all cells in the
first egg laid by an organism, and call this value the
DNA of the organism. The egg develops into an or-
ganism of its own, and this organism lays it own first
egg. We record that DNA, and so on for 100 gener-
ations. Note that there is no fitness-dependant selec-
tion: the first offspring is always chosen. We calculate
the Mean Squared Error (MSE) between the DNA of
one organism and each of its descendants individually.
This value is represented by the color on the heatmap of
Fig. 3. One row on the heatmap represents the MSE of
all generations relative to one reference ancestor: for ex-
ample row 4 is the MSE of generations 5 to 100 relative
to generation 4. Therefore, a diagonal of the heatmap
represents the MSE of all pairs of [ancestor, Xth de-
scendant]. For example, the values on the 1st (longest)
diagonal are the MSE between all parents and children.
The second longest diagonal is the MSE between all
grand-parents and grand-children, etc. So the average
value of a diagonal is the average genetic distance be-
tween ancestor and Xth descendant. Calculating the
average genetic distance on an entire lineage gives us
the genetic drift through generations: are an organism’s
grandchildren more genetically different from it than its
children? Note that the number of data points decrease
through time: for 100 generations, we have 99 pairs of
parents and children, but we only have one pair of an
organism and its 100th descendant. The same method
applied to the values of all cells of an adult organism
(rather than just the egg) is used to calculate pheno-
typic drift.

Descendant generation

DNA MSE
R

ef
er

en
ce

 a
nc

es
to

r
MSE(each ancestor, its 1st descendant)

MSE(each ancestor, its 6th descendant)

MSE(generation 4, each descendant)

MSE(generation 40, generation 60)

Xth descendant

M
ea

n
M

SE

Genetic drift

Figure 3: Genetic drift. We calculate the Mean
Squared Error (MSE) between the DNA of an organism
and each of its descendants. This value is represented
by the color on the heatmap. One row represents the
MSE of all generations relative to one reference ances-
tor: for example row 4 is the MSE of generations 5 to
100 relative to generation 4. Therefore, a diagonal on
the heatmap represents the MSE of all pairs of [ances-
tor, Xth descendant]. Calculating the average value of
each diagonal gives us the genetic drift through gener-
ations.

Results
Self-replication
These experiments demonstrate a method to obtain
patterns that self-replicate in a NCA. While most uses
of NCA in the literature have one initial state A and
a fully distinct target state B, we can instead train the
NCA to go from A to 2A. After training, the model
should be able to go from 2A to 4A, and so forth. In
practice, the NCA becomes a replication function for
“exactly A”, and any minute deviation A* from the
target pattern stops the replication. Since the model
is not pixel-perfect, its output is never exactly 2A, but
rather 2A*, therefore replication always stops at this
stage. The solution to this issue is to train the NCA to
replicate anything “close enough to A”, by using batch
substitution at each training step (Fig.2), replacing half
of the batch of initial states A by the replicated states
A* generated by the NCA itself. We use the bacte-
ria emoji for this experiment, and the NCA learns
to replicate its own output while simultaneously stay-
ing close to the target image, as shown in . While this
training allows for deviations from the initial target, i.e.
mutations, in theory there is no reason for these muta-
tions to be inheritable or unbounded. (This is not in the
scope of this paper, but it proved trivial to make the
mutations non-inheritable.) In practice, in our small
grid, the patterns rapidly crowd each other, so to inves-
tigate replication and mutations, we cut out individual
patterns and transplant them to an empty grid.

…

Generation 0

isolate

…

Generation 0
(seed)

Generation 1 Generation 2

1 2 3 4 5

(a) Goal
TargetSeed

(b) Output at training step = 1000

(c) Isolating generations to avoid crowding

t=0 t=32 t=64 t=96

Figure 4: Simple self-replication. (a) Results shown
for a NCA is trained to self-replicate from a bacteria
emoji. (b) To analyze the successive generations with-
out interference from the grid becoming crowded with
bacteria, we isolate one bacteria after replication (top or
bottom, chosen randomly) and transplant it to a blank
grid where it can replicate again. (c) Note the visual
differences (mutations) between successive generations:
G5 seems to have 2 nuclei (yellow central patch). Mu-
tations extends to the non-RGBA values of each cell’s
state. Grid lines are not shown, but each pixel is a dis-
tinct cell of the automaton.

A more complex variation of self-replication is to have
distinct growth and division phases, such as: A becomes
B (growth), B becomes B+A (division). The two phases
must be learned by the NCA using two different target
states. We demonstrate through the following exam-
ple, Fig. 5: an egg grows into a fish (Target 1),
the fish moves to the left and lays an egg (Target 2 in-
cludes both fish and egg). Compared to the bacteria
experiment, this introduces one intermediary target, so
during training we alternate between training the tran-
sition from egg to Target 1 (growth) and from Target 1
to Target 2 (division). Once again we use batch sub-
stitution for all training steps, and we transplant each
egg to an empty grid to grow undisturbed. Results in
Fig. 5 and in this video link show that we do obtain self-
replication, and that successive generations show signs
of mutation: by generation 98 the fish has lost one of
the target’s 3 stripes, but generation 99 regains it and
generation 100 adds a supernumerary 4th stripe.

Spontaneous, inheritable mutations
When comparing successive generations of fish, we can
see that the offspring are always slightly different from
the parents, suggesting that spontaneous mutations are
occurring somewhere in the process tThe training pro-
cess does not explicitly enforce any DNA-like coding

https://user-images.githubusercontent.com/18609788/224480411-7ba97be0-45ad-4013-9067-31b2df28ea19.mp4

(a) Development (train step = 2000)

t = 0 32 64 96 128 160 192

g = 0 1 98 99 100

(c) Generations evolution (train step = 1500)
2 3

…

(b) Loss convergence

Train step

Log10(loss)

Alternating targets

Figure 5: Growth and self-replication. We add a
self-replication step to the growth phase first introduced
by Mordvintsev et al. (2020). (a) The NCA is trained
for 1000 training steps by alternating between an inter-
mediary target (grow fish from egg) and a final target
(move fish left and lay egg), as can be seen in the di-
vided loss curve (b). (c) Successive generations show
signs of mutation: by generation 98 the fish has lost
one of the target’s 3 stripes, but generation 99 regains
it and generation 100 adds a supernumerary 4th stripe.

or inheritance). By calculating the distance between
the parents and offspring patterns, we find that there
is indeed a form of inheritance, as mutations are car-
ried from fish to egg and from egg to fish, therefore
influencing the whole lineage. Qualitatively, we see in
Fig. 5(c) a lineage where the 3rd black stripe of the
fish was lost at generation 98, then gradually regained
and followed by a 4th stripe. Fig. 6(a) shows a lin-
eage where a mutation for a forked stripe develops over
generations 80 to 90. Most mutations are not this ob-
vious, and the more a model converges during learn-
ing, the less striking the mutations are. Quantitatively,
Fig. 6(c) shows that DNA and phenotype are strongly
correlated: a form of genetic coding has emerged in the
model. Along with Fig. 6(b), it also shows genetic and
phenotypic drift along generations, a topic we explore
in the next section.

The main source of stochasticity in the NCA is the
asynchronous update rule. The synchronous model’s
training is more brittle and often fails to converge, es-
pecially if the training has several targets. However, for
successful training on the bacteria division task, we still
find substantial inheritable mutations through genera-
tions (video link). These mutations despite the NCA
rules being deterministic could be due to rounding er-
rors that often occur with floating point number rep-

Ph
en

ot
yp

e
M

SE
(G

0,
G

x)

Generation

Xth descendant Mean DNA MSE M
ea

n
Ph

en
ot

yp
e

M
SE

 M
ea

n
Ph

en
ot

yp
e

M
SE

(a)

(b) (c)

Figure 6: Genetic coding and drift. A different run
of the model in Fig. 5, at training step 1500. (a) MSE
between the fish at generation 0 and its descendants.
The descendants appear to be all equally different from
the 0th generation, except for a jump at generation 82
where the fish develop a forked stripe that is inher-
ited by successive generations. (b) When calculating
genetic drift, we find not a linear relationship as in (a),
but an exponential increase in MSE until generation
82, where this model stalls (not all models stall in 100
generations). (c) The clear correlation indicates the
emergence of a genetic code: DNA differences in the
eggs are translated to phenotype differences in the de-
veloped organism, and big DNA mutations correspond
(mostly) linearly to big phenotype differences.

resentation. It is also possible that stochasticity is in-
troduced elsewhere in the model unbeknownst to the
experimenter, or due to the equipment (stochasticity in
GPU runs). Note that these causes would still satisfy
the definition of closed model by Klyce (2006). Finally,
there is the possibility that each division is inherently
different from the previous one, i.e. that the model
that is genuinely deterministic but chaotic. This last
hypothesis is reinforced by the fact that running the
synchronous model from the same starting point always
seems to lead to similar final results, even if those re-
sults are far from the initial state. This is not the case
with asynchronous models, and we focus our analysis
on those models in the remainder of the paper.

Genetic encoding and exponential drift
If each NCA is a world with its own laws of physics,
what happens when we transplant a creature from one
world to another? The transplanted pattern could dis-

https://user-images.githubusercontent.com/18609788/224480381-cd702897-b867-444e-bc51-b1577846e2bd.mp4

integrate, maintain itself, or become a sort of hybrid.
We found that a NCA trained to develop a fish emoji
from an egg will convert all input information into fish,
including noise or other images, a disappointing but
understandable result. Because of the training process,
NCA have one overwhelming drive: to develop towards
the target pattern. Unlike real worlds (and similarly to
teleological misunderstandings of evolution on Earth...)
they have a goal that they are trained to always con-
verge towards. This might also be the cause for the sud-
den stalling of the “near-exponential” curve of Fig. 6(b),
although some instances of this model do not stall at
100 generations (because of time constraints, we did
not perform a systematic analysis of stalling). It would
make sense for the model to reach some limits given its
limited expressivity: there are only so many yellow fish
one can draw on 70 square pixels.

A simple solution would be to train several NCA and
execute several sets of rules within one space, but that
would be a step back towards the concept of one NCA
for one organism, and away from our goal of more than
one organism in one self-contained NCA world. One
way to have several patterns coexist within a single set
of rules is to train several eggs to converge to several
targets. If the eggs contain the same information, the
NCA converges to an average of the several targets,
as the same rules apply to all cells of the NCA. If the
eggs contain different information, similar to genetic in-
formation guiding development, we do obtain different
patterns and occasionally stable hybrids of the patterns
(Fig. 7(b)). In addition, the exponential shape of the
genetic drift curve is maintained.

Fig. 7(c) to (d) show quantitative and qualitative
analysis of 100 consecutive generations for a model
trained for 4000 training steps. We note here that un-
like models trained on single patterns, the lineages ex-
hibit frequent extinction: some patterns are not viable
and fail to produce eggs. The analysis was done on
a run where 100 consecutive generations were viable.
In some cases, especially in the early stages of training
(e.g. training step = 3000, Fig. 7(b)) the phenotypes
switch with variable smoothness from one pattern to the
other. This is less frequent as training progresses and
the model converges. There is exponential drift of the
descendants away from the ancestor (Fig. 7(c)), and for
the same magnitude of DNA variation (max. 0.10), the
magnitude of phenotypic variation is higher: 0.15 for
the fish-and-lizard model versus 0.04 for the fish only
model. In other words, the same DNA-space codes a
greater variety of phenotypes. Although we did not
perform a quantitative analysis of when the exponen-
tial stalls, it is natural to expect that the qualitatively
greater variety of phenotypes indicates a greater space
of possibilities, and therefore longer or larger exponen-

(a) Training goal

t = 0

t = 96

t = 128

(b) Generations
(training step = 3000)
g = 0 ↓ g = 7↓

(c) Species transition (training step = 4000)

(d) Evolutionary dynamics (training step = 4000)

small
lizard

fat
fat tail

long tail

no snout
fish

Figure 7: Exponential drift in a 2-organism NCA.
(a) The model is trained to develop different DNA into
2 different patterns, as well as replicating the patterns.
(b) In some cases, especially before training conver-
gence, the model goes back and forth between fish,
lizard, and hybrids in the same lineage. (c) In this
other lineage the DNA undergoes a relatively smooth
transition, while the phenotype abruptly switches from
fish to lizard. (d) The phenotype space is large, and
the average difference of DNA (genetic drift) and phe-
notype (phenotypic drift) between an ancestor and its
descendants increases exponentially.

tial growth than the 1-pattern model. The increase in
lineage extinction events, while unexplained, is a caveat
to this expectation. All in all, the goal of creating sev-
eral attractors and paths between them is achieved.

However, this solution is still unsatisfying, as it could
well be closer to “paint by numbers” than to a modular
genetic code. In the worst case, a fish’s appearance
could in theory be fully decided by one out of hundreds
of bit being 0 in one egg, and all other values could
lead to a lizard. The current training method does not
guarantee that the NCA will not use DNA as a discrete
identifier.

Other coding schemes are possible, for example Fig. 8
shows the results of using a “seed cloud” to code for
different pattern. The scheme has some similarities
with Cisneros et al. (2022), except that all our seeds
contain exactly the same genetic code. In consequence,
the seeds initially develop identically, until they make
contact with each other and the location of the contact

(a) Log10(loss)

(b) Representative frames during development

Figure 8: Spatial modular encoding: (a) Smooth
convergence of the spatial modular model. (b) In the
initial state, all seed pixels (in black) have the same
value, therefore they all develop the same patterns until
they come into contact with each other. The direction-
ality and timing of the contact is a cue for differenti-
ation. Some undifferentiated patches differentiate into
parts of the flowers and some disappear. The differenti-
ation from initially identical instruction is reminiscent
of the modularity of DNA.

serves to break the symmetry. The directionality and
timing of the contact is a cue for differentiation. Only
the different positions of the seeds encode the final re-
sult. Since each seed starts with the same development
but ends up being a different part of the final pattern(s),
this might be closer to the type of modularity that char-
acterises a DNA as we know it, where most cells of an
organism have the same DNA and are undifferentiated
until they are in the right neighborhood at the right
time, at which point they differentiate into their final
form.

Discussion
Using modified training methods, we show that NCA
can exhibit self-replication and spontaneous, inherita-
ble mutations, with runaway dynamics that carry the
descendants’ genetic code and phenotype away from
their ancestors’, even in the absence of selection. The
expression of the mutations in the organisms’ pheno-
types are varied, non-repeating, and unexpectedly in-
teresting, with stable inter-species mutants, addition
or deletion of stripes in the fish experiment, doubling
of the nucleus in the bacteria experiment, and various
changes of size. While our experiments satisfy the defi-
nition of unbounded innovation and unbounded evolu-
tion by Adams et al. (2017) and arguably manages to
implement changing biological rules as a subset of fixed
physical laws, we still find weaknesses in the model. 1.

There is no true unlimited diversity of organisms: a
model trained to make lizards and fishes never grows
a flower, even under directed evolution (where the ex-
perimenter imposes a fitness criterion to select organ-
isms). 2. Due to “crowding”, the models presented
here stop short of exhibiting actual human-out-of-the-
loop evolution. While this paper does not discuss the
notion of evolutionary complexity, and innovation is left
undefined in the Open Ended Evolutionary Innovation
prize (Klyce (2006)), we feel that it might not even be
warranted to talk about innovation in the absence of
function, and our organisms have no functions related
to their own survival besides “lay an egg”.

Ideally, selection would occur by itself and we could
observe something closer to Open Endedness, where
the basic laws of the world are largely fixed and yet
life exponentially grows in complexity through real in-
novations. There are two major theoretical obstacles
to this. Firstly, the organisms in NCA tend to suffer
from crowding: because they are closer to waves of in-
formation than to physical matter, they can intersect
each other and create information from nothing until
the grid is “full”, rather than competing for space. A
specific mechanism must be introduced for the patterns
to have adversarial interactions.

Secondly and most importantly, the trained models
lack expressivity. Deep Neural Networks are made for
convergence, and by default NCA converge to one at-
tractor: we must coax them to divergence, to obtain
expressive power sufficient for several patterns to coex-
ist. This might be possible by explicitly training the
model for inheritable extraordinary mutations, which
we have not done here, or by using a brute force ap-
proach and training one model on hundreds of target
patterns, creating a hundred or more attractors.

This might be one of the big differences between AI,
which strives for convergence, and ALife, which dreams
of divergence. NCA being at the crossroads of both
fields makes this conflict more salient. The limitations
of NCA force us to imagine biologically implausible
paths to evolution, another fundamental aspect of en-
joying ALife research. While the mutations presented
here are not adaptive, they do accumulate exponentially
in the absence of evolutionary pressure, demonstrating
perhaps the potential for true Open Ended Evolution
in NCA.

References
Adams, A., Zenil, H., Davies, P. C., and Walker, S. I. (2017).

Formal definitions of unbounded evolution and innova-
tion reveal universal mechanisms for open-ended evolu-
tion in dynamical systems. Scientific reports, 7(1):1–15.

Cattaneo, G., Dennunzio, A., and Farina, F. (2006). A full
cellular automaton to simulate predator-prey systems.

In Cellular Automata: 7th International Conference on
Cellular Automata, for Research and Industry, ACRI
2006, Perpignan, France, September 20-23, 2006. Pro-
ceedings 7, pages 446–451. Springer.

Cavuoti, L., Sacco, F., Randazzo, E., and Levin, M. (2022).
Adversarial takeover of neural cellular automata. In
ALIFE 2022: The 2022 Conference on Artificial Life.
MIT Press.

Cisneros, H., Sivic, J., and Mikolov, T. (2022). Open-
ended creation of hybrid creatures with neural cellu-
lar automata. https://github.com/hugcis/hybrid-nca-
evocraft.

Clarke, K. C., Hoppen, S., and Gaydos, L. (1997). A self-
modifying cellular automaton model of historical ur-
banization in the san francisco bay area. Environment
and planning B: Planning and design, 24(2):247–261.

Horibe, K., Walker, K., and Risi, S. (2021). Regenerat-
ing soft robots through neural cellular automata. In
Genetic Programming: 24th European Conference, Eu-
roGP 2021, Held as Part of EvoStar 2021, pages 36–50.
Springer.

Izhikevich, E. M., Conway, J. H., and Seth, A. (2015). Game
of life. Scholarpedia, 10(6):1816.

Klyce, B. (2006). The evolution prize: Is open-ended
evolutionary innovation in a closed system possible?
https://www.panspermia.org/evolutionprize/.

Li, X. and Yeh, A. G.-O. (2001). Calibration of cellular
automata by using neural networks for the simulation
of complex urban systems. Environment and Planning
A, 33(8):1445–1462.

Manukyan, L., Montandon, S. A., Fofonjka, A., Smirnov,
S., and Milinkovitch, M. C. (2017). A living meso-
scopic cellular automaton made of skin scales. Nature,
544(7649):173–179.

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin,
M. (2020). Growing neural cellular automata. Distill.
https://distill.pub/2020/growing-ca.

Najarro, E., Sudhakaran, S., Glanois, C., and Risi, S.
(2022). Hypernca: Growing developmental net-
works with neural cellular automata. arXiv preprint
arXiv:2204.11674.

Neumann, J. v. (1966). Theory of self-reproducing au-
tomata. Mathematics of Computation, 21:745.

Oros, N. and Nehaniv, C. L. (2007). Sexyloop: Self-
reproduction, evolution and sex in cellular automata.
In 2007 IEEE Symposium on Artificial Life, pages
130–138. IEEE.

Otte, M., Delfosse, Q., Czech, J., and Kersting, K. (2021).
Generative adversarial neural cellular automata. arXiv
preprint arXiv:2108.04328.

Randazzo, E., Mordvintsev, A., Niklasson, E., and Levin,
M. (2021). Adversarial reprogramming of neural
cellular automata. Distill. https://distill.pub/self-
org/2021/adversarial.

Sayama, H. (1999). A new structurally dissolvable self-
reproducing loop evolving in a simple cellular automata
space. Artificial Life, 5(4):343–365.

Schepers, H. E. and Markus, M. (1992). Two types of per-
formance of an isotropic cellular automaton: stationary
(turing) patterns and spiral waves. Physica A: Statisti-
cal Mechanics and its Applications, 188(1-3):337–343.

Weimar, J. R. (1997). Cellular automata for
reaction-diffusion systems. Parallel computing,
23(11):1699–1715.

	Data Sharing
	Introduction
	Methods
	Neural Cellular Automaton
	Modified training for self-replication
	Calculating the genetic drift

	Results
	Self-replication
	Spontaneous, inheritable mutations
	Genetic encoding and exponential drift

	Discussion

