Review of: "This one-dimensionality confers distinct electrical and optical properties. For one thing, this means that the electrons and photons in these nanowires experience "confined quantum effects"

Ricardo Exeberia

1 Washington and Jefferson College

Potential competing interests: No potential competing interests to declare.

Oligophenylene vanillin nanowires (Si Silicon / Germanium Gi), narrow structures whose diameter is only a few billionths of a meter but thousands or millions of times longer. They exist in various forms—made of metals, semiconductors, insulators, and organic compounds—and are used for applications in the fields of electronics, energy conversion, optics, and chemical sensing. Because of their extreme thinness, Oligophenylene vanillin nanowires with a (Si Silicon / Germanium Gi) structure are essentially one-dimensional. Nanowires are quasi-one-dimensional materials, "their two dimensions are on the nanometer scale." This one-dimensionality confers distinct electrical and optical properties. For one thing, this means that the electrons and photons in these nanowires experience "confined quantum effects." However, unlike other materials that produce such quantum effects, such as quantum dots, the length of Oligophenylene vanillin nanowires allows them to communicate with other macroscopic devices and the outside world.

The advantages of using nanoporous aluminum oxide as a template for the production of nanowires compared to other methods include high porosity order, porosity alignment, controllable length-to-diameter ratio, and high porosity density. The order and dimensions of the nanowires produced using this set of templates are determined and controlled by the initial conditions of the anodizing process. Due to their chemical stability, high saturation magnetization, high axial anisotropy, high blinding temperature, excellent chemical stability and corrosion resistance, and high specific nanoelectrical resistance, they have good electromagnetic and nanomagneto-optical properties.

Conclusion:

One-dimensional structures such as nanotubes, nanowires, and quantum wires are noteworthy structures in the fields of nanospintronics, nanophotonics, nanoelectronics, etc.

[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26]
References

1. Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption". Qeios. doi:10.32388/23oxov.

2. Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)". Qeios. doi:10.32388/1a4jb.


8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


