
9 February 2024, Preprint v1  ·  CC-BY 4.0 PREPRINT

Review Article

Visualizing the Contraction Mapping

Theorem

James E. Rauch1, Alexis Akira Toda2

1. Department of Economics, University of California, San Diego, United States; 2. University of California, San Diego, United States

We visualize the process of value function iteration and convergence. We also clarify the conditions

under which value function iteration converges to a unique value function, which are often glossed

over in practice.

Corresponding authors: James E. Rauch, jrauch@ucsd.edu; Alexis Akira Toda, atoda@ucsd.edu

1. Introduction

In various disciplines we encounter the concept of value function iteration. The main goal of this paper and

the companion video is to visualize the process of value function iteration and convergence. We also wish

to clarify the conditions under which value function iteration converges to a unique value function,

which are often glossed over in practice. We use the classic optimal growth model and optimal savings

problem for this purpose.

For many of us, visualization is a powerful tool for understanding mathematical concepts (Arcavi, 2003).

For example, suppose you had never seen a circle. You could be shown the equation   and be

told this is the equation for a circle in two-dimensional Euclidean space, with its center at the origin and

with a radius of 1. You could also be shown a picture of the circle represented by this equation. Many of us

would �nd that this picture gives us a deeper and more con�dent understanding of the concept of a circle

than the equation by itself.

The audience we have in mind for this paper is mainly �rst-year graduate students in Economics and

their instructors. We hope, however, that our paper will be useful to anyone who wants to take the

mystery out of value function iteration and convergence.
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The paper is organized as follows. Section 2 discusses basic facts on Banach’s contraction mapping

theorem. Sections 3 and 4 study the optimal growth model and optimal savings model and visualize the

convergence of value function iteration. Section 5 discusses useful tricks in dynamic programming.

2. Preliminaries

2.1. Metric space

We start from a review of basic concepts. Let   be a set. (We use the uncommon notation   because it will

later be the set of candidate value functions.) We say that the function    is a metric (or

distance) if it is nonnegative (   for all    with equality if and only if  ),

symmetric (   for all  ), and satis�es the triangle inequality (

 for all  ). We call a set   endowed with a metric   a metric

space and denote by  . If the metric   is understood, we often just refer to   as the metric space. We

say that a sequence  converges to   if   as  , so the distance between   and the

limit   tends to zero. We denote convergence by   or  , etc.

2.2. Complete metric space and Banach space

Sometimes we would like to characterize convergence without specifying the limit. We say that a

sequence    is Cauchy if the terms approach each other as the indexes tend to in�nity, or more

formally, for all    we can take    such that    whenever  . If    is

convergent, it is clearly Cauchy. When the converse is also true, i.e, every Cauchy sequence is convergent,

we say that the metric space    is complete. Intuitively, a complete metric space is a metric space

without “holes”. For instance, both the set of rational numbers   and the set of real numbers   are metric

spaces with the metric  , but   is complete while   is not.

We list a few examples of common complete metric spaces. We omit the proofs as they can easily be

found in standard textbooks.

Example 1. The Euclidean space    equipped with the usual Euclidean distance is a complete

metric space.

Below, let   be a subset of a Euclidean space.

Example 2. Let    be the space of bounded functions  , so    if and only if 

. For  , de�ne the sup metric 

V V

d : V × V → R

d( , ) ≥ 0v1 v2 , ∈ Vv1 v2 =v1 v2

d( , ) = d( , )v1 v2 v2 v1 , ∈ Vv1 v2

d( , ) ≤ d( , ) + d( , )v1 v3 v1 v2 v2 v3 , , ∈ Vv1 v2 v3 V d

(V,d) d V

{ }vn
∞
n=1 v d( , v) → 0vn n → ∞ vn

v = vlimn→∞ vn → vvn

{ }vn
∞
n=1

ϵ > 0 N d( , ) < ϵvm vn m,n > N { }vn
∞
n=1

(V,d)

Q R

d(x,y) = |x − y| R Q

=V1 RN

X

V2 v : X → R v ∈ V2

|v(x)| < ∞supx∈X , ∈v1 v2 V2
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 Then   is a complete metric space.

The space of bounded functions is very large. Sometimes we may want to add more structure such as

continuity as in the following example.

Example 3. Let    be the space of bounded continuous functions    equipped with the sup

metric (2.1). Then   is a complete metric space.

Sometimes, imposing boundedness is too strong. If we would like to work with functions that are not

bounded but are known to be close to a given function, the following space might be useful.

Example 4. Let    be given and    be the space of functions whose differences from    are

bounded, so 

 If we let   be the sup metric (2.1), then   is a complete metric space.

The Euclidean space as well as    in Examples 2 and 3 equipped with the norm 

  are also vector spaces (spaces on which addition and scalar multiplication are

de�ned), which are called normed spaces. As   are complete, they are complete normed spaces, a more

common name being the Banach space. Note that the complete metric space    in Example 4 need not

have a vector space structure, so it is generally not a Banach space.3

2.3. Contraction mapping theorem

Let   be a complete metric space. We say that an operator   is a contraction with modulus 

 if for all   we have 

 That is, a contraction is a map such that the distance between two elements shrinks by factor at least 

 each time we apply the map. What makes a contraction useful is that it allows us to establish

the existence of a unique �xed point, which is known as the contraction mapping theorem or the Banach

�xed point theorem.

Theorem 1 (Contraction Mapping Theorem). Let    be a complete metric space and    be a

contraction with modulus  . Then the following statements are true.

d( , ) = | (x) − (x)| .v1 v2 sup
x∈X

v1 v2 (2.1)

( ,d)V2

V3 v : X → R

( ,d)V3

u : X → R V4 u

= {v : X → R : |v(x) − u(x)| < ∞} .V4 sup
x∈X

(2.2)

d ( ,d)V4

,V2 V3

∥v∥ = |v(x)|supx∈X

,V2 V3

V4

(V,d) T : V → V

β ∈ [0, 1) , ∈ Vv1 v2

d(T ,T ) ≤ βd( , ).v1 v2 v1 v2

β ∈ [0, 1)

(V,d) T : V → V

β ∈ [0, 1)
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i.  has a unique �xed point: there exists a unique   such that  .

ii. Iterates of    converge to  . For any  , de�ne the sequence    by    and 

. Then  , with  .

Proof. We omit the proof as it is standard. See Stachurski (2009) for a textbook treatment. ◻

Often the contraction mapping theorem is proved under the more restrictive condition that    is a

Banach space. We avoid this restriction so that we can apply the contraction mapping theorem when, for

example,    is the space of increasing functions or the space of concave functions, neither of which is

Banach.

2.4. Blackwell’s suf�cient conditions

The contraction mapping theorem allows us to establish the existence and uniqueness of a �xed point of

an operator   and a numerical algorithm to approximate the �xed point. To this end, we need to verify

that   is indeed a contraction. Blackwell (1965)’s suf�cient conditions are very useful in this respect. Let 

 be a set and   be a space of functions   equipped with the sup metric (2.1). Let us say that 

 has the upward shift property if for any   and nonnegative constant  , we have  , that

is, if    is in  , the function obtained by adding a nonnegative constant is also in  . We are deliberately

vague in specifying  : depending on the context,   could be a space of bounded functions (  in Example

2), of bounded continuous functions (   in Example 3), or some other space. For our purpose, all that

matters is that the distance is the sup metric (2.1).

We say that an operator    is monotone if    implies  . More precisely, if 

  for all  , then    for all  . We say that    satis�es the

discounting property with modulus   if   for all   and  .

Proposition 1 (Blackwell’s suf�cient conditions). If   is a complete metric space of functions   with

upward shift property and   is monotone and satis�es the discounting property with modulus  , then 

 is a contraction with modulus  .

Proof. Let  . For any  , by the de�nition of the sup metric we have 

 Therefore  . By the upward shift property, we have  . Applying   to both sides and

using the monotonicity and the discounting property of  , we obtain 

T ∈ Vv∗ T =v∗ v∗

T v∗ v ∈ V { }vn
∞
n=0 = vv0

= T = ⋯ =vn vn−1 T nv0 →vn v∗ d( , ) = O( )vn v∗ βn

(V,d)

V

T

T

X V v : X → R

V v ∈ V κ ≥ 0 v + κ ∈ V

v V V

V V V2

V3

T : V → V ≤v1 v2 T ≤ Tv1 v2

(x) ≤ (x)v1 v2 x ∈ X (T )(x) ≤ (T )(x)v1 v2 x ∈ X T

β ∈ [0, 1) T (v + κ) ≤ Tv + βκ v ∈ V κ ≥ 0

V v : X → R

T : V → V β

T β

, ∈ Vv1 v2 x ∈ X

(x) − (x) ≤ d( , ) =: κ.v1 v2 v1 v2

≤ + κv1 v2 + κ ∈ Vv2 T

T
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  Therefore    for all  . Changing the role of  , we obtain 

, so 

 ◻

3. Optimal growth model

3.1. Informal description of the problem

Imagine that you are Robinson Crusoe marooned on a desert island. Potatoes grow on the island but each

season you need to manage how much to eat and how much to plant for the next season. The problem is

how to eat and cultivate potatoes optimally.

More formally, time is discrete and indexed by  . You start with some available resources of

potatoes, denoted by  . If you consume  , then you get utility  , where    is a utility

function. If you plant    potatoes, you get a new harvest of    next period, where    is a

production function.

Let   be the initial endowment of potatoes and   be the consumption over time. At time 

, because you cannot consume more than the available resources, denoted by  , the consumption 

 must satisfy 

 The lifetime utility is then 

 where    is the discount factor. Your goal is to maximize the lifetime utility (3.2) subject to the

feasibility constraints (3.1), given the initial endowment  .

This model is often called the Ramsey model because Ramsey (1928) introduced a continuous-time

version of this model and qualitatively studied its solution using calculus of variations. Cass (1965) and

T ≤ T ( + κ) ≤ T + βκ.v1 v2 v2

(T )(x) − (T )(x) ≤ βκv1 v2 x ∈ X ,v1 v2

(T )(x) − (T )(x) ≤ βκv2 v1

d(T ,T ) = |(T )(x) − (T )(x)| ≤ βκ = βd( , ).v1 v2 sup
x∈X

v1 v2 v1 v2

t = 0, 1, 2, …

a > 0 0 ≤ c ≤ a u(c) u

k = a − c f(k) f

> 0a0 , , , …c0 c1 c2

t at

ct

= f( − ), (3.1a)at+1 at ct

0 ≤ ≤ . (3.1b)ct at

u( ) + βu( ) + u( ) + ⋯ = u( ),c0 c1 β2 c2 ∑
t=0

∞

β t ct (3.2)

β ∈ [0, 1)

a0
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Koopmans (1965) introduced technological and population growth and so the model is also known as the

optimal growth model.

3.2. Value function iteration

To solve the optimal growth model, we can apply value function iteration, which is based on Bellman’s

principle of optimality and Banach’s contraction mapping theorem.

Given the initial endowment  , let    be the maximum lifetime utility (the maximum of (3.2)

over all possible consumption plans  ), which is called the value function that for now we assume to

exist. Imagine what would happen to the lifetime utility if you choose an arbitrary consumption 

 this period but you stick to the optimal plan from the next period on. By choosing  , you �rst

receive �ow utility    and the next period’s resource becomes    by (3.1a). Since by

assumption you stick to the optimal plan from next period on, the sum of the remaining terms in lifetime

utility becomes 

  because    are chosen optimally given  . Therefore the lifetime utility under

this alternative plan is 

 But   is arbitrary, and choosing it optimally leads to the maximum lifetime utility. Thus we obtain 

 which is called the Bellman equation.

For an arbitrary function   de�ned on the set of nonnegative real numbers  , the right-hand side of

(3.3), 

 de�nes another function. So the right-hand side of (3.3) can be interpreted as an operation   that acts on

the set of functions and outputs a new function   from an input function  . The formal de�nition of 

, called the Bellman operator, is 

= aa0 V (a)

{ }ct
∞
t=0

= cc0 = cc0

u(c) = f(a − c)a′

βu( ) + u( ) + u( ) + ⋯c1 β2 c2 β3 c3 = β (u( ) + βu( ) + u( ) + ⋯)c1 c2 β2 c3

= βV ( ) = βV (f(a − c)),a′

, , …c1 c2 = = f(a − c)a1 a′

u( ) + βu( ) + u( ) + ⋯ = u(c) + βV (f(a − c)).c0 c1 β2 c2

= cc0

V (a) = {u(c) + βV (f(a − c))} ,max
0≤c≤a

(3.3)

V [0, ∞)

{u(c) + βV (f(a − c))} ,max
0≤c≤a

T

TV V

T

(TV )(a) = {u(c) + βV (f(a − c))} .max
0≤c≤a

(3.4)
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 Using the Bellman operator  , the Bellman equation (3.3) can be compactly written as 

 Equation (3.5) shows that the value function is a �xed point of the Bellman operator   (a function that

remains unchanged by applying  ). Under certain conditions, the Bellman operator    becomes a

contraction, which guarantees the existence and uniqueness of a value function    and the uniform

convergence of    to    for any initial guess    as the number of iterations    tends to

in�nity. We summarize the formal result in the following proposition.

Proposition 2. Let   be the space of bounded continuous functions de�ned on   equipped with the

supremum norm   for  . Suppose that

i. ,

ii.  is continuous, and

iii. .

Then the following statements are true.

a. The Bellman operator   is a contraction on   with modulus  .

b.  has a unique �xed point  .

c. The approximation error   is  .

Proof. It suf�ces to show that    is a contraction. To this end we verify Blackwell’s suf�cient conditions

(Proposition 1). If   and  , then by the de�nition of the Bellman operator (3.4) we obtain 

 so   and   is monotonic. Clearly   satis�es the upward shift property. If   and  , we

obtain 

so   satis�es the discounting property (with equality) with modulus  . ◻

Proposition 2 implies that the value function   can be approximated arbitrarily well by starting from any

initial guess    and repeatedly applying the Bellman operator  . As an illustration, suppose that the

T

V = TV . (3.5)

T

T T

V

:=V (n) T nV (0) V V (0) n

V = bcR+ R+

∥V ∥ = |V (x)|supx≥0 V ∈ V

u ∈ V

f : →R+ R+

0 ≤ β < 1

T V β

T V ∈ V

− V∥∥V (n) ∥∥ O( )βn

T

, ∈ VV1 V2 ≤V1 V2

(T )(a)V1 = {u(c) + β (f(a − c))}max
0≤c≤a

V1

≤ {u(c) + β (f(a − c))} = (T )(a),max
0≤c≤a

V2 V2

T ≤ TV1 V2 T V V ∈ V κ ≥ 0

(T (V + κ))(a) = {u(c) + β(V (f(a − c)) + κ)}max
0≤c≤a

= {u(c) + βV (f(a − c))} + βκmax
0≤c≤a

= (TV )(a) + βκ,

T β

V

V (0) T
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utility function    is increasing and we use the zero function    as the initial value.2 Using the

de�nition of the Bellman operator (3.4), after one iteration we obtain 

 which is just the utility function. After two iterations, we obtain 

  Except for special cases,    (and more generally    for  ) does not admit a closed-form

expression and needs to be computed numerically. A standard approach is to de�ne a grid   with 

, de�ne    on    by interpolation and extrapolation using the values 

, and compute the next values    as    by

numerically maximizing the right-hand side of (3.4).

The assumption in Proposition 2 that the utility function    is bounded is often undesirable because it

rules out common utility functions such as  . Although it is not simple to allow functions that

are unbounded below (such as  ; see Le Van and Morhaim (2002) for a treatment of such

cases), unboundedness from above can be easily handled if the production function exhibits a certain

type of decreasing returns to scale.

Proposition 3. Suppose that

i.  is continuous and bounded below,

ii.  is increasing and there exists   such that   for all  , and

iii. .

Take any   and let   be the space of bounded continuous functions de�ned on  . Then the conclusions

of Proposition 2 hold.

Proof. We only need to verify that    is well-de�ned. Since by assumption    is increasing, 

 for  ,  ,  , and  , we have 

 Therefore   and   is well-de�ned. ◻

u ≡ 0V (0)

(a) = (T )(a)V (1) V (0) = {u(c) + β (f(a − c))}max
0≤c≤a

V (0)

= u(c) = u(a),max
0≤c≤a

(a) = (T )(a)V (2) V (1) = {u(c) + β (f(a − c))}max
0≤c≤a

V (1)

= {u(c) + βu(f(a − c))} .max
0≤c≤a

V (2) V (n) n ≥ 2

{ }ag
G

g=1

< ⋯ <a1 aG V (n−1) R+

{ ( )}V (n−1) ag
G

g=1 { ( )}V (n) ag
G

g=1 ( ) = (T )( )V (n) ag V (n−1) ag

u

u(c) = log c

u(c) = log c

u : → RR+

f > 0k̄ f(k) ≤ k k ≥ k̄

0 ≤ β < 1

≥ā k̄ V [0, ]ā

V (f(a − c)) f

f(k) ≤ k k ≥ k̄ 0 ≤ c ≤ a a ∈ [0, ]ā ≥ā k̄

f(a − c) ≤ f(a) ≤ f( ) ≤ .ā ā

f(a − c) ∈ [0, ]ā V (f(a − c))
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3.3. Stochastic growth model

The stochastic (optimal) growth model is an extension of the optimal growth model with uncertainty,

introduced by Brock and Mirman (1972) and quantitatively studied by Kydland and Prescott (1982).

Imagine a situation where Robinson Crusoe’s harvest of potatoes depends not only on the amount of

potatoes planted but also on other factors outside his control such as rainfall and temperature, or his

well-being depends on factors such as temperature and sunshine. For convenience, we suppose that these

factors take �nitely many values indexed by  . Suppose that this exogenous state evolves according

to a Markov chain with transition probability  .

In this situation, the utility and value functions   may depend on the current exogenous state  , and

the production function    may depend on two consecutive states  . If Robinson Crusoe wishes to

maximize the expected utility, then the Bellman equation (3.3) becomes 

  where    is the utility function in state    and    is the production function when

transitioning from state    to  . Propositions 2 and 3 easily generalize to this setting by changing the

assumptions on   and   to those on   and  , so we omit the precise statement.

3.4. Numerical illustration

As a numerical illustration, we solve the stochastic growth model. Let   be a �nite set. For state  ,

suppose that the utility function takes the form 

  where    can be thought of an exogenous source of consumption (e.g., coconuts and �sh) and 

  is the coef�cient of relative risk aversion. (The case    corresponds to log utility.) This

exogenous consumption prevents the utility function from being unbounded below when  . (We

can set   if  .) The production function takes the form 

 where   is the productivity in the next state,   is the elasticity of output with respect to

capital, and   is the capital depreciation rate.

z ∈ Z

P (z, ) = Pr( = ∣ = z)z′ zt+1 z′ zt

u,V z

f (z, )z′

V (a, z) = {u(c, z) + β P (z, )V (f(a − c, z, ), )} ,max
0≤c≤a

∑
∈Zz′

z′ z′ z′ (3.6)

u(c, z) z f(k, z, )z′

z z′

u f u(⋅, z) f(⋅, z, )z′

Z z ∈ Z

u(c, z) = ,
(c + ϵ)1−γ(z)

1 − γ(z)

ϵ > 0

γ(z) > 0 γ(z) = 1

γ(z) > 1

ϵ = 0 γ(z) < 1

f(k, z, ) = A( ) + (1 − δ)k,z′ z′ kα

A( ) > 0z′ α ∈ (0, 1)

δ ∈ (0, 1]
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Because our purpose is to visualize the contraction mapping theorem, we consider a simple speci�cation

for the stochastic growth model. We consider a two-state Markov chain with   with transition

probability    if    and    if  . The productivity is 

, so state 1 is the high-productivity state. We set   and  , which

are standard values. The discount factor is   and the exogenous consumption is  . For the

relative risk aversion, we consider two values    and    because the cases    are

qualitatively different (we have   according as  ).

In this setup, we can easily verify that the assumptions of Proposition 3 are satis�ed, so a value function

uniquely exists. In particular, solving    for  , we obtain  , so we can

choose any   with  . Below, we set   and use a 100-point exponential grid on 

 to numerically solve the stochastic growth model by value function iteration.3

We now illustrate four speci�cations. The �rst speci�cation is  , and we start the value function

iteration from the initial guess  . Figures 1a and 1b show the value and consumption functions,

respectively. Figure 1c shows the evolution of value functions along the iterations (for state 1 only for

visibility), where the color changes from light green to blue as we increase the number of iterations  . For

this speci�cation, because the utility function is negative, the value function monotonically converges

from above.

Z = {1, 2}

P (z, ) = 0.8z′ z = z′ P (z, ) = 0.2z′ z ≠ z′

(A(1),A(2)) = (1.1, 0.9) α = 0.36 δ = 0.08

β = 0.95 ϵ = 0.1

γ = 1.5 γ = 0.5 γ ≷ 1

u ≶ 0 γ ≷ 1

f(k, z, ) = kz′ k > 0 k = (A( )/δz′ )
1

1−α

ā ≥ := (A(1)/δā k̄ )
1

1−α = 2ā k̄

[0, ]ā

γ(z) ≡ 1.5

≡ 0V (0)

n
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Figure 1. Stochastic growth model with   and  .

The second speci�cation is the same as the �rst except that we set the relative risk aversion to 

  (Figure 2). For this speci�cation, because the utility function is positive, the value function

monotonically converges from below.

γ = 1.5 ≡ 0V (0)

γ(z) ≡ 0.5
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Figure 2. Stochastic growth model with   and  .

The third speci�cation is the same as the �rst except that we set the initial guess   to an unnatural

function, namely the sine curve �ipped upside down (Figure 3). Although the initial guess is arti�cial

(setting    is natural as discussed in Footnote 2), the mathematical theory still applies and the

value function converges (but in an erratic manner).

γ = 0.5 ≡ 0V (0)

V (0)

≡ 0V (0)
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Figure 3. Evolution of value functions with   and sine curve  .

The fourth speci�cation is an intermediate case of the �rst and second, where  .

This speci�cation implies that the agent is less risk averse during the high-productivity state (Figure 4).

Unlike the �rst two speci�cations, when the risk aversion is state-dependent, the value and consumption

functions are quite different across states.

γ = 1.5 V (0)

(γ(1),γ(2)) = (0.5, 1.5)
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Figure 4. Evolution of value functions.Stochastic growth model with   and  .

4. Optimal savings problem

4.1. Informal description of the problem

The optimal savings problem is the optimization problem of a single agent that receives income and has

access to the �nancial market for saving. Standard references for the optimal savings problem are

Schechtman and Escudero (1977) and Chamberlain and Wilson (2000), who study the theoretical

properties of the optimal consumption assuming a bounded utility function. Mathematically, the optimal

savings problem is a special case of the stochastic growth model with production function 

(γ(1), γ(2)) = (0.5, 1.5) ≡ 0V (0)
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  where    is the gross return on savings and    is the non-�nancial income when

transitioning from state   to  .

4.2. Policy function iteration

Although the optimal savings problem is mathematically a special case of the stochastic growth model,

establishing the existence of a solution and studying its properties is not simple when the utility function

is unbounded (which is practically almost always the case) and mathematically rigorous results have

been obtained only recently by Li and Stachurski (2014) and Ma, Stachurski, and Toda (2020). The reason

is that the marginal product of capital    equals the gross return, which could well

exceed 1 (imagine a positive interest rate or high stock returns). Then the trick of truncating the state

space as in Proposition 3, which relies on marginal product less than 1, is no longer applicable.

To solve the optimal savings problem, we can apply policy function iteration instead of value function

iteration. We illustrate the idea using the optimal growth model without uncertainty. Consider the

Bellman equation (3.3). Assuming that    are all differentiable and the optimal consumption is

interior, the �rst-order condition for optimality is 

 Differentiating both sides of (3.3) with respect to   and applying the envelope theorem, we obtain 

 Combining (4.1) and (4.2), we obtain 

  Now let    and    be the consumption and resource at time  . Noting that 

  is the next period’s resource (see (3.1a)), combining (4.1) (for  ) and

(4.2) (for  ), it follows that 

 which is known as the Euler equation. For the stochastic growth model, a similar calculation yields the

Euler equation 

f(k, z, ) = R(z, )k + Y (z, ),z′ z′ z′

R(z, ) ≥ 0z′ Y (z, ) > 0z′

z z′

(k, z, ) = R(z, )f ′ z′ z′

u,f,V

0 = (c) − β (f(a − c)) (a − c) = 0.u′ V ′ f ′

a

(a) = β (f(a − c)) (a − c).V ′ V ′ f ′

(c) = (a).u′ V ′ (4.2)

c = ct a = at t

f(a − c) = f( − ) =at ct at+1 c = ct

c = ct+1

( ) = β ( ) ( − ),u′ ct u′ ct+1 f ′ at ct (4.3)

( ) = [β ( ) ( − , , )],u′ ct Et u′ ct+1 f ′ at ct zt zt+1 (4.4)
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 where   denotes the expectation conditional on time   information.

Coleman (1990) proposed a solution algorithm called policy function iteration that exploits the Euler

equation (4.4). Suppose that we have a guess of the consumption function   and would like to update

its value, denoted by  . Let  ,  ,  , and  . Using the candidate consumption

function   and the feasibility constraint (3.1a), we have 

 Therefore the Euler equation (4.4) becomes 

  where    denotes the expectation conditional on  . Thus given the candidate consumption

function  , we can update it by the value   that solves (4.5). Repeating this process until convergence

is called policy function iteration.

A key advantage of policy function iteration over value function iteration is that it involves only root-

�nding, which tends to be numerically more stable than maximization.4 A disadvantage is that the

Coleman operator (the operation of updating the policy function) is not necessarily a contraction and

proving theorems is signi�cantly more challenging than value function iteration; see Mirman et al.

(2008) for a rigorous treatment in the context of the stochastic growth model.

However, for the optimal savings problem, the marginal product 

 depends only on the exogenous states and the analysis becomes simpler. Li and Stachurski (2014) apply

policy function iteration to the optimal savings problem assuming that the gross return on saving is

constant at  . When the utility function satis�es the standard properties such as   (monotonicity), 

 (concavity), and   (Inada condition), they show that the Euler equation (4.5) becomes 

  (The reason why we take the maximum with    is to take into account the possibility that the

constraint   binds.) Furthermore, when we de�ne the distance between two candidate consumption

functions   by 

Et t

c(a, z)

ξ = aat = zzt =zt+1 z′ = ξct

c

= c( , ) = c(f(a − ξ, z, ), ).ct+1 at+1 zt+1 z′ z′

(ξ) = [β (c(f(a − ξ, z, )), ) (a − ξ, z, )],u′ Ez u′
z

′
z

′
f

′
z

′ (4.5)

Ez = zzt

c(a, z) ξ

(a − c, z, ) = R(z, )f ′ z′ z′

R > 0u′

< 0u′′ (0) = ∞u′

(ξ) = max { [βR (c(R(a − ξ) + Y (z, ), ))], (a)} .u′ Ez u′ z′ z′ u′ (4.6)

(a)u′

ξ ≤ a

,c1 c2

ρ( , ) = | ( (a, z)) − ( (a, z))|c1 c2 sup
a,z

u′ c1 u′ c2 (4.7)
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  using the marginal utility, they show that the Coleman operator    is a contraction with modulus 

 when  . Although this approach is speci�c to the optimal savings problem, the utility function 

 could be unbounded above and/or below, which is almost always the case in practice.

Stachurski and Toda (2019, 2020) apply policy function iteration to establish a linear lower bound on the

consumption function when the utility function exhibits bounded relative risk aversion to show that

wealth inherits the tail behavior of income when saving is risk-free as in Aiyagari (1994) models. Ma et al.

(2020) generalize the approach of Li and Stachurski (2014) to the case with stochastic returns and

discounting. In this case   is not necessarily a contraction but some iterate   is under some conditions.

Toda (2021) shows that    is a generalization of a contraction called Perov contraction, which enables to

signi�cantly simplify the proof of Ma et al. (2020). Ma and Toda (2021) apply policy function iteration to

prove the asymptotic linearity of consumption functions when the utility func- tion is homothetic, and

Ma and Toda (2022) further generalize this result when the marginal utility asymptotically behaves like a

power function.

4.3. Numerical illustration

As in the case with the stochastic growth model, we only consider a simple optimal savings problem. The

utility function exhibits constant relative risk aversion  , so the marginal utility is  , where we

set  . The discount factor is  . We consider a two-state Markov chain with   with

transition probability    for all  , so the process is independent and identically

distributed over time. We suppose that the agent invests fraction   of wealth in the stock market

with expected return    and volatility  , and invests the rest in a risk-free asset with risk-free rate  .

Therefore we can model the gross return on wealth as 

  We set  ,  ,  , and  . Finally, we suppose that income is constant at 

. Let   be the   matrix whose  -th entry equals  . Toda (2021, §3.3)

shows that if the spectral radius (largest absolute value of all eigenvalues) of   satis�es  , then

the Coleman operator becomes a Perov contraction when we use a (vector-valued) metric similar to (4.7).

In our speci�cation we have  , so policy function iteration is guaranteed to converge.

Figure 5 shows the consumption function and the evolution of consumption functions along the

iterations when we use the initial guess  .5 For this speci�cation, the consumption function

T

βR βR < 1

u

T T k

T

γ (c) =u′ c−γ

γ = 1.5 β = 0.95 Z = {1, 2}

P (z, ) = 0.5z′ (z, )z′

θ ∈ [0, 1]

μ σ rf

R (z, ) = {z′ (1 − θ) + θerf eμ− /2+σσ2

(1 − θ) + θerf eμ− /2−σσ2

 if  = 1z′

 if  = 2z′

= 0.01rf μ = 0.05 σ = 0.2 θ = 0.5

Y (z, ) ≡ 1z′ B 2 × 2 (z, )z′ βP (z, )R(z, )z′ z′

B ρ(B) < 1

ρ(B) = 0.9791 < 1

(a, z) = ac(0)
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monotonically converges from above.

Figure 5. Optimal savings problem with  .

For policy function iteration, the initial guess   needs to be increasing and satisfy  ; see Ma

et al. (2020). Setting    is natural8 but not necessarily computationally ef�cient because the

asymptotic slope of the true consumption function    is far smaller than 1. Ma and Toda (2022)

discuss how to choose the initial guess to improve computational ef�ciency. However, the theory tells us

that any initial guess    that is increasing and satis�es    would work. To illustrate this

point, we now consider an unnatural initial guess given by  . Figure 6 shows

that the convergence is non-monotonic.

≡ 0V (0)

c(0) (a, z) ≤ ac(0)

(a, z) = ac(0)

c(a, z)

c(0) (a, z) ≤ ac(0)

(a, z) = (sin(a) + a)/4c(0)
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Figure 6. Evolution of consumption functions with  .

5. Some useful tricks

This section discusses various tricks that are useful for studying dynamic programming problems.

5.1. Establishing properties of value function

In many applications, we are not just interested in establishing the existence of a solution to a dynamic

programming problem but often would like to establish some properties of the solution. For instance, In

Figure 1 we see that the value function is increasing and concave. But how can we establish the

monotonicity and concavity of the value function    if we cannot solve for    explicitly? The following

proposition is useful in such settings.

Proposition 4. Let   be a complete metric space and   be a contraction with a unique �xed point 

. If   is a nonempty closed set and  , then  .

Proof. Since    is closed,    is a complete metric space. Since    is a contraction and 

,    is also a contraction on  . Therefore there exists a unique    such that  .

Since  ,   is also a �xed point of   in  , and the uniqueness implies  . ◻

(a, z) = (sin(a) + a)/4c(0)

v v

(V,d) T : V → V

∈ Vv∗ ⊂ VV1 T ⊂V1 V1 ∈v∗
V1

⊂ VV1 ( ,d)V1 T : V → V

T ⊂V1 V1 T V1 ∈v∗
1 V1 T =v∗

1 v∗
1

⊂ VV1 v∗
1 T V = ∈v∗ v∗

1 V1
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Although Proposition 4 is almost trivial, it has many applications. Suppose we would like to show that the

value function in Figure 1 is increasing. To establish this, we only need to assume that   is increasing.

Proposition 5. Let everything be as in Proposition 2 and suppose   is increasing. Then the value function   is

increasing.

Proof. Let   be the space of bounded continuous functions and  .

Since monotonicity is preserved by taking limits,   is closed. If   and  , then the de�nition

of the Bellman operator (3.4) implies 

 where the �rst inequality follows from the monotonicity of   and   and the second inequality follows

from the fact that taking the maximum on a larger set yields a larger value. Therefore  , and

Proposition 4 yields the conclusion. ◻

An argument along these lines is used, for example, to show the monotonicity of the consumption and

saving functions in Ma et al. (2020, Proposition 2.3). Similarly, suppose that we would like to establish a

lower bound    for the value function. For this purpose we may consider the closed set 

. An application along these lines can be found in Ma and Toda (2021, Theorem 3)

for proving the asymptotic linearity of consumption functions and Phelan and Toda (2022, Proposition

3.1) for ranking various value functions.

As another application of Proposition 4, suppose we would like to show that the value function in Figure 1

is concave. To establish this, we only need to assume that   is concave and   is increasing and concave.

Proposition 6. Let everything be as in Proposition 2 and suppose   is concave and   is increasing and concave.

Then the value function   is increasing and concave.

Proof. Let    be the space of bounded continuous functions and 

. Since monotonicity and concavity are preserved by taking

limits,   is closed. We have already shown that   preserves monotonicity. Therefore it suf�ces to show

that   preserves concavity.

Let  ,  , and  . Since   is increasing and concave, so is  . To see this, note that

the concavity of   implies 

f

f V

V = bcR+ = {V ∈ V : V  is increasing}V1

V1 V ∈ V1 ≤a1 a2

(TV )( )a1 = {u(c) + βV (f( − c))}max
0≤c≤a1

a1

≤ {u(c) + βV (f( − c))}max
0≤c≤a1

a2

≤ {u(c) + βV (f( − c))} = (TV )( ),max
0≤c≤a2

a2 a2

f V

T ⊂V1 V1

v ≥ v–

= {v ∈ V : v ≥ }V1 v–

u f

u f

V

V = bcR+

= {V ∈ V : V  is increasing and concave}V1

V1 T

T

V ∈ V , ≥ 0a1 a2 t ∈ [0, 1] f V ∘ f

f
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 and applying   to both sides and using the monotonicity and concavity of  , we obtain 

  Fix    for    and let    and    for  . Then the

concavity of   and   implies 

 Since  , we have  . Therefore taking the maximum of the left-hand side over  ,

we obtain 

 Taking the maximum of the right-hand side over  , we obtain 

 so   is concave. Therefore   preserves concavity. ◻

5.2. Transformation of the Bellman equation

Consider the Bellman equation for a stochastic dynamic programming problem. As a concrete example,

consider the Bellman equation for the stochastic growth model (3.6): 

 where   denotes the expectation conditional on  . De�ne the function 

 Then clearly 

 Changing the notation   to   and setting  , it follows from the de�nition of 

 that 

f((1 − t) + t ) ≥ (1 − t)f( ) + tf( ),a1 a2 a1 a2

V V

V (f((1 − t) + t ))a1 a2 ≥ V ((1 − t)f( ) + tf( ))a1 a2

≥ (1 − t)V (f( )) + tV (f( )).a1 a2

∈ [0, ]cj aj j = 1, 2 c = (1 − t) + tc1 c2 a = (1 − t) + ta1 a2 t ∈ [0, 1]

u V ∘ f

u(c) + βV (f(a − c))

≥ (1 − t)(u( ) + βV (f( − ))) + t(u( ) + βV (f( − ))).c1 a1 c1 c2 a2 c2

∈ [0, ]cj aj c ∈ [0,a] c ∈ [0,a]

(TV )(a) ≥ (1 − t)(u( ) + βV (f( − ))) + t(u( ) + βV (f( − ))).c1 a1 c1 c2 a2 c2

∈ [0, ]cj aj

(TV )((1 − t) + t ) ≥ (1 − t)(TV )( ) + t(TV )( ),a1 a2 a1 a2

TV T

V (a, z) = {u(c, z) + β V (f(a − c, z, ), )} ,max
0≤c≤a

Ez z′ z′ (5.1)

Ez z

g(a, c, z) := β V (f(a − c, z, ), ).Ez z′ z′

V (a, z) = {u(c, z) + g(a, c, z)} .max
0≤c≤a

a, c, z , ,a′ c′ z′ = f(a − c, z, )a′ z′

g

g(a, c, z) = β {u( , ) + g(f(a − c, z, ), , )} .Ez max
0≤ ≤f(a−c,z, )c′ z′

c′ z′ z′ c′ z′ (5.2)
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 Note that the transformed Bellman equation (5.2) now involves only the unknown function  . This kind

of transformation may be useful because the expectation has a smoothing effect and   could be better

behaved than  . See Ma and Stachurski (2021) and Ma et al. (2022) for more discussion and examples.

Footnotes

1 A variant of the space   in Example 4 is used to solve the optimal savings problem by policy function

iteration as in Section 4; see Li and Stachurski (2014) and Ma et al. (2020).

2 Using zero as the initial value is natural because the  -th iterate    is exactly the value

function when the agent lives for    periods and the economy ends. Thus, by setting    and

iterating the Bellman operator, we would solve the optimal growth model corresponding to various time

horizons.

3 See Gouin-Bonenfant and Toda (2023, §4.6) for the speci�c details on constructing the exponential grid.

We use the median grid point   and spline interpolation for computing value functions off the grid

points.

4 A variant of policy function iteration that uses a grid on savings   instead of asset   (and hence

makes the asset grid endogenous), which is called the endogenous grid point method (Carroll, 2006), even

avoids root-�nding and substantially reduces computing time when the inverse marginal utility

function    is available in closed-form. Examples are the constant relative risk aversion (CRRA)

utility    or the constant absolute risk aversion (CARA) utility  , for which 

 and  , respectively.

5 To numerically solve the model, we use a 100-point exponential grid on    with a median grid

point of 10 and linear interpolation/extrapolation to compute the consumption functions off the grid.

6 Because    is the optimal consumption when the agent lives for one period, the  -th iterate 

  is exactly the consumption function when the agent lives for    periods by the same

reason as in Footnote 2. Thus Figure 5b shows the optimal consumption functions for various time

horizons.

g

g

V

V4

n = 0V (n) T n

n = 0V (0)

/2k∗

s = a − ξ a

(u′)−1

u(c) = c1−γ

1−γ
u(c) = 1

γ
e−γc

( (m) =u′)−1 m−1/γ ( (m) = − logmu′)−1 1
γ

[0, 100]

c = a n

=c(n) T nc(0) n + 1
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