
Qeios PEER-APPROVED

v1: 11 July 2024 Research Article

New Approximate Symmetry

Theorems and Comparisons with Exact

Symmetries

Preprinted: 4 March 2024

Peer-approved: 11 July 2024

© The Author(s) 2024. This is an
Open Access article under the CC BY

4.0 license.

Qeios, Vol. 6 (2024)

ISSN: 2632-3834

Mehmet Pakdemirli1

1. Mechanical Engineering Department, Celal Bayar University, Turkey

Three new approximate symmetry theories are proposed. The approximate symmetries are

contrasted with each other and with the exact symmetries. The theories are applied to nonlinear

ordinary differential equations for which exact solutions are available. It is shown that from the

symmetries, approximate solutions as well as exact solutions in some restricted cases can be

retrieved. Depending on the speci�c approximate theory and the equations considered, the

approximate symmetries may expand the Lie Algebra of the exact symmetries, may be a

perturbed form of the exact symmetries, or may be a subalgebra of the exact symmetries. Exact

and approximate solutions are retrieved using the symmetries.
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1. Introduction

Lie Group theory [1][2][3] is a systematized and uni�ed approach in search of analytical solutions of

differential equations. It is a generalized approach for �nding solutions of especially nonlinear

differential equations and has the capability of producing results obtained by other ad-hoc

methods. The perturbation method  [4]  is another powerful technique employed in search of

approximate symmetries for over a century. Attempts to combine these powerful techniques

appeared in the literature. In the case of perturbed equations, depending on the speci�c equation,

the exact symmetries may not be suf�cient to extract enough solutions. To extend the Lie Algebra

and to construct further solutions, many approximate symmetry theories were proposed.

There are three main theories of approximate symmetries and a number of variants of these

methods. The �rst method (Method I) is due to Baikov et al. [5][6] in which the symmetry generator

is expanded in a perturbation series without expanding the dependent variable. On the contrary, in

the second method due to Fushchich and Shtelen  [7]  (Method II), the dependent variable is

expanded in a perturbation series, and the equations form a coupled system when separated with

respect to orders. The approximate symmetry is then de�ned to be the exact symmetry of these

coupled systems. In this method, since the number of dependent variables increases, the algebra for

determining symmetries becomes rather involved. By assuming a linear unperturbed part and a

nonlinear perturbed part for the differential equations, the hierarchical equations appearing in a

separated block can be viewed as a linear non-homogeneous equation with a known function for

the non-homogeneous part. This assumption drastically reduces the algebra, and the approximate

symmetries of the nonlinear perturbed equation correspond to the exact symmetries of the linear

non-homogeneous equation [8][9] (Method III). The three methods were contrasted with each other,

and the advantages and disadvantages were outlined by applying the methods to the potential

Burgers equation [8], creeping �ow equations of a second-grade �uid [8] and an ordinary differential

equation with quadratic nonlinearity [9]. A more theoretical basis for the comparisons of Method I

and Method II was later presented [10].

Many papers have appeared in the literature applying the three methods to differential equations

arising from mathematical physics. While a complete list of all work on the applications of the

symmetry methods is beyond the scope of this study, a partial list will be given for the applications:

Method I is applied in references  [11][12][13][14][15][16][17][18][19], Method II in references  [19][20][21][22]

[23][24][25][26][27][28][29][30][31][32] and Method III in references [33][34][35]. A Matlab package [36] was
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developed to symbolically compute approximate symmetries for all three methods. Noetherian

symmetries are another alternative to the conventional Lie Group symmetries, which involve

Lagrangians. Approximate Noether symmetries were also calculated for mathematical physics

models  [37][38][39][40][41][42]. Exterior calculus is the other alternative to the classical Lie Group

methods for calculating symmetries. The pioneering work on the topic is due to Harrison and

Estabrook [43] and was later employed by others [44][45][46][47]. The approximate symmetry version

of the exterior calculus approach was also presented [48][49]. The Approximate Homotopy Symmetry

method is another approach developed in search of approximate symmetries [50][51][52].

In this work, three new approximate symmetry de�nitions are given for the �rst time. The exact

symmetries and the approximate symmetries by the new three methods are contrasted with each

other for sample ordinary differential equations whose exact solutions are known. Exact and

approximate group invariant solutions are derived using the symmetries of each method. The new

methods may extend the Lie Algebra, may be perturbed expansions of the exact symmetries, or

may be a subgroup of the exact symmetries depending on the method used and the speci�c

equation considered. The approximate symmetries are capable of retrieving approximate solutions

as well as exact solutions.

2. Approximate Symmetry Theories

Three new de�nitions for approximate symmetries will be given in this section for the �rst time.

The de�nitions have some differences from each other, which leads to different symmetry

generators. To distinguish them from the Approximate Symmetry Theorems I-II and III discussed

in the introduction, the new ones are numbered as IV-V and VI.

Approximate Symmetry De�nition IV

For the k’th order perturbed nonlinear ordinary differential equation

with    being the perturbation parameter and the Lie Group transformation parameter, the �rst

order approximate symmetry corresponds to

where

is the approximate symmetry generator extended to k’th order with the group transformations

 (2.4)

where

Note that in determining the approximate symmetry generator, the whole block of (2.2) is used. In

the case of exact symmetries, equation (2.2) separates into two equations, and the Lie Group

transformation parameter is different from the perturbation parameter.

A slightly different de�nition is suggested below as the Symmetry De�nition V.

Approximate Symmetry De�nition V

For the k’th order perturbed nonlinear ordinary differential equation

F (x,  y,   , , … , ε) = 0y ′ y ′′ y (k) (2.1)

ε

+ εX = 0 F|ε=0  F|ε=0 (2.2)

X = ξ(x,y) + η(x,y) + μ + + … + + μ
∂

∂x
∂
∂y

∂
∂ε

η1 ∂
∂y1

ηk
∂

∂yk

∂
∂ε

(2.3)

= x + εξ(x,y, ε)x∗

= y + εη(x,y, ε)y∗

= + ε (x,y, , ε)y∗
1 y1 η1 y1

⋮

= + ε (x,y, , … , , ε)y∗
k

yk ηk y1 yk

= εμμ∗

= ,   = − ,   = + + + … +  □yk y (k) ηk
Dηk−1

Dx
yk

Dξ

Dx

D

Dx

∂
∂x

y1
∂
∂y

y2
∂

∂y1
yk+1

∂
∂yk

(2.5)

F (x,  y,   , , … , ε) = 0y ′ y ′′ y (k) (2.6)
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with    being the perturbation parameter and the Lie Group transformation parameter, the �rst

order approximate symmetry corresponds to

where

is the approximate symmetry generator extended to k’th order with the group transformations

 (2.9)

where

In the above version, the block, i.e., Eq. (2.2), is separated into two parts. It is still different from the

exact symmetry de�nition, since the Lie Group transformation parameter is different from the

perturbation parameter in the exact symmetry case. Also, in the exact case  , whereas in this

de�nition, the unperturbed equation satis�es the condition    which is merely an

approximation of the original equation, namely the unperturbed equation itself. Note also that the

in�nitesimals   and   do not contain the perturbation parameter as an argument, while

this is not the case for Approximate Symmetry Method IV.

A variant of the fourth de�nition may also be proposed where the Lie Group parameter is not the

perturbation parameter.

Approximate Symmetry De�nition VI

For the k’th order perturbed nonlinear ordinary differential equation

with   being the perturbation parameter and   being the Lie Group transformation parameter, the

�rst order approximate symmetry corresponds to

where

is the approximate symmetry generator extended to k’th order with the group transformations

 (2.14)

where

ε

X = 0 when  = 0 F|ε=0  F|ε=0 (2.7)

X = ξ(x,y) + η(x,y) + μ + + … + + μ
∂

∂x
∂
∂y

∂
∂ε

η1 ∂
∂y1

ηk
∂

∂yk

∂
∂ε

(2.8)

= x + εξ(x,y)x∗

= y + εη(x,y)y∗

= + ε (x,y, )y∗
1 y1 η1 y1

⋮

= + ε (x,y, , … , )y∗
k

yk ηk y1 yk

= εμμ∗

= ,   = − ,   = + + + … +  □yk y (k) ηk
Dηk−1

Dx
yk

Dξ

Dx

D

Dx

∂
∂x

y1
∂
∂y

y2
∂

∂y1
yk+1

∂
∂yk

(2.10)

F = 0
= 0 F|ε=0

ξ(x,y) η(x,y)

F (x,  y,   , , … , ε) = 0y ′ y ′′ y (k) (2.11)

ε α

+ αX = 0 F|α=0  F|α=0 (2.12)

X = ξ(x,y) + η(x,y) + + … +
∂

∂x
∂
∂y

η1 ∂
∂y1

ηk
∂

∂yk
(2.13)

= x + αξ(x,y, ε)x∗

= y + αη(x,y, ε)y∗

= + α (x,y, , ε)y∗
1 y1 η1 y1

⋮

= + α (x,y, , … , , ε)y∗
k

yk ηk y1 yk

= ,   = − ,   = + + + … +  □yk y (k) ηk
Dηk−1

Dx
yk

Dξ

Dx

D

Dx

∂
∂x

y1
∂
∂y

y2
∂

∂y1
yk+1

∂
∂yk

(2.15)
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If the two terms in (2.12) are separated, then one obtains the exact symmetries. The idea here is not

to separate the block in search of approximate symmetries. This de�nition indeed is not an

approximate symmetry de�nition in the sense that it does not extend the Lie Algebra of the exact

symmetries, rather produces a subgroup of the exact symmetries. It is included for comparison

reasons and for outlining the importance of selecting the perturbation parameter as the Lie Group

parameter as was done in de�nitions V and VI.

3. Approximate Symmetry Calculations

For a number of ordinary differential equations, symmetries corresponding to the three methods

are calculated together with the exact symmetries (Table 1).
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Equation Exact Symmetry
Approximate

Symmetry IV

Approximate

Symmetry V

Approximate

Symmetry VI

Unsolvable

Unsolvable

+ εy = 0y ′

ηx

+ ε (η − yηy

+ y ) −ξx ε2ξyy
2

= 0

ξ = − + x
μ

2
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− ) y + b
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η = −μxy + a(y)

ξ = a + be−εx
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+ )y + c
1
α e−εx

+ = 0y ′ eεy
ηx

− ( −eεy ηy ξx

− εη) − ξye
2εy

= 0

ξ = − + x
μ

2
x2 a1
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η
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− ) y
1
ε

− x +
1
ε

b1

ξ = ξ(x, y)

η = −ξ + μ
y2

2
+ a(x + y)

ξ = x + b
1
α

η = −
1
εα

+ ε = 0y ′′ y ′ 2

ξ = (ax + b)eεy

+ cx2

+dx + e

η

= (f + )xe−εy c

ε

+g + he−εy

+
a

ε
eεy

ξ = ax + b

η = (2a − ) y
1
ε
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ξ = x + )y(a2 a3

+ + x +c1x
2 b1 b2

η = (2 − μ)a2
y2

2

+ x + )y + x(c1 c2 d1
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ξ = x + a
1

2α

η = b

− 2ε = 0y ′′ yy′ 
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η = −ay
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1
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= ( + x
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3
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+ ) ya3
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1
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x
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ξ

= ( + ) ya1e
x a2e

−x

+ +b1 b2e
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−2x

η
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−x y2

+ ( +c1 b2e
2x

− ) yb3e
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x d2e

−x
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η = 0
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Equation Exact Symmetry
Approximate

Symmetry IV

Approximate

Symmetry V

Approximate

Symmetry VI

Table 1. Exact and Approximate Symmetries

From the symmetries, for the speci�c problems considered, some conclusions can be given:

For �rst-order equations:

In the case of exact symmetries, usually the determining equation for the in�nitesimals cannot

be separated and remains unsolvable, unless some further simplifying assumptions are made.

On the contrary, the in�nitesimals are solvable for the approximate symmetries.

Among the symmetries, the richest symmetry corresponds to the approximate symmetry V case

for �rst-order equations.

For the higher-order equations:

For the equation  , while the exact and approximate symmetry V possess 8-

parameter Lie Group transformations, the other symmetries possess fewer parameters.

For the equation  , if the exact symmetry is expanded in a Taylor series up to O(ε),

the approximate symmetry V result can be retrieved.

For the last 3 equations, approximate symmetries IV and V are richer than the exact symmetries.

For the equation  , while the exact symmetries are one-parameter, the

approximate symmetry IV contains 3 parameters, and the approximate symmetry V contains 8-

parameter Lie Group transformations.

As a general rule, approximate symmetry VI is a subalgebra of exact symmetries if not equal.

As a general rule, approximate symmetry V produces the richest symmetries among the

approximate ones.

4. Solutions

Using the symmetries, group-invariant solutions are constructed for the four problems and listed in

Table 2. In the table, the exact and one-correction-term approximate solutions of the problem are

given �rst, and the speci�c symmetries to retrieve the results are given. The equation to be solved

is

Substituting the outcome into the original equation to satisfy it and then applying the initial

conditions, the approximate and exact solutions are obtained.

= εf( , )y ′′′ y ′ y ′′
ξ = a

η = b

ξ = x +a1 a2

η = (3 − ) ya1
1
ε

+ + x +b1x
2 b2 b3

ξ = + xxa1
2 a2

+ a3

η

= (2 x + + c) ya1 a2

+ + x +b1x
2 b2 b3

ξ = 0

η = 0

+ ε = 0y ′′ y ′ 2

+ ε = 0y ′′ y ′ 2

− y + ε = 0y ′′ y2 

= .
dx

ξ(x,y)

dy

η(x,y)
(4.1)

qeios.com doi.org/10.32388/JUPE8T.2 6

https://www.qeios.com/
https://doi.org/10.32388/JUPE8T.2


Equation

Exact and

Approximate

Solutions

Exact

Symmetry

Approximate

Symmetry IV

Approximate

Symmetry V

Approximate

Symmetry VI

Retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Not directly

retrievable

Table 2. Group Invariant Solutions

Regarding the retrieval of solutions, approximate symmetries IV and V perform better than

approximate symmetry VI in most cases. Approximate symmetry VI cannot produce approximate

solutions for all the problems considered since it produces a subgroup of the exact symmetries. In

most cases, the approximate symmetries also lead to the exact solutions. This is because the

dependent variable is not expanded in a perturbation series, a feature observed in Approximate

Symmetry I theory due to Baikov et. al. [5][6] also, which can be questioned from the perturbation

theory point of view [8]. In contrast to this similarity, the main difference between the mentioned

Method I  [5][6]  and the approximate symmetry theories presented here is that the generator is

expanded in a perturbation series in the former case, while it is not expanded in a series in the ones

presented here.

+ εy = 0y ′

y(0) = 1

=ye e−εx

ξ = a2

η = − y
1
ε

ξ = b

η = y

ξ = be−εx

η = −εb ye−εx

= 1 − εxya

ξ = a2

η = b

ξ = 1

η = a

+ = 0y ′ eεy

y(0) = 0

= − ln(1ye
1
ε

+ εx)

ξ = x + b
1
α

η = −
1
εα

= −x + εya
x2

2

ξ = a2

η = − x +
1
ε

b1

+ εy ′′ y ′ 2

= 0

y(0) = 0

(0) = 1y ′

= ln(1ye
1
ε

+ εx)

ξ = dx + e

η = h

ξ = ax + b

η = d

ξ = x +b1 b2

η = d2

ξ = x + a
1

2α

η = b

= x − εya
x2

2

ξ = e

η = x + h
c

ε

ξ = b

η = cx + d

ξ = b2

η = x + dd1 2

− 2εy ′′ yy′ 

= 0

y(0) = 1

(0) = εy ′

=ye
1

1 − εx

ξ = ax + b

η = −ay

ξ = x +a2 a3

η

= (2 − ) ya2
1
ε

ξ = x +b1 b2

η = yc2

ξ = ax + b

η = −ay

= 1 + εxye

ξ = a3

η = b2

ξ = b2

η = d2
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5. Concluding Remarks

Based on this study and the previous work on approximate symmetry theories [5][6][7][8][9][10], the

following conclusions can be made

If the goal is to produce only the approximate solutions, Method II [7] and Method III with less

algebra [8] are recommended, since those methods are more consistent with perturbation theory

and directly lead to the approximate solutions.

If the goal is to produce both the approximate and exact solutions, Method I [5][6] and Methods

IV and V presented in this study can be employed.

Among the new three approximate methods, Method V is recommended for second and higher

order equations most, since it leads to richer symmetries.

For �rst-order differential equations, however, Method IV leads to simpler and solvable

symmetry in�nitesimals than those of exact symmetry and Method V cases.

Method VI corresponds to the subgroup of the exact symmetries which leads to the group

invariant solutions.

The work can be extended directly to include partial differential equations. A comparison of the

symmetries and solutions for partial differential equations is a further research topic in the

future.
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