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1. Introduction

In various disciplines we encounter the concept of value
function iteration. The main goal of this paper and the
companion video is to visualize the process of value
function iteration and convergence. We also wish to
clarify the conditions under which value function
iteration converges to a unique value function, which are
often glossed over in practice. We use the classic optimal
growth model and optimal savings problem for this
purpose.

For many of us, visualization is a powerful tool for
understanding mathematical concepts (Arcavi, 2003). For
example, suppose you had never seen a circle. You could
be shown the equation   and be told this is the
equation for a circle in two-dimensional Euclidean space,
with its center at the origin and with a radius of 1. You
could also be shown a picture of the circle represented by
this equation. Many of us would find that this picture
gives us a deeper and more confident understanding of
the concept of a circle than the equation by itself.

The audience we have in mind for this paper is mainly
first-year graduate students in Economics and their
instructors. We hope, however, that our paper will be
useful to anyone who wants to take the mystery out of
value function iteration and convergence.

The paper is organized as follows. Section 2 discusses
basic facts on Banach’s contraction mapping theorem.
Sections 3 and 4 study the optimal growth model and
optimal savings model and visualize the convergence of
value function iteration. Section 5 discusses useful tricks
in dynamic programming.

2. Preliminaries

2.1. Metric space

We start from a review of basic concepts. Let   be a set.
(We use the uncommon notation   because it will later be
the set of candidate value functions.) We say that the
function    is a metric (or distance) if it is
nonnegative (   for all    with
equality if and only if  ), symmetric (

  for all  ), and satisfies the
triangle inequality (   for
all  ). We call a set   endowed with a metric 

  a metric space and denote by  . If the metric    is
understood, we often just refer to   as the metric space.
We say that a sequence  converges to    if 

 as  , so the distance between   and
the limit    tends to zero. We denote convergence by 

 or  , etc.

2.2. Complete metric space and Banach space

Sometimes we would like to characterize convergence
without specifying the limit. We say that a sequence 

 is Cauchy if the terms approach each other as the
indexes tend to infinity, or more formally, for all   we
can take   such that   whenever  .
If    is convergent, it is clearly Cauchy. When the
converse is also true, i.e, every Cauchy sequence is
convergent, we say that the metric space    is
complete. Intuitively, a complete metric space is a metric
space without “holes”. For instance, both the set of
rational numbers    and the set of real numbers    are
metric spaces with the metric  , but    is
complete while   is not.
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We list a few examples of common complete metric
spaces. We omit the proofs as they can easily be found in
standard textbooks.

Example 1. The Euclidean space   equipped with
the usual Euclidean distance is a complete metric space.

Below, let   be a subset of a Euclidean space.

Example 2. Let    be the space of bounded functions 
, so    if and only if  .

For  , define the sup metric 

 Then   is a complete metric space.

The space of bounded functions is very large. Sometimes
we may want to add more structure such as continuity as
in the following example.

Example 3. Let    be the space of bounded continuous
functions    equipped with the sup metric (2.1).
Then   is a complete metric space.

Sometimes, imposing boundedness is too strong. If we
would like to work with functions that are not bounded
but are known to be close to a given function, the
following space might be useful.

Example 4. Let   be given and   be the space
of functions whose differences from   are bounded, so 

  If we let    be the sup metric (2.1), then    is a
complete metric space.

The Euclidean space as well as   in Examples 2 and 3
equipped with the norm    are also
vector spaces (spaces on which addition and scalar
multiplication are defined), which are called normed
spaces. As    are complete, they are complete normed
spaces, a more common name being the Banach space.
Note that the complete metric space    in Example 4
need not have a vector space structure, so it is generally

not a Banach space.3

2.3. Contraction mapping theorem

Let    be a complete metric space. We say that an
operator    is a contraction with modulus 

 if for all   we have 

  That is, a contraction is a map such that the distance
between two elements shrinks by factor at least 

  each time we apply the map. What makes a
contraction useful is that it allows us to establish the

existence of a unique fixed point, which is known as the
contraction mapping theorem or the Banach fixed point
theorem.

Theorem 1 (Contraction Mapping Theorem). Let   be
a complete metric space and    be a contraction
with modulus  . Then the following statements are
true.

i.   has a unique fixed point: there exists a unique 
 such that  .

ii. Iterates of    converge to  . For any  , define the
sequence    by    and 

. Then  , with 
.

Proof. We omit the proof as it is standard. See Stachurski
(2009) for a textbook treatment. ◻

Often the contraction mapping theorem is proved under
the more restrictive condition that    is a Banach
space. We avoid this restriction so that we can apply the
contraction mapping theorem when, for example,    is
the space of increasing functions or the space of concave
functions, neither of which is Banach.

2.4. Blackwell’s sufficient conditions

The contraction mapping theorem allows us to establish
the existence and uniqueness of a fixed point of an
operator   and a numerical algorithm to approximate the
fixed point. To this end, we need to verify that    is
indeed a contraction. Blackwell (1965)’s sufficient
conditions are very useful in this respect. Let   be a set
and    be a space of functions    equipped with
the sup metric (2.1). Let us say that   has the upward shift
property if for any   and nonnegative constant  ,
we have  , that is, if    is in  , the function
obtained by adding a nonnegative constant is also in  .
We are deliberately vague in specifying  : depending on
the context,    could be a space of bounded functions (

  in Example 2), of bounded continuous functions (
  in Example 3), or some other space. For our purpose,

all that matters is that the distance is the sup metric (2.1).

We say that an operator    is monotone if 
  implies  . More precisely, if 

  for all  , then 
  for all  . We say that 

  satisfies the discounting property with modulus 
 if   for all   and  .

Proposition 1 (Blackwell’s sufficient conditions). If    is a
complete metric space of functions   with upward
shift property and    is monotone and satisfies the
discounting property with modulus  , then   is a contraction
with modulus  .
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Proof. Let  . For any  , by the definition of
the sup metric we have 

 Therefore  . By the upward shift property, we
have  . Applying   to both sides and using the
monotonicity and the discounting property of  , we
obtain 

  Therefore    for all  .
Changing the role of  , we obtain 

, so 

 ◻

3. Optimal growth model

3.1. Informal description of the problem

Imagine that you are Robinson Crusoe marooned on a
desert island. Potatoes grow on the island but each
season you need to manage how much to eat and how
much to plant for the next season. The problem is how to
eat and cultivate potatoes optimally.

More formally, time is discrete and indexed by 
. You start with some available resources of

potatoes, denoted by  . If you consume  ,
then you get utility  , where    is a utility function. If
you plant    potatoes, you get a new harvest of 

 next period, where   is a production function.

Let    be the initial endowment of potatoes and 
  be the consumption over time. At time  ,

because you cannot consume more than the available
resources, denoted by  , the consumption    must
satisfy 

 The lifetime utility is then 

  where    is the discount factor. Your goal is to
maximize the lifetime utility (3.2) subject to the
feasibility constraints (3.1), given the initial endowment 

.

This model is often called the Ramsey model because
Ramsey (1928) introduced a continuous-time version of
this model and qualitatively studied its solution using

calculus of variations. Cass (1965) and Koopmans (1965)
introduced technological and population growth and so
the model is also known as the optimal growth model.

3.2. Value function iteration

To solve the optimal growth model, we can apply value
function iteration, which is based on Bellman’s principle of
optimality and Banach’s contraction mapping theorem.

Given the initial endowment  , let    be the
maximum lifetime utility (the maximum of (3.2) over all
possible consumption plans  ), which is called the
value function that for now we assume to exist. Imagine
what would happen to the lifetime utility if you choose an
arbitrary consumption   this period but you stick to
the optimal plan from the next period on. By choosing 

, you first receive flow utility    and the next
period’s resource becomes    by (3.1a). Since
by assumption you stick to the optimal plan from next
period on, the sum of the remaining terms in lifetime
utility becomes 
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  because    are chosen optimally given 
. Therefore the lifetime utility under

this alternative plan is 

 But   is arbitrary, and choosing it optimally leads to
the maximum lifetime utility. Thus we obtain 

 which is called the Bellman equation.

For an arbitrary function    defined on the set of
nonnegative real numbers  , the right-hand side of
(3.3), 

 defines another function. So the right-hand side of (3.3)
can be interpreted as an operation   that acts on the set
of functions and outputs a new function    from an
input function  . The formal definition of  , called the
Bellman operator, is 

 Using the Bellman operator  , the Bellman equation (3.3)
can be compactly written as 

  Equation (3.5) shows that the value function is a fixed
point of the Bellman operator   (a function that remains
unchanged by applying  ). Under certain conditions, the
Bellman operator    becomes a contraction, which
guarantees the existence and uniqueness of a value
function    and the uniform convergence of 

  to    for any initial guess    as the
number of iterations    tends to infinity. We summarize
the formal result in the following proposition.

Proposition 2. Let    be the space of bounded
continuous functions defined on    equipped with the
supremum norm   for  . Suppose

that

i. ,
ii.  is continuous, and

iii. .

Then the following statements are true.

a. The Bellman operator    is a contraction on    with
modulus  .

b.  has a unique fixed point  .

c. The approximation error   is  .

Proof. It suffices to show that    is a contraction. To this
end we verify Blackwell’s sufficient conditions
(Proposition 1). If    and  , then by the
definition of the Bellman operator (3.4) we obtain 

  so    and    is monotonic. Clearly    satisfies
the upward shift property. If   and  , we obtain 

so    satisfies the discounting property (with equality)
with modulus  . ◻

Proposition 2 implies that the value function    can be
approximated arbitrarily well by starting from any initial

guess   and repeatedly applying the Bellman operator 
. As an illustration, suppose that the utility function   is

increasing and we use the zero function   as the

initial value.2 Using the definition of the Bellman
operator (3.4), after one iteration we obtain 

 which is just the utility function. After two iterations, we
obtain 

  Except for special cases,    (and more generally 

 for  ) does not admit a closed-form expression
and needs to be computed numerically. A standard

approach is to define a grid   with  ,

define    on    by interpolation and extrapolation

using the values  , and compute the next

values    as    by

numerically maximizing the right-hand side of (3.4).

The assumption in Proposition 2 that the utility function 
  is bounded is often undesirable because it rules out
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common utility functions such as  . Although
it is not simple to allow functions that are unbounded
below (such as  ; see Le Van and Morhaim
(2002) for a treatment of such cases), unboundedness
from above can be easily handled if the production
function exhibits a certain type of decreasing returns to
scale.

Proposition 3. Suppose that

i.  is continuous and bounded below,
ii.   is increasing and there exists    such that 

 for all  , and
iii. .

Take any    and let    be the space of bounded
continuous functions defined on  . Then the conclusions
of Proposition 2 hold.

Proof. We only need to verify that    is well-
defined. Since by assumption    is increasing, 

  for  ,  ,  , and  , we
have 

  Therefore    and    is well-
defined. ◻

3.3. Stochastic growth model

The stochastic (optimal) growth model is an extension of
the optimal growth model with uncertainty, introduced
by Brock and Mirman (1972) and quantitatively studied
by Kydland and Prescott (1982). Imagine a situation where
Robinson Crusoe’s harvest of potatoes depends not only
on the amount of potatoes planted but also on other
factors outside his control such as rainfall and
temperature, or his well-being depends on factors such
as temperature and sunshine. For convenience, we
suppose that these factors take finitely many values
indexed by  . Suppose that this exogenous state
evolves according to a Markov chain with transition
probability  .

In this situation, the utility and value functions   may
depend on the current exogenous state  , and the
production function    may depend on two consecutive
states  . If Robinson Crusoe wishes to maximize the
expected utility, then the Bellman equation (3.3)
becomes 
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V (f(a − c))
f

f(k) ≤ k k ≥ k̄ 0 ≤ c ≤ a a ∈ [0, ]ā ≥ā k̄
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  where    is the utility function in state    and 
  is the production function when transitioning

from state    to  . Propositions 2 and 3 easily generalize
to this setting by changing the assumptions on    and 

 to those on   and  , so we omit the precise
statement.

3.4. Numerical illustration

As a numerical illustration, we solve the stochastic
growth model. Let    be a finite set. For state  ,
suppose that the utility function takes the form 

  where    can be thought of an exogenous source of
consumption (e.g., coconuts and fish) and   is the
coefficient of relative risk aversion. (The case 

  corresponds to log utility.) This exogenous
consumption prevents the utility function from being
unbounded below when  . (We can set    if 

.) The production function takes the form 

  where    is the productivity in the next state, 
  is the elasticity of output with respect to

capital, and   is the capital depreciation rate.

Because our purpose is to visualize the contraction
mapping theorem, we consider a simple specification for
the stochastic growth model. We consider a two-state
Markov chain with   with transition probability 

  if    and    if  . The
productivity is  , so state 1 is the
high-productivity state. We set    and  ,
which are standard values. The discount factor is 

 and the exogenous consumption is  . For
the relative risk aversion, we consider two values 

  and    because the cases    are
qualitatively different (we have    according as 

).

In this setup, we can easily verify that the assumptions of
Proposition 3 are satisfied, so a value function uniquely
exists. In particular, solving    for  , we

obtain  , so we can choose any    with 

. Below, we set    and use a

100-point exponential grid on   to numerically solve

the stochastic growth model by value function iteration.3

We now illustrate four specifications. The first
specification is  , and we start the value

function iteration from the initial guess  .
Figures 1a and 1b show the value and consumption
functions, respectively. Figure 1c shows the evolution of
value functions along the iterations (for state 1 only for
visibility), where the color changes from light green to
blue as we increase the number of iterations  . For this
specification, because the utility function is negative, the
value function monotonically converges from above.

Figure 1. Stochastic growth model with   and 

.

The second specification is the same as the first except
that we set the relative risk aversion to   (Figure
2). For this specification, because the utility function is
positive, the value function monotonically converges
from below.
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Figure 2. Stochastic growth model with   and 

.

The third specification is the same as the first except that

we set the initial guess    to an unnatural function,
namely the sine curve flipped upside down (Figure 3).

Although the initial guess is artificial (setting   is
natural as discussed in Footnote 2), the mathematical
theory still applies and the value function converges (but
in an erratic manner).

γ = 0.5
≡ 0V (0)

V (0)

≡ 0V (0)
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Figure 3. Evolution of value functions with   and sine curve  .

The fourth specification is an intermediate case of the
first and second, where  . This
specification implies that the agent is less risk averse
during the high-productivity state (Figure 4). Unlike the
first two specifications, when the risk aversion is state-
dependent, the value and consumption functions are
quite different across states.

Figure 4. Evolution of value functions.Stochastic growth

model with   and  .

4. Optimal savings problem

4.1. Informal description of the problem

The optimal savings problem is the optimization
problem of a single agent that receives income and has

γ = 1.5 V (0)

(γ(1),γ(2)) = (0.5, 1.5)

(γ(1), γ(2)) = (0.5, 1.5) ≡ 0V (0)
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access to the financial market for saving. Standard
references for the optimal savings problem are
Schechtman and Escudero (1977) and Chamberlain and
Wilson (2000), who study the theoretical properties of
the optimal consumption assuming a bounded utility
function. Mathematically, the optimal savings problem is
a special case of the stochastic growth model with
production function 

  where    is the gross return on savings and 
  is the non-financial income when

transitioning from state   to  .

4.2. Policy function iteration

Although the optimal savings problem is mathematically
a special case of the stochastic growth model,
establishing the existence of a solution and studying its
properties is not simple when the utility function is
unbounded (which is practically almost always the case)
and mathematically rigorous results have been obtained
only recently by Li and Stachurski (2014) and Ma,
Stachurski, and Toda (2020). The reason is that the
marginal product of capital    equals
the gross return, which could well exceed 1 (imagine a
positive interest rate or high stock returns). Then the
trick of truncating the state space as in Proposition 3,
which relies on marginal product less than 1, is no longer
applicable.

To solve the optimal savings problem, we can apply policy
function iteration instead of value function iteration. We
illustrate the idea using the optimal growth model
without uncertainty. Consider the Bellman equation (3.3).
Assuming that    are all differentiable and the
optimal consumption is interior, the first-order condition
for optimality is 

  Differentiating both sides of (3.3) with respect to    and
applying the envelope theorem, we obtain 

 Combining (4.1) and (4.2), we obtain 

  Now let    and    be the consumption and
resource at time  . Noting that 

  is the next period’s
resource (see (3.1a)), combining (4.1) (for  ) and (4.2)
(for  ), it follows that 

 which is known as the Euler equation. For the stochastic
growth model, a similar calculation yields the Euler
equation 

  where    denotes the expectation conditional on time 
 information.

Coleman (1990) proposed a solution algorithm called
policy function iteration that exploits the Euler equation
(4.4). Suppose that we have a guess of the consumption
function    and would like to update its value,
denoted by  . Let  ,  ,  , and  .
Using the candidate consumption function    and the
feasibility constraint (3.1a), we have 

 Therefore the Euler equation (4.4) becomes 

f(k, z, ) = R(z, )k + Y (z, ),z′ z′ z′

R(z, ) ≥ 0z′

Y (z, ) > 0z′

z z′

(k, z, ) = R(z, )f ′ z′ z′

u,f,V

0 = (c) − β (f(a − c)) (a − c) = 0.u′ V ′ f ′

a

(a) = β (f(a − c)) (a − c).V ′ V ′ f ′

(c) = (a).u′ V ′ (4.2)

c = ct a = at
t

f(a − c) = f( − ) =at ct at+1

c = ct
c = ct+1

( ) = β ( ) ( − ),u′ ct u′ ct+1 f ′ at ct (4.3)

( ) = [β ( ) ( − , , )],u′ ct Et u′ ct+1 f
′ at ct zt zt+1 (4.4)

Et

t

c(a, z)
ξ = aat = zzt =zt+1 z′ = ξct

c

= c( , ) = c(f(a − ξ, z, ), ).ct+1 at+1 zt+1 z′ z′
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 where   denotes the expectation conditional on  .
Thus given the candidate consumption function  ,
we can update it by the value   that solves (4.5). Repeating
this process until convergence is called policy function
iteration.

A key advantage of policy function iteration over value
function iteration is that it involves only root-finding,
which tends to be numerically more stable than

maximization.4 A disadvantage is that the Coleman
operator (the operation of updating the policy function)
is not necessarily a contraction and proving theorems is
significantly more challenging than value function
iteration; see Mirman et al. (2008) for a rigorous
treatment in the context of the stochastic growth model.

However, for the optimal savings problem, the marginal
product 

  depends only on the exogenous states and the analysis
becomes simpler. Li and Stachurski (2014) apply policy
function iteration to the optimal savings problem
assuming that the gross return on saving is constant at 

. When the utility function satisfies the standard
properties such as    (monotonicity), 

  (concavity), and    (Inada condition),
they show that the Euler equation (4.5) becomes 

(ξ) = [β (c(f(a − ξ, z, )), ) (a − ξ, z, )],u′ Ez u′
z

′
z

′
f

′
z

′ (4.5)

Ez = zzt
c(a, z)

ξ

(a − c, z, ) = R(z, )f ′ z′ z′

R

> 0u′

< 0u′′ (0) = ∞u′
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 (The reason why we take the maximum with   is to
take into account the possibility that the constraint 

  binds.) Furthermore, when we define the distance
between two candidate consumption functions   by 

  using the marginal utility, they show that the Coleman
operator    is a contraction with modulus    when 

. Although this approach is specific to the optimal
savings problem, the utility function    could be
unbounded above and/or below, which is almost always
the case in practice.

Stachurski and Toda (2019, 2020) apply policy function
iteration to establish a linear lower bound on the
consumption function when the utility function exhibits
bounded relative risk aversion to show that wealth
inherits the tail behavior of income when saving is risk-
free as in Aiyagari (1994) models. Ma et al. (2020)
generalize the approach of Li and Stachurski (2014) to the
case with stochastic returns and discounting. In this case 

 is not necessarily a contraction but some iterate    is
under some conditions. Toda (2021) shows that    is a
generalization of a contraction called Perov contraction,
which enables to significantly simplify the proof of Ma et
al. (2020). Ma and Toda (2021) apply policy function
iteration to prove the asymptotic linearity of
consumption functions when the utility func- tion is
homothetic, and Ma and Toda (2022) further generalize
this result when the marginal utility asymptotically
behaves like a power function.

4.3. Numerical illustration

As in the case with the stochastic growth model, we only
consider a simple optimal savings problem. The utility
function exhibits constant relative risk aversion  , so the
marginal utility is  , where we set  . The
discount factor is  . We consider a two-state
Markov chain with   with transition probability 

 for all  , so the process is independent
and identically distributed over time. We suppose that the
agent invests fraction    of wealth in the stock
market with expected return    and volatility  , and
invests the rest in a risk-free asset with risk-free rate  .
Therefore we can model the gross return on wealth as 

 We set  ,  ,  , and  . Finally,
we suppose that income is constant at  . Let 

  be the    matrix whose  -th entry equals 
. Toda (2021, §3.3) shows that if the

spectral radius (largest absolute value of all eigenvalues)
of    satisfies  , then the Coleman operator
becomes a Perov contraction when we use a (vector-
valued) metric similar to (4.7). In our specification we
have  , so policy function iteration is
guaranteed to converge.

Figure 5 shows the consumption function and the
evolution of consumption functions along the iterations

when we use the initial guess  .5 For this
specification, the consumption function monotonically
converges from above.

Figure 5. Optimal savings problem with  .

For policy function iteration, the initial guess    needs

to be increasing and satisfy  ; see Ma et al.

(2020). Setting    is natural8 but not
necessarily computationally efficient because the
asymptotic slope of the true consumption function 

  is far smaller than 1. Ma and Toda (2022) discuss
how to choose the initial guess to improve computational
efficiency. However, the theory tells us that any initial

guess    that is increasing and satisfies 

  would work. To illustrate this point, we
now consider an unnatural initial guess given by 

. Figure 6 shows that the
convergence is non-monotonic.

(ξ) = max { [βR (c(R(a − ξ) + Y (z, ), ))], (a)} .u′ Ez u′
z

′
z

′ u′ (4.6)

(a)u′

ξ ≤ a

,c1 c2

ρ( , ) = | ( (a, z)) − ( (a, z))|c1 c2 sup
a,z

u′ c1 u′ c2 (4.7)

T βR

βR < 1
u

T T k

T

γ

(c) =u′ c−γ γ = 1.5
β = 0.95

Z = {1, 2}
P (z, ) = 0.5z′ (z, )z′

θ ∈ [0, 1]
μ σ

rf

R (z, ) = {z′ (1 − θ) + θerf eμ− /2+σσ2

(1 − θ) + θerf eμ− /2−σσ2

 if  = 1z′

 if  = 2z′

= 0.01rf μ = 0.05 σ = 0.2 θ = 0.5
Y (z, ) ≡ 1z′

B 2 × 2 (z, )z′

βP (z, )R(z, )z′ z′

B ρ(B) < 1

ρ(B) = 0.9791 < 1

(a, z) = ac(0)

≡ 0V (0)

c(0)

(a, z) ≤ ac(0)

(a, z) = ac(0)

c(a, z)

c(0)

(a, z) ≤ ac(0)

(a, z) = (sin(a) + a)/4c(0)
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Figure 6. Evolution of consumption functions with  .

5. Some useful tricks

This section discusses various tricks that are useful for
studying dynamic programming problems.

5.1. Establishing properties of value function

In many applications, we are not just interested in
establishing the existence of a solution to a dynamic
programming problem but often would like to establish
some properties of the solution. For instance, In Figure 1
we see that the value function is increasing and concave.
But how can we establish the monotonicity and concavity
of the value function   if we cannot solve for   explicitly?
The following proposition is useful in such settings.

Proposition 4. Let    be a complete metric space and 
  be a contraction with a unique fixed point 

. If    is a nonempty closed set and  ,
then  .

Proof. Since   is closed,   is a complete metric
space. Since    is a contraction and  , 

  is also a contraction on  . Therefore there exists a
unique    such that  . Since  ,    is
also a fixed point of    in  , and the uniqueness implies 

. ◻

Although Proposition 4 is almost trivial, it has many
applications. Suppose we would like to show that the
value function in Figure 1 is increasing. To establish this,
we only need to assume that   is increasing.

Proposition 5. Let everything be as in Proposition 2 and
suppose    is increasing. Then the value function    is
increasing.

Proof. Let   be the space of bounded continuous
functions and  . Since
monotonicity is preserved by taking limits,    is closed.
If   and  , then the definition of the Bellman
operator (3.4) implies 

 where the first inequality follows from the monotonicity
of    and    and the second inequality follows from the
fact that taking the maximum on a larger set yields a
larger value. Therefore  , and Proposition 4
yields the conclusion. ◻

An argument along these lines is used, for example, to
show the monotonicity of the consumption and saving
functions in Ma et al. (2020, Proposition 2.3). Similarly,
suppose that we would like to establish a lower bound 

(a, z) = (sin(a) + a)/4c(0)

v v

(V,d)
T : V → V

∈ Vv∗ ⊂ VV1 T ⊂V1 V1

∈v∗
V1

⊂ VV1 ( ,d)V1

T : V → V T ⊂V1 V1

T V1

∈v∗
1 V1 T =v∗

1 v∗
1 ⊂ VV1 v∗

1

T V

= ∈v∗ v∗
1 V1

f

f V

V = bcR+

= {V ∈ V : V  is increasing}V1

V1

V ∈ V1 ≤a1 a2

(TV )( )a1 = {u(c) + βV (f( − c))}max
0≤c≤a1

a1

≤ {u(c) + βV (f( − c))}max
0≤c≤a1

a2

≤ {u(c) + βV (f( − c))} = (TV )( ),max
0≤c≤a2

a2 a2

f V

T ⊂V1 V1
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  for the value function. For this purpose we may
consider the closed set  . An
application along these lines can be found in Ma and
Toda (2021, Theorem 3) for proving the asymptotic
linearity of consumption functions and Phelan and Toda
(2022, Proposition 3.1) for ranking various value
functions.

As another application of Proposition 4, suppose we
would like to show that the value function in Figure 1 is
concave. To establish this, we only need to assume that 

 is concave and   is increasing and concave.

Proposition 6. Let everything be as in Proposition 2 and
suppose    is concave and    is increasing and concave. Then
the value function   is increasing and concave.

Proof. Let   be the space of bounded continuous
functions and 

. Since
monotonicity and concavity are preserved by taking
limits,    is closed. We have already shown that 

  preserves monotonicity. Therefore it suffices to show
that   preserves concavity.

Let  ,  , and  . Since   is increasing
and concave, so is  . To see this, note that the
concavity of   implies 

 and applying   to both sides and using the monotonicity
and concavity of  , we obtain 

  Fix    for    and let 
 and   for  .

Then the concavity of   and   implies 

 Since  , we have  . Therefore taking the
maximum of the left-hand side over  , we obtain 

  Taking the maximum of the right-hand side over 
, we obtain 

 so   is concave. Therefore   preserves concavity. ◻

5.2. Transformation of the Bellman equation

Consider the Bellman equation for a stochastic dynamic
programming problem. As a concrete example, consider
the Bellman equation for the stochastic growth model
(3.6): 

v ≥ v–
= {v ∈ V : v ≥ }V1 v–

u f

u f

V

V = bcR+

= {V ∈ V : V  is increasing and concave}V1

V1

T

T

V ∈ V , ≥ 0a1 a2 t ∈ [0, 1] f

V ∘ f

f

f((1 − t) + t ) ≥ (1 − t)f( ) + tf( ),a1 a2 a1 a2

V

V

V (f((1 − t) + t ))a1 a2 ≥ V ((1 − t)f( ) + tf( ))a1 a2

≥ (1 − t)V (f( )) + tV (f( )).a1 a2

∈ [0, ]cj aj j = 1, 2
c = (1 − t) + tc1 c2 a = (1 − t) + ta1 a2 t ∈ [0, 1]

u V ∘ f

u(c) + βV (f(a − c))

≥ (1 − t)(u( ) + βV (f( − )))c1 a1 c1

+ t(u( ) + βV (f( − ))).c2 a2 c2

∈ [0, ]cj aj c ∈ [0,a]
c ∈ [0,a]

(TV )(a) ≥ (1 − t)(u( ) + βV (f( − )))c1 a1 c1

+ t(u( ) + βV (f( − ))).c2 a2 c2

∈ [0, ]cj aj

(TV )((1 − t) + t ) ≥ (1 − t)(TV )( ) + t(TV )( ),a1 a2 a1 a2

TV T
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  where    denotes the expectation conditional on  .
Define the function 

 Then clearly 

  Changing the notation    to    and setting 
, it follows from the definition of 

 that 

V (a, z) = {u(c, z) + β V (f(a − c, z, ), )} ,max
0≤c≤a

Ez z
′

z
′ (5.1)

Ez z

g(a, c, z) := β V (f(a − c, z, ), ).Ez z′ z′

V (a, z) = {u(c, z) + g(a, c, z)} .max
0≤c≤a

a, c, z , ,a′ c′ z′

= f(a − c, z, )a′ z′

g

qeios.com doi.org/10.32388/JSO1M3.2 14

https://www.qeios.com/
https://doi.org/10.32388/JSO1M3.2


  Note that the transformed Bellman equation (5.2) now
involves only the unknown function  . This kind of
transformation may be useful because the expectation
has a smoothing effect and    could be better behaved
than  . See Ma and Stachurski (2021) and Ma et al. (2022)
for more discussion and examples.

Footnotes

1 A variant of the space    in Example 4 is used to solve
the optimal savings problem by policy function iteration
as in Section 4; see Li and Stachurski (2014) and Ma et al.
(2020).

2 Using zero as the initial value is natural because the  -

th iterate   is exactly the value function when
the agent lives for   periods and the economy ends. Thus,

by setting    and iterating the Bellman operator,
we would solve the optimal growth model corresponding
to various time horizons.

3 See Gouin-Bonenfant and Toda (2023, §4.6) for the
specific details on constructing the exponential grid. We
use the median grid point    and spline interpolation
for computing value functions off the grid points.

4 A variant of policy function iteration that uses a grid on
savings    instead of asset    (and hence makes
the asset grid endogenous), which is called the
endogenous grid point method (Carroll, 2006), even avoids
root-finding and substantially reduces computing time
when the inverse marginal utility function    is

available in closed-form. Examples are the constant

relative risk aversion (CRRA) utility    or the

constant absolute risk aversion (CARA) utility 

, for which    and 

, respectively.

5 To numerically solve the model, we use a 100-point
exponential grid on    with a median grid point of
10 and linear interpolation/extrapolation to compute the
consumption functions off the grid.

6 Because    is the optimal consumption when the
agent lives for one period, the  -th iterate 

  is exactly the consumption function when
the agent lives for   periods by the same reason as in
Footnote 2. Thus Figure 5b shows the optimal
consumption functions for various time horizons.
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