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Seminal frameworks of predictive coding propose a hierarchy of generative modules, each attempting

to infer the neural representation of the module one level below; the predictions are carried by top-

down feedback projections, while the predictive error is propagated by reciprocal forward pathways.

Such symmetric feedback connections support visual processing of noisy stimuli in computational

models. However, neurophysiological studies have yielded evidence of asymmetric cortical feedback

connections. We investigated the contribution of neural feedback during sensorimotor processes, in

particular visual processing during grasp planning, by utilizing convolutional neural network models

that had been augmented with predictive feedback and were trained to compute grasp positions for

real-world objects. After establishing an ameliorative effect of symmetric feedback on grasp detection

performance when evaluated on noisy stimuli, we characterized the performance effects of

asymmetric feedback, similar to that observed in the cortex. Speci�cally, we tested model variants

extended with short-, medium- and long-range feedback connections (i) originating at the same source

layer or (ii) terminating at the same target layer. We found that the performance-enhancing effect of

predictive coding under adverse conditions was optimal for medium-range asymmetric feedback.

Moreover, this effect was most prominent when medium-range feedback originated at a level of

representational abstraction that was proximal to the input layer, in contrast to more distal layers. To

conclude, our simulations show that introducing biologically realistic asymmetric predictive feedback

improves model robustness to noisy visual stimuli in a neural network model optimized for grasp

detection.

Signi�cance statement: It is commonly held that the brain predicts the causes of its sensorium via

top-down neural pathways. While canonical models of predictive coding assume reciprocal
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feedforward and feedback connections, functional evidence highlights the importance of non-

reciprocal ‘asymmetric’ feedback, whose role remains poorly understood, particularly in sensorimotor

functions. Using neural network models of grasp planning, we characterized optimal pathlengths and

source regions for asymmetric feedback facilitating visuomotor processing of noisy sensory inputs.

Our �ndings show that medium-range feedback from early layers marks a sweet spot, incorporating

optimal distance between the neural representations of source/target layers and representational

abstraction of the feedback source. This intimates an uncharted role of intermediate brain areas along

the visuomotor stream as a source of predictive signals.

Corresponding author: Matthias Niemeier, m.niemeier@utoronto.ca

Introduction

Descending neural pathways transmit neural signals from higher cortical areas back to earlier processing

stages, enabling top-down modulation of lower-level neural circuits. Such feedback has been recognized

as central for perceptual and cognitive processes, enabling the brain to implement learning mechanisms

(Roelfsema & Holtmaat, 2018), attentional modulation[1][2]  and re�nement of sensory representations

based on context, expectations, and prior experience[3][4][5]. Crucially, feedback is believed to be

instrumental for conveying predictions.

That is, the brain has been widely conceptualized as a “prediction machine” that relies on internal

generative models to actively construct explanations for the causes of noisy sensory inputs[6].

Speci�cally, it is held that predictive feedback signals are conveyed via cortico-cortical top-down

projections that are then compared to bottom-up signals such that the deviations from these signals, in

the form of predictions errors, are carried forward. An in�uential framework of such predictive coding

proposes a hierarchy of generative modules, each attempting to infer the neural representation of the

module below, with topographically reciprocal feedforward connections[7][8][9][10]. This idea maps well

on previous anatomical data[11] proposed a hierarchical model of the visual cortex where adjacent areas

often maintain both feedforward and feedback pathways, implying a measure of reciprocity in the

network[12][13]. Indeed, tracing studies in macaques reveal that reciprocal links between closely related

visual areas signi�cantly account for interareal communication[12]. Such symmetric feedback

connections are particularly important for object recognition under noisy or ambiguous viewing
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conditions. Hupé et al.[14] have shown that area V2 modulates V1 responses, enhancing the detection of

�gures embedded in cluttered or noisy images. Furthermore, recurrent interactions between V1 and

higher visual areas, including V2, are crucial for �gure–ground segregation[15]. Similarly, in computer

simulations, symmetric feedback connections support object discrimination[16], particularly when

processing noisy stimuli[17][18].

However, there is growing evidence of asymmetric, non-reciprocated cortical feedback connections from

quantitative mapping studies[19][20]. Long-range descending pathways cascade over multiple cortical

areas[21][22], and an advantage of long-latency over short-latency visuomotor feedback has been observed

during cortical reward processing[23]. Furthermore, experiments studying visuospatial attention in

primates indicate a functional role of medium-range predictive feedback, extending from area V4 to area

V1, in encoding accuracy of input stimuli[24], suggesting a potential bene�t of medium-range feedback in

signal processing under noise. This is similar to the previously suggested role of medium-range feedback

in disambiguating signal from noise during global contour integration[25].

To investigate the contribution of asymmetrical neural feedback, here we simulated sensorimotor

functions utilizing convolutional neural networks (CNNs) as a modelling framework. Hierarchical CNN

architectures have been commonly used for object recognition tasks[26]  and are posited as suitable

models of vision in the primate brain[27][28]. Crucially, rather than solely relying on the feedforward �ow

of information in the canonical architecture of CNNs, we augmented them with symmetric, or

asymmetric generative feedback loops that carried advanced representations to earlier layers of the

networks, mimicking various aspects of feedback in the biological brain. The aim of the study was to

understand (a) if an ameliorative effect of feedback can be isolated during action-guided visual tasks

when the incoming signal is corrupted, and (b) to explore the layer-dependence of such predictive

feedback in our model, thus shedding light on the relative functional contribution of cortico-cortical

connectivity of asymmetric feedback originating at varying levels of representational abstraction.

Methods

Neural network architecture

We �rst trained two versions of a feedforward model, a short and a long backbone, on the task of grasp

point generation. As a second step we then augmented the networks with feedback connections
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(feedback model) that conveyed predictive signals.

Short feedforward model. In detail, for step 1 we obtained the architecture of the short backbone model

by modifying a custom convolutional neural network (CNN) architecture (see Figure 1(a)) into which we

inputted photographic images with 4 channels (aside from red, green, and blue there was a depth

channel, RGB-D, as an approximation of stereovision, that is known to be relevant for grasp

performance[29]). The RGB-D images were passed into an input layer with two arms, specialized for

receiving RGB and depth channels, respectively. The backbone contained a ‘feature compression’ module

consisting of 4 convolution blocks that were connected through maximum pooling (MaxPool) layers to

attain dimensionality reduction and invariant feature extraction[30]. That is, each convolution block

consisted of two or three convolution (Conv) layers, each of which was sandwiched together with a batch

normalization (BN) and a recti�ed linear unit (ReLU) activation layer. Next, we added a ‘feature

expansion’ module, composed of Conv and ConvTranspose2d layers[31]  that upscaled the feature maps

back to the same spatial dimensions as the input (i.e., the entire network had an autoencoder style

architecture). The output layer was a regression head that generated a 6-channel array of pixel-wise

maps, each corresponding to one of six grasp parameters required for grasping (grasp centre coordinates

(x, y); orientation; grasp opening; gripper size; grasp quality score), similar to[32]. The sole purpose of the

feature expansion module together with its map-style output was not to attain biological realism but to

facilitate interpolation of the in�nite number of correct grasp solutions from the �nite set of ground

truth labels thereby facilitating training of the feedforward network (e.g.,[32]). The network architecture

of the short backbone is detailed in Table 1.
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Figure 1. Predictive coding dynamics improve model performance for noisy stimuli. (a) Architecture of the

grasping neural network, derived from the short feedforward backbone. Red arrows denote top-down

feedback connections. Black arrows represent the error-correction process, whereby the predictive error ( )

drives the higher layer (feedback source) representation to better match the early layer representation

(feedback target). Green arrows denote recurrent memory processes, for conserving the layer representation

over consecutive predictive cycles. Conv: convolutional layer; BatchNorm: batch normalization layer; ReLU:

rectifying linear unit; MaxPool: pooling layer; ConvTranspose: deconvolutional layer. The network received a

3-channel RGB image and a 1-channel depth image of the input object. The network output consisted of a 6-

channel array, each channel representing a pixelwise map with the same dimensions as the input images and

corresponding to one of the 6 grasp parameters: grasp centre coordinates (x, y); orientation ( ); grasp opening

(h); gripper size (w); grasp quality (con�dence) score. (b) Model performance during the inference phase,

ε

θ
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across 15 predictive coding timesteps, measured as the average mean squared error at each timestep, when

presented with the test dataset that had been injected with varying levels of additive Gaussian noise. The

right panel shows a representative sample object, corrupted with the different noise levels. (c) The average

difference in test performance of the model between the initial (t=1) and �nal (t=15) timestep, for each noise

level. Black bars denote standard errors of mean. (d) Left panel: an RGB image of a sample object from the test

dataset. Right panel: the RGB image with Gaussian noise ( ). (e) The grasp quality score maps of the

sample object, at even timesteps.

σ = 0.25
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Module Layers Short Long

Input

RGB Conv2d (64, 3, 1) • •

Depth Conv2d (64, 3, 1) • •

Feature compression

BatchNorm2d | ReLU • •

Conv block 1

Conv2d (64, 3, 1) | BatchNorm2d | ReLU • •

MaxPool (2, 2) • •

Conv block 2

Conv2d (128, 3, 1) | BatchNorm2d | ReLU • •

Conv2d (128, 3, 1) | BatchNorm2d | ReLU • •

MaxPool (2, 2) • •

Conv block 3

Conv2d (256, 3, 1) | BatchNorm2d | ReLU • •

Conv2d (256, 3, 1) | BatchNorm2d | ReLU • •

Conv2d (256, 3, 1) | BatchNorm2d | ReLU • •

MaxPool (2, 2) • •

Conv block 4

Conv2d (256, 3, 1) | BatchNorm2d | ReLU •

Conv2d (256, 3, 1) | BatchNorm2d | ReLU •

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

MaxPool (2, 2) •

Conv block 5

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

Conv2d (512, 3, 1) | BatchNorm2d | ReLU •

Feature expansion ConvTranspose2d (256, 3, 2) | ReLU •

Conv2d (256, 5, 1) | ReLU •

ConvTranspose2d (128, 3, 2) | ReLU • •

Conv2d (128, 5, 1) | ReLU • •
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Module Layers Short Long

ConvTranspose2d (64, 3, 2) | ReLU • •

Conv2d (128, 5, 1) | ReLU • •

ConvTranspose2d (64, 3, 2) | ReLU • •

Output

Grasp ConvTranspose2d (5, 3, 1) | Tanh • •

Con�dence ConvTranspose2d (1, 3, 1) | Sigmoid • •

Table 1. Neural network architecture of the short and long feedforward models. Layer-wise architecture of

the feedforward models is described. All layers were implemented in PyTorch. The Conv2d (output channels,

kernel size, stride) and ConvTranspose2d (output channels, kernel size, stride) refer to convolutional and

deconvolutional layers, respectively. The MaxPool (kernel size, stride) layer implements feature pooling.

BatchNorm2d: batch normalization; ReLU: rectifying linear unit; Tanh: hyperbolic tangent; Sigmoid: sigmoid

function.

Long feedforward model. The long backbone once again had a compression module followed by an

expansion module similar to the short backbone, except, here the compression module comprised of a

VGG16 model[30] with 5 convolution blocks where each convolution block contained two or three Conv

layers with ReLU activation layers, followed by a MaxPool layer, and BN layers interspersed between each

Conv and ReLU layer. Just like before the model architecture was modi�ed with a two-arm input layer to

receive 4-channel RGB-D input images. Also, the classi�cation head of the canonical VGG16 architecture

was replaced with the same regression head as the short backbone model to return the required

parametric map output (see Table 1 for details).

Predictive coding dynamics for feedback models

After training the feedforward backbone models, we augmented them with generative feedback

connections adapting the PyTorch Predify library[17]  with some modi�cations that we made to the

original code to introduce custom feedback connectivity. The library is designed to add predictive coding

dynamics to existing deep neural networks. The predictive coding framework posits that the brain

maintains an internal model of the world to actively predict sensory inputs[33]. In this hierarchical model,
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higher areas generate predictions for lower areas, and discrepancies between predicted and actual inputs

(prediction errors) are used to update and re�ne the higher-layer representations. This iterative process

allows the network to minimize prediction errors and enhance perception of sensory information. For

example, CNNs have been recently combined with feedback mechanisms for robust object perception[17]

[18].

In the present study, we selected    encoding modules,    (   with    from the

network backbone of the feedforward model and added    corresponding decoding modules,  . An

encoding module,  , and the corresponding decoding module,  , collectively constituted a PCoder.

Each   (except for e1) consisted of the MaxPool layer of a given convolution block and the two or three

Conv/BN/ReLU layers of the subsequent convolution block. The output of   was then passed through a

feedback layer (deconvolution layer)    that predicted the output of the last Conv/BN/ReLU layer of the

previous convolution block (target). To this end, each    consisted of a ConvTranspose2d layer that

upscaled the input feature map to match the spatial dimensions of the target with feedback weights

connecting module   to module   being denoted by  . This way, when an input image initially

activated all encoding modules through a feedforward pass, over subsequent successive recurrent

iterations (timesteps  ), both the decoding and encoding module representations were updated using the

following equations:

Here,  ,  ,    (with    1) and    served as balancing coef�cients for the feedforward,

feedback, recurrence and error-correction terms, respectively. The recurrence term,  , functioned as a

memory buffer for retaining the encoding representation at the current timestep. The reconstruction

error at module  , denoted  , was de�ned as the mean squared error (MSE) between the

feedforward representation    and the predicted reconstruction    at that timestep. The

feedforward and feedback weights remained frozen across iterations.

Feedback models. Modi�cations were made to the original code from[17]  to introduce custom feedback

connectivity to the forward models.

Experiment 1. To test whether predictive coding aids not only object classi�cation[17][18]  but also

visuomotor processes, the network backbone of the short backbone model was augmented with 4
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consecutive PCoders, similar to the feedback connectivity pattern attempted in[17]. The feedback

connectivity for Experiment 1 is shown in Figure 1(a).

Experiment 2. In order to identify the most effective source of feedback, feedback connections were

implemented with a consistent feedback target layer and varying feedback source layers across model

variants. Speci�cally, for each feedback type, 2 PCoders were designed. For Experiment 2,    was kept

�xed as the �rst convolution block, across all feedback model variants. Notably, the feedback target layer

for   was the input layer of the network; the input representations were con�gured to be static and were

not updated by iterative recurrent mechanisms. The associated feedback loop was merely an appendage,

which had no functional effect but was required in the model architecture for technical reasons.

Additionally, the feedback source layer of   did not receive any recurrent feedback. Therefore, all model

variants of feedback connectivity effectively contained a single functional loop of feedback, shown as

solid red lines in Figure 2, for controlled comparisons between different feedback types.

e1

e1

e2
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Figure 2. Layer-dependent effects of feedback with a uniform target. (a) Left panel: short feedforward

model, augmented with short-range (�rst row; solid red arrow), medium-range (second row; dashed red

arrow) and long-range (third row; dotted red arrow) feedback. Right panel: long feedforward model,

augmented with short-range (�rst row; solid red arrow), medium-range (second row; dashed red arrow), long-

range (third row; dash-dotted red arrow) and longer-range (fourth row; dotted red arrow) feedback. All

effective feedback connections, pertaining to the second PCoder in each model variant, terminate at the same

target layer: the �nal ReLU layer of convolution block 1. The �rst PCoder (translucent) does not represent a

functional feedback connection. (b) Performance of feedback model variants across 15 predictive coding

timesteps, on test dataset injected with varying levels of Gaussian noise (standard deviation, 

). Left panel: short feedforward backbone. Right panel: long feedforward

backbone. (c) The average difference in test performance of the feedback model variants, between the initial

(t=1) and �nal (t=15) timestep, for each noise level. Black bars denote standard errors of mean.

Short backbone. Three variants of feedback connectivity were compared: short-range, medium-range and

long-range feedback, as shown in Figure 2(a).    comprised of the Conv/BN/ReLU layers of convolution

block 1 for all model variants.    comprised of the following: the MaxPool layer of block 1 and the

Conv/BN/ReLU layers of block 2 (short-range); the MaxPool layers of blocks 1 and 2, and the

Conv/BN/ReLU layers of blocks 2 and 3 (medium-range); the MaxPool layers of blocks 1, 2 and 3, and the

Conv/BN/ReLU layers of blocks 2,3 and 4 (long-range).

Long backbone. Four variants of feedback connectivity were compared: short-range, medium-range, long-

range and longer-range feedback, illustrated in Figure 2(a). Similar to the short backbone,   comprised of

the Conv/BN/ReLU layers of convolution block 1 for all model variants.   comprised of the following: the

MaxPool layer of block 1 and the Conv/BN/ReLU layers of block 2 (short-range); the MaxPool layers of

blocks 1 and 2, and the Conv/BN/ReLU layers of block 2 and 3 (medium-range); the MaxPool layers of

blocks 1 ,2 and 3, and the Conv/BN/ReLU layers of block 2, 3 and 4 (long-range); the MaxPool layers of

blocks 1, 2, 3 and 4, and the Conv/BN/ReLU layers of block 2, 3, 4 and 5 (longer-range).

Experiment 3. To further isolate any effects of the feedback target layer, the feedback source layer was

kept constant, while varying feedback target layers across model variants. Again, 2 PCoders were

introduced into the feedforward network. Crucially, the feedback connection emanating from   was the

only functional feedback loop. For all model variants,    spanned a single Conv layer that immediately

precedes  .

σ = {0,  0.25,  0.5,  0.75,  1.0}

e1

e2

e1

e2

e2

e1

e2
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Short backbone. Three variants of feedback connectivity were compared: short-range, medium-range and

long-range feedback. The feedback source layer of   was kept �xed as the �nal ReLU layer of convolution

block 4 for all feedback variants.    comprised of the following: the MaxPool layer of block 3 and the

Conv/BN/ReLU layers of block 4 (short-range); the MaxPool layers of blocks 2 and 3, and the

Conv/BN/ReLU layers of blocks 3 and 4 (medium-range); the MaxPool layers of blocks 1,2 and 3, and the

Conv/BN/ReLU layers of blocks 2, 3 and 4 (long-range). These model variants of feedback connectivity are

shown in Figure 3(a).

e2

e2
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Figure 3. Layer-dependent effects of feedback with a uniform source. (a) Left panel: short feedforward

model, augmented with short-range (�rst row; solid red arrow), medium-range (second row; dashed red
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arrow) and long-range (third row; dotted red arrow) feedback. Right panel: long feedforward model,

augmented with short-range (�rst row; solid red arrow), medium-range (second row; dashed red arrow), long-

range (third row; dash-dotted red arrow) and longer-range (fourth row; dotted red arrow) feedback. All

effective feedback connections, pertaining to the second PCoder in each model variant, originate at the same

source layer; short feedforward backbone: �nal ReLU layer of convolution block 4; long feedforward

backbone: �nal ReLU layer of convolution block 5. The �rst PCoder (translucent) does not represent a

functional feedback connection. (b) Performance of feedback model variants across 15 predictive coding

timesteps, on test dataset injected with varying levels of Gaussian noise (standard deviation, 

). Left panel: short feedforward backbone. Right panel: long feedforward

backbone. (c) The average difference in test performance of the feedback model variants, between the initial

(t=1) and �nal (t=15) timestep, for each noise level. Black bars denote standard errors of mean.

Long backbone. Four variants of feedback connectivity were compared: short-range, medium-range, long-

range and longer-range feedback. The feedback source layer of   was maintained as the �nal ReLU layer

of convolution block 5 for all feedback variants.   comprised of the following: the MaxPool layer of block

4 and the Conv/BN/ReLU layers of block 5 (short-range); the MaxPool layers of blocks 3 and 4, and the

Conv/BN/ReLU layers of blocks 4 and 5 (medium-range); the MaxPool layers of blocks 2, 3 and 4, and the

Conv/BN/ReLU layers of blocks 3, 4 and 5 (long-range); the MaxPool layers of blocks 1, 2, 3 and 4, and the

Conv/BN/ReLU layers of blocks 2, 3, 4 and 5 (longer-range). Model variants of feedback connectivity are

shown in Figure 3(a).

Experiment 4. The effect the abstraction level of the feedback source on model performance was also

investigated. Medium-range feedback (i.e., the most effective feedback distance in Experiments 2 and 3)

was implemented at three different levels of abstraction along the long backbone: proximal, intermediate

and distal feedback loops. The naming convention is in relation to the distance from the input layer of the

network. For each level of source abstraction, 2 PCoders were integrated into the network backbone. Like

Experiment 2, feedback emerging from    was the only operant feedback connection, whereas the

feedback loop across   traversed a single layer and had no predictive function.

For the three model variants,   comprised of the MaxPool layers of blocks 1 and 2, and the Conv/BN/ReLU

layers of blocks 2 and 3 (proximal); the MaxPool layers of blocks 2 and 3, and the Conv/BN/ReLU layers of

blocks 3 and 4 (only the �rst two Conv/BN/ReLU layers of block 4 were included in order to implement

medium-range feedback distance) (intermediate); the MaxPool layers of blocks 3 and 4, and the

Conv/BN/ReLU layers of blocks 4 and 5 (only the �rst two Conv/BN/ReLU layers of block 5 were included

σ = {0,  0.25,  0.5,  0.75,  1.0}

e2

e2

e2

e1

e2
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in order to maintain medium-range feedback distance) (distal). The model variants of medium-range

feedback that were implemented are detailed in Figure 4(a).
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Figure 4. Effect of feedback source abstraction level. (a) Long feedforward model, augmented with medium-

range feedback connections (pertaining to the second PCoder in each model variant), originating at layers

proximal (�rst row; solid red arrow), intermediate (second row; dashed red arrow), or distal (third row; dash-

dotted red arrow) to the input layer. The �rst PCoder (translucent) does not represent a functional feedback

connection. (b) Left panel: performance of feedback model variants across 15 predictive coding timesteps, on

test dataset injected with varying levels of Gaussian noise (standard deviation,  ).σ = {0,  0.25,  0.5,  0.75,  1.0}
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Right panel: the average difference in test performance of the feedback model variants, between the initial

(t=1) and �nal (t=15) timestep, for each noise level. Black bars denote standard errors of mean.

Model training and hyperparameters

Both, short and long backbone models were initialized with random weights (Xavier initialization) and

trained on the task of grasp parameter estimation. Training involved error back-propagation and

gradient descent to minimize the mean squared error (MSE) loss for the pixelwise regression output.

After hyperparameter optimization using a grid search strategy, both, the short and long forward models

were trained using a Ranger optimizer, with a learning rate of 0.01, weight decay of 0, and a batch size of

75. The short and long backbone models were trained for 17 and 9 epochs, respectively.

The feedback models were created by adding recurrent feedback to the already trained backbone models.

The activations of all encoding modules,    were initiated with a feedforward pass. Then the forward

weights were frozen, and the weights of the feedback deconvolution layers,  , were trained using an

unsupervised reconstruction objective. This seeks to minimize the reconstruction loss (prediction error),

modelled as MSE between the outputs of   and  .

Hyperparameters for predictive coding dynamics, including layer-dependent balancing coef�cients for

the feedforward ( ), feedback ( ), recurrence ( ) and error-correction ( ) terms, were optimized

using a grid search strategy. The respective hyperparameters were conserved across all model variants

within each experiment and are presented in Table 2.

en

dn

en−1 dn

βn λn γn αn
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PCoder

Feedback

hyperparameters

Experiments

1 2 3 4

Short Short Long Short Long Long

1

0.2 0.3 0.35 0.35 0.2 0.35

0.05 0.3 0.25 0.25 0.4 0.25

0.75 0.4 0.4 0.4 0.4 0.4

0.01 0.01 0.01 0.01 0.01 0.01

2

0.4 0.4 0.4 0.4 0.4 0.4

0.1 0 0 0 0 0

0.5 0.6 0.6 0.6 0.6 0.6

0.01 0.1 0.1 0.1 0.01 0.1

3

0.4 - - - - -

0.1 - - - - -

0.5 - - - - -

0.01 - - - - -

4
0.4 - - - - -

0 - - - - -

βn

λn

γn

αn

βn

λn

γn

αn

βn

λn

γn

αn

βn

λn
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PCoder

Feedback

hyperparameters

Experiments

1 2 3 4

Short Short Long Short Long Long

0.6 - - - - -

0.01 - - - - -

Table 2. Predictive coding hyperparameters. The balancing coef�cients for the feedforward ( ), feedback (

), recurrence ( ) and error-correction ( ) terms that were selected after hyperparameter optimization,

are stated for the short and/or long feedforward model(s), for all experiments.

Model training was performed on the NVIDIA T4 and the NVIDIA QUADRO RTX 8000 GPUs.

Dataset

Both, the backbone and feedback models, were trained on the grasp detection task using the large-scale

Jacquard dataset for robotic grasp detection[34]. The Jacquard dataset is composed of 11,619 distinct

objects with a total of ~5,000,000 possible grasp annotations. The grasp annotations corresponding to

each image constituted a list of grasp candidate labels. Each grasp candidate was described by parameters

including center pixel coordinates (x, y), orientation (theta), and dimensions (pixel width, pixel height) of

the grasp. For each object instance (a distinct camera viewpoint of an object), a rendered RGB image, a

segmentation mask, two depth images and the grasps annotations are available. The dataset was split

into three parts: 66% for model training, 17% for model validation, and 17% for model testing.

Preprocessing. The data preprocessing pipeline transformed lists of grasp candidates into pixel-wise

grasp maps. A grasp map array, of spatial dimensions corresponding to the image size, was initialized

with six channels to represent the �ve grasp parameters and a count of overlapping grasp bounding

boxes for each pixel. The preprocessing operation converted grasp annotations to bounding boxes,

identi�ed the bounding box boundaries, and iterated over each pixel within these boundaries to

determine the grasp candidate closest to the pixel based on Euclidean distance. Each pixel was then

γn

αn

βn

λn γn αn
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labeled with the attributes of the nearest grasp and the count of valid bounding boxes covering it. The

�nal channel, representing the count of bounding boxes per pixel, was normalized by dividing by the

maximum count across all pixels. This preprocessed data format was used for training the backbone and

feedback neural network models on the task of predicting grasp locations in an input image.

Feature normalization was applied to all images (RGB and depth) and grasp labels, to promote training

stability and model convergence. Image pixel intensities and label values were normalized to a range

between 0 and 1.

Additive noise. During model inference, all test images were injected with varying levels of additive

Gaussian noise of standard deviation,  .

Statistics

A repeated measures analysis of variance (ANOVA)[35]  was conducted to assess the effects of feedback

type and noise level on the grasp detection accuracy of the model, using the Jamovi statistical

software[36]. This analysis accounted for within-object effects and included tests for sphericity.

Mauchly's test of sphericity[37] was performed to check the assumption of sphericity for feedback type,

noise level, and their interaction. Where the assumption was violated, Greenhouse-Geisser

corrections[38]  were applied to adjust the degrees of freedom. Post hoc comparisons were conducted

using Tukey's HSD test[39] to evaluate pairwise differences between the levels of feedback type.

A One-Way ANOVA[40] was conducted to compare the difference in model performance between the �rst

and �nal timestep during the test, across noise different noise levels[36].

Code Availability

All code used for this study is available at https://github.com/khanrom/Feedback_Grasping.

Results

We investigated the contribution of feedback to vision for action, such as grasp planning, using a neural

network model that was optimized to detect grasp points on objects.

σ ∈ {0,  0.25,  0.5,  0.75,  1}
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Feedback improves robustness of sensorimotor control to noise

We evaluated the effect of predictive feedback on the performance of the trained model, when presented

with adversarial images that were injected with varying levels of Gaussian noise (

) (Experiment 1 in Methods). In effect, the performance of a feedback model

at the �rst timestep ( ) of the iterative predictive coding dynamics is identical to the performance of

the corresponding feedforward backbone. This backbone performance was compared to the performance

of the feedback model after several recurrent timesteps ( ) after which performance no longer

changed. We observed an improvement in the grasp detection accuracy of the model after predictive

coding iterations, across all levels of Gaussian noise (Figure 1B; n.b., there was a small decline in

performance for zero noise). The average difference in model performance between the �rst ( ) and

the �nal ( ) timestep was signi�cant across noise levels, 

 (Figure 1C). Figure 1E depicts progressive noise removal in the model

output (represented by the grasp quality score map) across successive predictive coding timesteps, for a

sample object from the test dataset (Figure 1D).

Performance-related effects of feedback are layer-dependent

Next, we tested whether the performance-enhancing effects of feedback were contingent on layer-

speci�c feedback connectivity. To probe this question, we contrasted different patterns of feedback

connectivity.

Constant feedback target. First, we set up model variants augmented with a constant feedback target

(�nal ReLU layer of convolution block 1) that received short-, medium-, or long-range feedback, for the

short backbone and an additional longer-range feedback variant for the long backbone, as detailed in the

Methods (see Experiment 2). The average difference in model performance between the �rst (t=0) and

the �nal (t=15) for all feedback model variants was compared.

For the short backbone, medium-range feedback confers the largest advantage on model performance on

average under Gaussian noise ( ), as seen in Figure 2(b,c). A repeated measures

ANOVA after Greenhouse-Geisser correction yielded a signi�cant main effect of noise-dependent bene�t

of feedback on model performance (see Table 3) re�ecting that performance declined with increasing

noise, as expected. More importantly, there was a signi�cant main effect of feedback distance (see Table

4). Post hoc comparisons using Tukey's HSD test revealed signi�cant differences in model performance

between all pairs of feedback types with medium-range feedback being the most effective on average

σ = {0,  0.25,  0.5,  0.75,  1.0}

t = 1

t = 15

t = 0

t = 15

F(4,  22267) = 220036.00,p < .001

σ = {0,  0.25,  0.5,  0.75}
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(see Table 6). Additionally, there was a signi�cant interaction between feedback distance and noise level

(see Table 5), indicating that most effective feedback distance depended on the noise-dependent bene�t

(medium-range feedback for intermediate levels of noise, short-range for zero noise, long-range for high

levels of noise).

Experiment df F p η2

2

Short backbone

Noise-dependent bene�t 1.68 109649 < .001 0.454

Residual 15772.36

Long backbone

Noise-dependent bene�t 1.64 43410 < .001 0.426

Residual 15398.52

3

Short backbone

Noise-dependent bene�t 1.56

Residual 14671.10 59300 < .001 0.652

Long backbone

Noise-dependent bene�t 2.71 24519 < .001 0.376

Residual 25388.71

4 Long backbone

Noise-dependent bene�t 2.13 48395 < .001 0.520

Residual 19937.27

Table 3. Within Subjects Effects - Noise-dependent bene�t
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Experiment df F p η2

2

Short backbone

Feedback distance 1.18 87764 < .001 0.194

Residual 11072.25

Long backbone

Feedback distance 1.64 10542 < .001 0.080

Residual 15429.00

3

Short backbone

Feedback distance 1.10 5365 < .001 0.010

Residual 10297.82

Long backbone

Feedback distance 2.61 2908 < .001 0.004

Residual 24479.40

4 Long backbone

Feedback abstraction level 1.35 13523 < .001 0.039

Residual 12629.91

Table 4. Within Subjects Effects - Feedback distance (abstraction level)
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Experiment df F p η2

2

Short backbone

Feedback distance x Noise-dependent bene�t 2.79 60426 < .001 0.176

Residual 26216.36

Long backbone

Feedback distance x Noise-dependent bene�t 4.94 5272 < .001 0.057

Residual 46387.80

3

Short backbone

Feedback distance x Noise-dependent bene�t 1.94 13862 < .001 0.030

Residual 18161.08

Long backbone

Feedback distance x Noise-dependent bene�t 7.35 1884 < .001 0.009

Residual 68946.23

4 Long backbone

Feedback abstraction level x Noise-dependent bene�t 5.61 1290 < .001 0.008

Residual 52603.38

Table 5. Within Subjects Effects - Feedback distance (abstraction level) x Noise-dependent bene�t.
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Experiment

Comparison

Feedback distance (Exp

2-3); Feedback source

abstraction (Exp 4)

Feedback distance (Exp

2-3); Feedback source

abstraction (Exp 4)

Mean

Difference
SE df t ptukey

2

Short

backbone

1

2 0.01316
4.05e-

5
9381 324.5 < .001

3 0.01195
4.21e-

5
9381 284.1 < .001

2 3 -0.00121
1.43e-

5
9381 -85.0 < .001

Long

backbone

1

2 0.00274
1.97e-

5
9381 138.88 < .001

3 8.92e-5
2.56e-

5
9381 3.48 0.003

4 -1.42e−4
2.42e-

5
9381 -5.87 < .001

2

3 -0.00265
1.57e-

5
9381 -168.80 < .001

4 -0.00288
1.56e-

5
9381 -185.02 < .001

3 4 -2.31e−4
7.16e-

6
9381 -32.33 < .001

3

Short

backbone

1

2 9.75e-4
1.77e-

5
9381 55.3 < .001

3 -0.00200
2.55e-

5
9381 -78.4 < .001

2 3 -0.00297
4.01e-

5
9381 -74.1 < .001
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Experiment

Comparison

Feedback distance (Exp

2-3); Feedback source

abstraction (Exp 4)

Feedback distance (Exp

2-3); Feedback source

abstraction (Exp 4)

Mean

Difference
SE df t ptukey

Long

backbone

1

2 2.80e-4
1.29e-

5
9381 21.81 < .001

3 2.91e-4
1.38e-

5
9381 21.03 < .001

4 -7.83e−4
1.62e-

5
9381 -48.41 < .001

2

3 1.06e-5
1.06e-

5
9381 1.01 0.745

4 -0.00106
1.32e-

5
9381 -80.30 < .001

3 4 -0.00107
1.21e-

5
9381 -88.67 < .001

4
Long

backbone

1

2 -0.00157
1.54e-

5
9381 -101.8 < .001

3 -0.00223
1.68e-

5
9381 -132.5 < .001

2 3 -6.59e−4
7.83e-

6
9381 -84.2 < .001

Table 6. Post Hoc Comparisons - Feedback distance (abstraction level)

Similarly, in the case of the long backbone, medium-range feedback showed on average the greatest

robustness to noise ( ), as shown in Figure 2(b,c). A Greenhouse-Geisser corrected

repeated measures ANOVA showed signi�cant main effects of noise level (see Table 3), and feedback

distance (see Table 4), where Tukey's HSD test con�rmed that medium-range feedback was most effective

σ = {0.5,  0.75,  1.0}

qeios.com doi.org/10.32388/JSRQKJ 27

https://www.qeios.com/
https://doi.org/10.32388/JSRQKJ


establishing signi�cant differences between various pairs of feedback types (see Table 6). Once again, the

interaction between feedback distance and noise-dependent feedback bene�t was also signi�cant (see

Table 3), indicating that medium-range feedback was most effective for intermediate and high levels of

noise whereas short-range feedback was more effective for zero and low levels of noise.

Constant feedback source. Secondly, we compared model performance under adversarial noise, when the

feedback connections originated from the same source layer across all model variants (for details of the

model architecture, see Experiment 3 in Methods). Model variants were evaluated after timestep  .

Once again for the short backbone we found medium-range feedback was most ameliorative, when

presented with stimuli injected especially with intermediate levels of Gaussian noise (

), as shown in Figure 3(b,c). A repeated measures ANOVA with Greenhouse-Geisser

correction demonstrated a signi�cant main effect of noise-dependent bene�t of feedback (see Table 3).

More importantly, we observed a signi�cant main effect of feedback distance on model performance (see

Table 4), with medium-range feedback yielding the greatest bene�t on average. In detail, Tukey's HSD test

revealed signi�cant differences between various pairs of feedback types (see Table 6). Finally, there was a

signi�cant interaction between feedback distance and noise-dependent bene�t (see Table 5), , indicating

that medium-range feedback was optimal for intermediate levels of noise whereas long-range feedback

was more ameliorative for high and zero levels of noise.

Similar effects of feedback connectivity on model performance were observed in the case of the long

backbone, Figure 3(b,c). The network augmented with medium-range feedback was most resilient to all

levels of additive noise tested, except for zero noise ( ). A repeated measures

ANOVA with Greenhouse-Geisser correction showed signi�cant main effects of noise-dependent

feedback bene�t (see Table 3), and feedback distance (see Table 4). Post hoc comparisons using Tukey's

HSD test revealed signi�cant differences between the various pairs of feedback types (see Table 6). These

results are consistent with medium-range feedback being most bene�cial across noise levels on average.

Furthermore, a signi�cant interaction between feedback distance and noise-dependent bene�t of

feedback (see Table 6) re�ected that medium-range feedback was optimal for most noise levels except

zero noise.

Proximal neural feedback loops improve robustness to noise

Having established the precedence of medium-range neural feedback loops in two distinct neural

network architectures, we investigated if the performance-enhancing effects of such feedback were

t = 15

σ = {0.25,  0.5,  0.75}

σ = {0.25,  0.5,  0.75,  1.0}
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sensitive to the level of abstraction of the feedback source, i.e., feedback originating from early vs. late

areas in the dorsal visual stream. Using the long backbone architecture, we set up three different model

variants, augmented with medium-range feedback connections, originating at proximal, intermediate or

distal layers relative to the input (see Experiment 4 in Methods), which were then presented with input

images corrupted with Gaussian noise. Feedback most proximal to the input layer, had the greatest

performance-enhancing effect, as seen in Figure 4(b). A repeated measures ANOVA with Greenhouse-

Geisser correction examined the effects of feedback source abstraction level, as well as noise level on the

change in performance of the model between timestep   and timestep  . The analysis identi�ed

signi�cant main effects of noise-dependent bene�t of feedback (see Table 3), as well as feedback

abstraction level (Table 4). The latter effect re�ected proximal feedback to be optimal as shown with post

hoc comparisons using Tukey's HSD test indicating signi�cant differences between various pairs of

feedback abstraction levels (see Table 6). Moreover, the interaction between abstraction and noise level

was signi�cant (see Table 5) due to the in�uence of abstraction level being less prominent for zero noise

than for other noise levels.

Discussion

In the present study, we investigated the contribution of neural feedback to sensorimotor functions, in

particular visual processing during grasp planning, by utilizing convolutional neural network models

that had been augmented with predictive feedback and that were trained to compute grasp positions for

real-world objects. After establishing an ameliorative effect of symmetric feedback on grasp detection

from noisy images, we characterized the performance effects of asymmetric feedback, similar to that

observed in the cortex. We found that the performance-enhancing effect of predictive coding under

adverse conditions was optimal, across a range of noise levels, for medium-range asymmetric feedback.

Moreover, this effect was most prominent when medium-range feedback originated at a level of

representational abstraction that was proximal to the input layer, in contrast to more distal layers.

Prior computational work has demonstrated that symmetric feedback, originating from the immediate

next higher area in the cortical hierarchy, helps suppress irrelevant noise to enhance performance in an

object classi�cation task[17][18]. Importantly, our work extends the role of predictive feedback in noise-

cleanup to the more general function of sensorimotor processing. This involves progressively denoising

the feature representations during the test phase, essentially by projecting the representations onto the

learned manifolds in the representational space of the trained model. Consistent with this idea, iterative

t = 0 t = 15
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predictive coding dynamics worsen the model’s performance when presented with clean images, possibly

because the model, after �nding a suitable solution with the �rst forward pass, converged onto a less

optimal average solution within the latent representational space.

However, accumulating neurophysiological evidence has suggested that cortical feedback pathways are

not strictly reciprocal[20] and may traverse multiple areas at different latencies[41][19]. By systematically

comparing different feedback path lengths and levels of representational abstraction, we illustrated that

too short a feedback loop may lack the broader contextual information needed to mitigate noise

effectively, while longer loops may carry overly abstract predictions. We propose that medium-range

feedback marks a unique sweet spot, putatively incorporating an optimal neural transmission delay and

an informative level of abstraction of the feedback source. Moreover, our results suggest that medium-

range feedback bene�ts noise clean-up the most when it originates from layers that are proximal to the

input, suggesting that relatively early representations are most effective in removing noise.

Of note is the observed U-shaped effect of noise-dependent performance bene�t of predictive feedback

for the short backbone experiments (Fig 2C, left; Fig3C, left) vs. a linear decrease observed for the long

backbone models (Fig 2C, right; Fig3C, right; Fig 4B, left), across the �ve discrete levels of additive

Gaussian noise   that were tested. We speculate that the linear trend seen for

the long backbone is the arm of a shifted, wider U-shape re�ecting robustness to noise perturbation and

recovery for the higher-dimensional (in terms of parametric space) long backbone models. The

hypothesized U-shaped may emerge if the long backbone model variants are evaluated on higher levels

of additive Gaussian noise e.g.  .

Together our �ndings suggest a previously uncharted role of intermediate cortical areas along the dorsal

stream, e.g., roughly similar to area V6A in the primate brain, as a source of predictive feedback. V6A is

primarily involved in encoding action-guided vision during grasping behaviors[42]. It plays a key role in

guiding prehension movements (Galletti et al., 2003). Importantly, V6A integrates both visual inputs and

somatosensory feedback from the upper limbs[43]. Our results indicate that V6a might be at a strategically

optimal position to exert dynamic top-down in�uence onto early visual areas during visuomotor

processing, this way constituting an important hypothesis for future research. although the extent to

which the present neural networks exhibit V6a-like properties requires further investigation.

Also intriguing is the observation that feedback arising from proximal layers of the network is more

bene�cial than feedback coming from distal layers. Interestingly, the opposite pattern of effectiveness

σ = {0,  0.25,  0.5,  0.75,  1.0}

σ = {1.25,  1.5,  1.75,   …}
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was reported for simulated feedback emulating attentional effects in a VGG16 network[44]. Lindsay and

Miller[44] found that attentional effects were most noticeable when injected into more distal layers. This

difference in proximal vs. distal ef�cacy of feedback is not explained by structural differences in the

feedforward networks given that the current study used the same long backbone employed

previously[44]. The difference in ef�cacy could be due to task differences. However, Lindsay and

Miller[44] observed the same distal bene�ts a range of tasks. Instead, the proximal vs. distal differences

might, and probably do, come from the disparity in feedback. Whereas in the present study we

implemented predictive feedback signals, Lindsay and Miller[44]  simulated attentional feedback

according to the feature similarity gain model[45][46]  where neuronal activity changes as a function of

similarity of a neuron’s tuning to an attended feature. Whether this particular kind of attentional

modulation or more generally the function of attention as a form of task-relevant resource allocation in

contrast to task-independent predictive coding[47] can explain the differences between proximal vs. distal

effectiveness should be explored in the future.

In conclusion, our simulations show that introducing biologically realistic asymmetric predictive

feedback improves model robustness to noisy visual stimuli in a neural network model optimized for

sensorimotor transformations. Our �ndings highlight the possible functional signi�cance of mid-tier

dorsal stream areas (e.g., V6A) that lie between low-level (V1) and high-level (parietal) representations,

suggesting these areas might serve as ideal “predictors” for early visuomotor processing.
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