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Abstract  It is generally accepted that one of the main causes of the replication crisis in scientific 
research is some of the most commonly used statistical methods, such as null hypothesis 
significance testing (NHST).  This has prompted many scientists and statisticians to call for 
statistics reform.  As a practitioner in the fields of hydraulics and measurement science, the author 
used statistical methods extensively in many environmental engineering and hydrological survey 
projects.  The author strongly concurs in the need for statistics reform.  This paper offers a 
practitioner’s perspective on statistics reform.  In the author’s view, some statistical methods 
are good and should withstand statistics reform; some are bad and should be abandoned and 
removed from statistics textbooks and computer software packages.  This paper focuses on two 
statistical methods derived from the t-distribution: the two-sample t-test and the t-interval method 
for measurement uncertainty calculation.  We show why these two methods should be abandoned.  
We recommend using descriptive statistic analysis as an alternative to the two-sample t-test and an 
unbiased estimation method as an alternative to the t-interval method for measurement uncertainty 
calculation.  Two examples are provided to demonstrate the recommended alternatives. 
 
Keywords Effect size, point estimation, statistical methods, statistics reform, t-intervals, t-tests, 
measurement uncertainty 
 
1. Introduction 
 
In recent years, the scientific community has become increasingly concerned about the replication 
crisis.  It is generally accepted that one of main causes of the replication crisis is some of the most 
commonly used statistical methods.  Specifically, the suite of null hypothesis significance testing 
(NHST) and its associated p-values, and claims of statistical significance, have come in most to 
blame (Nuzzo 2014).  Siegfried (2010) wrote, “It’s science’s dirtiest secret: The ‘scientific method’ 
of testing hypotheses by statistical analysis stands on a flimsy foundation.”  Siegfried (2014) stated, 
“statistical techniques for testing hypotheses …have more flaws than Facebook’s privacy policies.”  
Therefore, many authors suggested retiring or abandoning statistical significance and p-values (e.g. 
Amrhein et al. 2019, McShane et al. 2018, Halsey 2019, Wasserstein and Lazar 2016, Wasserstein 
et al. 2019). Basic and Applied Social Psychology has officially banned the NHST procedures 
since 2015 (Trafimow and Marks 2015).  Furthermore, many scientists and statisticians call for 
statistics reform (e.g. Wagenmakers et al. 2011, Haig 2016, Colling and Szűcs 2021).  Cumming 
(2014) proposed ‘New Statistics’ as a form of statistics reform.  The ‘New Statistics’ he proposed 
mainly includes (1) abandoning the NHST procedures and (2) using the estimation of effect sizes 
and confidence intervals.  Normile et al. (2019) introduced the new statistics in the classroom.  
Claridge-Chang and Assam (2016) suggested replacing significance testing with estimation 
statistics.  Very recently, a co-published editorial of 14 physiotherapy journals (Elkins et al. 2022) 
“… advises researchers that some physiotherapy journals that are members of the International 
Society of Physiotherapy Journal Editors (ISPJE) will be expecting manuscripts to use estimation 
methods instead of null hypothesis statistical tests.”  Although some authors still defend NHST 
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and p-values (e.g. Benjamini et al. 2021, Hand 2022, Lohse 2022), “A paradigm shift away from 
null hypothesis significance testing seems in progress (Berner and Amrhein 2022).” 

As a practitioner in the fields of hydraulics and measurement science, the author has used 
statistical methods extensively in many environmental engineering and hydrological survey 
projects (citation omitted).  Especially, the author processed thousands of small samples collected 
in streamflow measurements using acoustic Doppler current profilers (ADCPs).  An ADCP 
streamflow measurement usually involves a few of observations (typically 4).  According to 
statistics textbooks and Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM 
2008), the uncertainty of the sample mean of a small sample should be calculated using the t-
interval method.  However, the author (Huang 2010) was puzzled by the fact that the t-based 
uncertainty (i.e. the half-width of the t-interval) was unrealistic and misleading, which leads to the 
so-called “uncertainty paradox” (Huang 2010, 2018a) and a high false rejection rate in the quality 
control of ADCP streamflow measurements (Huang 2014). 

The author is not the only one to question the t-interval method for measurement 
uncertainty calculation.  Jenkins (2007) also discovered that the t-based uncertainty has large bias 
and precision errors.  D’Agostini (1998) showed an example: “…having measuring the size of this 
page twice and having found a difference of 0.3 mm between the measurements… Any rational 
person will refuse to state that, in order to be 99.9% confidence in the result, the uncertainty 
interval should be 9.5 cm wide (any carpenter would laugh…).  This may be the reason why, as 
far as I known, physicists don’t use the Student distribution.”  Moreover, Ballico (2000) reported 
an important counterinstance of the t-interval method for uncertainty calculation during a routine 
calibration at the CSIRO National Measurement Laboratory (NML), Australia.  A thermometer 
was calibrated for 1 mK range (higher precision) and 10 mK range (lower precision) and the 
uncertainty was estimated using the WS-t approach (WS standards for Welch-Satterthwaite 
formula, t stands for the t-interval). It was intuitive and expected that the thermometer in the higher 
precision range (1 mK) should have a lower uncertainty than the thermometer in the lower 
precision range (10 mK).  However, the WS-t approach gave a counter-intuitive result: the 
estimated uncertainty for the 1 mK range was 37.39, which was greater than 35.07, the estimated 
uncertainty for the 10 mK range! This counter-intuitive result was later referred to as the Ballico 
paradox (Huang 2016). 

Practitioners in science and industry rely on statistical methods in their work.  Bad 
statistical methods can harm their work.  Ziliak and McCloskey (2008) showed in their 322-page 
book that “Statistical significance is an exceptionally damaging one.”  However, the author’s 
impression over the years is that, practitioners are often accused of misunderstanding and misusing 
certain statistical methods or concepts, especially p-values.  This is not fair!  In the author’s 
opinion, if a statistical method or concept is easily and often misunderstood or misused, and even 
our schools fail to teach it properly, then there must be something wrong with that method or 
concept.  Trafimow (2023) stated, “NHST is problematic anyway even without misuse.” And 
“There is practically no way to use them [p-values] properly in a way that furthers scientific 
practice.”  While the debate about the NHST procedures continues, one thing is certain: the NHST 
procedures (including the t-test) have failed the test of time after about 100 years. 
 We understand that no statistical method is perfect, nor can any statistical method be used 
without limitations or conditions.  However, the author’s own experience and that of some other 
practitioners have shown that some statistical methods are good and useful, such as least squares 
method and point estimation, but some statistical methods are bad, such as the t-interval method 
for measurement uncertainty calculation.  The coexistence of good and bad statistical methods can 
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confuse practitioners.  In particular, many (if not most) practitioners may not be able to tell that 
certain statistical methods are bad, flawed, or controversial, and continue to use them.  Therefore, 
the author strongly concurs in the need for statistics reform.  This paper offers a practitioner’s 
perspective about statistics reform.  We argue that good methods should withstand statistics reform 
and bad methods should be abandoned and removed from statistics textbook and computer 
software packages.  This paper focuses on two statistical methods derived from the t-distribution: 
the two-sample t-test and the t-interval method for measurement uncertainty calculation.  We will 
show why these two methods should be abandoned and what the alternatives are. 

In the following sections, Section 2 briefly reviews some examples of good statistical 
methods that should withstand statistics reform.  Section 3 discusses why the two-sample t-test 
should be abandoned.  Section 4 describes an alternative method to the two-sample t-test.  Section 
5 discusses why the t-interval method for measurement uncertainty calculation should be 
abandoned.  Section 6 describes an alternative method to the t-interval method for measurement 
uncertainty calculation.  Section 7 provides conclusion and recommendation. 
 
2. Examples of good statistical methods that should withstand statistics reform  
 
In the author’s opinion, a good statistical method should have the following characteristics:  (a) to 
have clear mathematical meaning and can be easily understood even by those without advanced 
statistics training; (b) to give realistic results in real-world applications; and (c) to be less 
controversial in the scientific community.  Ideally, a good statistical method might be related to a 
physical principle or has physical meaning.  There are many good statistical methods that are used 
frequently in practice, four examples of which are listed below. 
 

• Method of least squares 
• Method of maximum likelihood 
• Central Limit Theorem 
• Akaike information criterion (AIC) 

 
Perhaps, the method of least squares is one of the most commonly used statistical methods in 
practice; it is hardly controversial in the scientific community.  Importantly, the method of least 
squares conforms to the principle of minimum energy, one of the fundamental principals in 
physics.  The sum of squared errors can be regarded to represent the internal energy of the system 
under consideration, which must approach the minimum value at equilibrium. 

The method of maximum likelihood is another most commonly used statistical methods.  
It is also hardly controversial in the scientific community.  The method of maximum likelihood is 
intuitive:  “The likelihood supplies a natural order of preference among the possibilities under 
consideration (Fisher 1956).”  Accordingly, the mode of a likelihood function corresponds to the 
mostly preferred parameter value given the data (Huang 2022).  This idea does not require 
advanced knowledge of statistics to understand.  In addition, the method of maximum likelihood 
is essentially consistent with the method of least squares. 

The Central Limit Theorem states that, given a sufficiently large sample size, the sampling 
distribution of the sample mean will approximately be a normal distribution, regardless of the 
original distribution.  Since error is the difference between the true value and the measured value 
(e.g. the sample mean), the Central Limit Theorem confrorms to the law of error, which is one of 
the most important laws in statistics and measurement science. 
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The Akaike information criterion (AIC) builds on the concept of entropy in information 
theory.  A minimum AIC model is the model that minimizes the information loss among a set of 
candidate models.  The AIC is essentially consistent with the method of maximum likelihood or 
the method of least squares. 
 Of course, good statistical methods such as the four motioned above should withstand 
statistics reform.  
 
3. Why should the two-sample t-test be abandoned? 
 
Perhaps, the two-sample t-test is the most commonly used procedure among the NHST procedures.  
Therefore, if we abandon the NHST procedures, the two-sample t-test should be abandoned first.  
However, the reasons for abandoning the two-sample t-test do not appear to be explicitly discussed 
in the literature, other than some general discussions and debates about the problems of the NHST 
procedures and associated p-values.  It is important to note that p-values are output of statistical 
methods, such as the two-sample t-test.  Therefore, the problem with p-values is not just about p-
values.  The problem of p-values should be tracked back to the statistical method that generated 
the p-values.  In this section, we address two main issues with the two-sample t-test: rationale and 
performance.  We argue that these two issues should explain why the two-sample t-test should be 
abandoned.  
 
3.1 Rationale issue: the two-sample t-test is philosophically misleading 
 
The two-sample t-test is philosophically misleading.  Suppose we have two datasets (groups): A 
and B.  Group A is the result (data) from treatment A and Group B is the result (data) from 
treatment B.  We are interested in whether treatment A is superior to treatment B, or vice versa.   
In the standard NHST setting for a two-sample t-test, we assume a null hypothesis (a “strawman”): 
the unknown population means of the two groups are the same, and also assume an alternative 
hypothesis: the two means are different.  Then, we use the two-sample t-test generates a p-value.  
If p<0.05, we infer that the deference between the two group means is “statistically significant”, 
i.e. the “strawman” is disproven.  Clearly, the two-sample t-test does not answer our question about 
“whether treatment A is superior to treatment B, or vice versa?”  Instead, it misleads us into 
considering whether treatment A is different from treatment B based on the “statistical significance” 
quantified by an arbitrary threshed p-value (e.g. 0.05).  Therefore, the rationale behind the two-
sample t-test is wrong.  In practice, we know that treatment A is different from treatment B just by 
looking at the data or two group means.  Therefore, there is no need to assume the null and 
alternative hypotheses.  In other words, we do not need a “strawman” (the null hypothesis) and 
then try to disprove it; we can directly assess the practical significance of the difference between 
the two groups based on our domain knowledge.  We can further perform a probabilistic analysis 
to determine the probability that treatment A is superior to treatment B (or vice versa).  
 
 
 
3.2 Performance issues: uncertainty, inconsistency, and dependence on sample size 
 
Even if we accept its rationale and use it for comparing the means of two groups, the two-sample 
t-test cannot provide reliable results.  This can be understood by looking at the behaviors of the p-



5 
 

value generated from the two-sample t-test.  First, like any sample statistics, the p-value has 
uncertainty.  Halsey et al. (2015) discussed the uncertainty associated with the p-value of two-
sample t-tests through simulations.  Their simulation results showed that “a major cause of the lack 
of repeatability is the wide sample-to-sample variability in the P value.”  They stated, “As we have 
demonstrated, however, unless statistical power is very high (and much higher than in most 
experiments), the P value should be interpreted tentatively at best. Data analysis and interpretation 
must incorporate the uncertainty embedded in a P value.”  Lazzeroni et al. (2016) introduced p-
value confidence intervals for the “true population P value” or π value, which they defined as the 
value of P when parameter estimates equal their unknown population values.  They stated, “P 
values are variable, but this variability reflects the real uncertainty inherent in statistical results.”  
 Second, the two-sample t-test may give inconsistent results for essentially the same 
evidence.  Bonovas and Daniele (2023) discussed the inconsistency of the two-sample t-tests in 
two trials of a new drug.  A p-value of 0.11 was obtained in a single-center, randomized, double-
blind, placebo-controlled trial, indicating “no difference” between the active drug and placebo, 
whereas a p-value of 0.001 was obtained in a multi-center trial, indicating “significant difference” 
between the active drug and placebo.  However, the risk ratio was the same in both trials: 0.70, 
indicating that the efficacy of the experimental drug was the same in both trials. 

Third, the p-value generated from a two-sample t-test depends on the sample size; it 
decreases with increasing sample size.  Therefore, p-values can be easily “hacked” through “N-
chasing” (named by Stansbury 2020), which can guarantee the “statistical significance” at any pre-
specified threshold, even if the effect size (e.g. the difference between the means of two groups) 
is very small and has no practical meaning.  Therefore, “N-chasing” is the most effective way of 
p-hacking, leading to false research findings.  In the author’s opinion, the only solution to “N-
chasing” or p-hacking is to abandon the two-sample t-test. 
 
4. Alternative to the two-sample t-test: descriptive statistic analysis 
 
We recommend using descriptive statistic analysis as an alternative to the two-sample t-test. The 
descriptive statistic analysis focuses on the comprehensive presentation of a set of descriptive 
statistics including: effect size (ES), relative effect size (RES), standard uncertainty (SU), relative 
standard uncertainty (RSU), signal-to-noise ratio (SNR), signal content index (SCI), exceedance 
probability (EP), and net superiority probability (NSP).  Each of these eight statistics has a clear 
mathematical or physical meaning and is easy to understand.  The superiority of treatment A over 
treatment B (or vice versa) is measured by ES (or RES) and EP (or NSP).   The reliability of 
the estimated ES (or RES) is measured by SU, RSU, SNR, and SCI.  It is important o note that, 
we do not specify a threshold for any of these descriptive statistics.  Whether the estimated effect 
size is of practical importance should be judged with our domain knowledge with the consideration 
of these eight descriptive statistics.  In addition, the descriptive statistic analysis does not use any 
of the terminology and language used in the NHST paradigm.  Terms like null-hypothesis, 
alternative hypothesis, p-value, statistical significance, and statistical power are gone.  
 
4.1 Effect size (ES) and relative effect size (RES) 
 
Effect size (ES), denoted by |𝛥|, is the absolute deference between the two group means (denoted 
by �̅�! and �̅�", respectively), written as 
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 |𝛥| = �̅�! − �̅�" .	               (1) 

It is important to note that the ES |𝛥| is the so-called “simple” effect size.  It is the raw difference 
between the means of two groups, expressed in the original (physical) unit of the quantity 
of interest; it is not standardized like Cohen’s d.   Because the simple effect size has the 
original (physical) unit, it will nearly always be more meaningful than standardized effect 
size (Baguley 2009).  Schäfer (2023) argued that in their unstandardized form, effect sizes 
are easy to calculate and to interpret.  Standardized effect sizes, on the other hand, bear a 
high risk for misinterpretation.  In real-world applications, our domain knowledge about a 
quantity of interest is related to the physical unit of that quantity.  Therefore, it is easier for 
practitioners to assess the practical significance of effects using the original (physical) unit than 
the dimensionless unit of standardized effect sizes.  Baguley (2009) discussed the advantages of 
using simple effect sizes over standardized effect sizes.  He stated, “For most purposes simple 
(unstandardized) effect size is more robust and versatile than standardized effect size.”  Therefore, 
we do not recommend using any standardized effect size like Cohen’s d.  
 Note also that |𝛥| is the absolute magnitude of the effect.  In practice, we are often 
interested in the relative magnitude of the effect, i.e. relative effect size (RES), defined as 
(Huang 2022) 
 
 RES = |$̅!&$̅"|

$̅#
	,               (2) 

where �̅�' may be calculated as the inverse-variance weighted-average 
 
 
 �̅�' =

𝑥-𝐴
Var(�̅�!)

+
𝑥-𝐵,𝐷

Var(�̅�")
1

Var(�̅�!)
+ 1
Var(�̅�")

	, 

    (3) 

 
where Var(�̅�!) = 𝑠!(/𝑛!  and Var(�̅�") = 𝑠"(/𝑛" ; 𝑠!  and 𝑠"  are the sample standard deviation of 
Group A and Group B respectively; nA and nB are the sample size of Group A and Group B 
respectively.  RES is usually expressed as a percentage. 

Also note that the ES |𝛥| (or RES) is not a function of sample size.  As such, it only 
emphasizes the (treatment) effect rather than confounding the effect with sample size like the two-
sample t-test does.  Increasing sample size has essentially no influence on the ES |𝛥| (or RES), but 
its reliability increases.  Because of this, unlike the p-value of t-tests, which can be easily hacked 
through “N-chasing”, the ES |𝛥| (or RES) cannot be hacked through “N-chasing”. 
 
 
4.2 Standard uncertainty (SU), relative standard uncertainty (RSU), signal-to-noise ratio (SNR), 
and signal content index (SCI) 
 
The ES |𝛥| is a point estimate.  Its reliability must be quantified and assessed.  The descriptive 
statistics SU, RSU, SNR, and SCI can be used to quantify and assess the reliability of the ES	|𝛥|. 

Let 𝑢(𝛥) denote the SU associated with the ES |𝛥|.  It is defined as the standard deviation 
of 𝛥 = �̅�! − �̅�", written as 
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 𝑢(𝛥) = 7Var(Δ) = 7Var(�̅�!) + Var(�̅�")	.               (4) 

In measurement science, SU is a measure of the precision of a measurement.  If we regard the ES 
|𝛥| as a measurement result, 𝑢(𝛥) measures the precision of the estimated ES |𝛥|.  Note that 
𝑢(𝛥) has the same physical unit as |𝛥|. 
 In practice, we are also interested (if applicable) in the relative standard uncertainty 
(RSU), defined as 
 
 RSU = )(+)

|-|
	.               (5) 

The signal-to-noise ratio (SNR) is defined as the ratio between signal energy and noise energy. It 
is commonly quoted for electrical signals, but can be applicable to any form of signal (Huang 
2019a).  For comparing the means of two groups, the ES |𝛥| is the signal and the associated SU 
𝑢(𝛥) is the noise.  Therefore, the SNR can be calculated as 
 
 SNR = .$%&'()

.'*%$+
= -,

),(+)
= ($̅!&$̅"),

/01($̅!)2/01($̅")
	.               (6) 

 
The SNR is related to a statistic called signal content index (SCI) (Huang 2019a).  For 
comparing the means of two groups, the SCI is calculated as 
 
 SCI = .$%&'()

.$%&'()2.'*%$+
= -,

-,2),(+)
= 345

62345
	.               (7) 

 
The SCI has a clear physical meaning; it is the relative amount of signal energy contained in the 
measurement result (Huang 2019a).   

Either the SNR or SCI can be used to measure the reliability of the estimated ES |𝛥|.  
However, since the SCI ranges between 0 and 1, its interpretation is more intuitive than the SNR.  
A high SCI value (e.g. close to 1) indicates that the estimated ES |𝛥| is highly reliable; a low SCI 
value (e.g. close to 0) indicates that the estimated ES |𝛥| is unreliable due to noise. 
 It should be noted that, unlike the ES |𝛥| (or RES), which is independent of sample size, 
the SU 𝑢(𝛥), RSU, SNR, or SCI is a function of sample size.  The larger the samples, the smaller 
the SU and RSU, and the larger the SNR and SCI.  Thus, there is a clear distinction between the 
ES |𝛥| and its reliability measure 𝑢(𝛥), RSU, SNR, or SCI.  In practice, both the ES |𝛥| and its 
reliability measures should be interpreted and assessed based on our domain knowledge. 
 It should also be noted that we do not use confidence interval to quantify the uncertainty 
(or precision) of the ES |𝛥|.  This is because the concept of confidence interval is controversial 
and has been debated in the scientific community for decades (e.g. Karlen 2002, E t z  2015 , 
Morey et al. 2016a,b, Trafimow 2018).  In particular, the t-interval, which is a commonly used 
confidence interval for small samples, is problematic and should be abandoned as discussed in 
Section 5. 
 
4.3 Exceedance probability (EP) and net superiority probability (NSP)  
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The ES |𝛥| measures the true significance of the difference (on average) between two treatments 
A and B.  In other words, it measures the superiority of treatment A over treatment B (assuming 
�̅�! − �̅�" > 0) at the average effect level.  In practice, we are also interested in the superiority at 
the elemental effect level.  That is, we want to compare the elements (scores) in the two groups 
and see how often is that the elements (scores) in Group A are superior to the elements  (scores) 
in Group B (or vice versa). 

The probability that Group A is superior to Group B at the elemental effect level is called 
exceedance probability (EP) defined as (Huang 2022) 

 
 EP7!87" = Pr(𝑋! ≥ 𝑋") = ∫ 𝑝(𝑦)𝑑𝑦9

: ,               (8) 

where 𝑝(𝑦) is the probability density function for the quantity 𝑌 = 𝑋! − 𝑋", 𝑋! is the random 
variable associated with Group A, and 𝑋" is the random variable associated with Group B. 
 The meaning of EP7!87" is essentially the same as that of the following statistics: CLES 
(common language effect size) (McGraw and Wong 1992), PS (probability of superiority) (Vargha 
and Delaney 2000, Grissom and Kim 2001), AUC (area under the receiver operating characteristic) 
or A for its nonparametric version (Delaney and Vargha 2002, Ruscio and Mullen 2012).  It should 
be pointed out that the calculation of CLES requires the standard parametric assumptions of 
population normality and equal variances, while the calculation of EP7!87"  does not require 
normality and homoscedasticity assumptions.  In this regard, CLES is an approximation of 
EP7!87".  In addition, CLES should not confuse practitioners because of its name; CLES is a 
probability, not an effect size.  
 Assume that both 𝑋! and 𝑋" are normally distributed with unknown mean and variance. 
The estimated distribution of XA is 𝑁(�̅�!,

;!
<-,/!

) and the estimated distribution of XB is 𝑁(�̅�" ,
;"
<-,/"

), 

𝑐=,?  is the bias correction factor, 𝑐=,? = I (
?&6

@A/,B

@A/01, B
, and Г(.) stands for Gamma function 

(Wadsworth 1989).  In addition, the estimated distribution of 𝑌 = 𝑋! − 𝑋" is 
 

 𝑌~𝑁K(�̅�! − �̅�"), 7Var(𝑋!) + Var(𝑋")L.               (9) 

Then, EP7!87" can be calculated as (Huang 2023a) 
 

 EP7!87" = Pr(𝑍 ≥ −𝑒C) = 1 − Φ(−𝑒C) = Φ(𝑒C),	               (10) 

where e’ is calculated as 
 
 𝑒′ = $̅!&$̅"

DE 2!
3-,/!

F
,
2E 2"

3-,/"
F
,
	.               (11) 

 
On the other hand, the EP for 𝑋" ≥ 𝑋! can be calculated as 
 
 EP7"87! = Pr(𝑍 ≥ 𝑒C) = 1 − Φ(𝑒C) = Φ(−𝑒C).               (12) 
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Furthermore, the net superiority probability (NSP), denoted by	𝜉, is related to the exceedance 
probabilities as (Huang 2023a) 
 
 𝜉 = EP7!87" − EP7"87! .               (13) 

Although Eq. (13) is based on the normality assumption, it is considered as a general definition of 
the NSP for any distribution of XA and XB (Huang 2023a). 

It is important to note that the EP or NSP is only a very weak function of sample sizes 
due to the bias correction factor 𝑐=,?.  Therefore, like the ES |𝛥|, the EP or NSP cannot be 
hacked through N-chasing. 

For nonparametric comparison of two groups, the exceedance probability EP!8"  is 
calculated as (Huang 2023a) 
 
 EP!8" =

G!4"
?!?"

	,               (14) 

and the exceedance probability EP"8! is 
 
 EP"8! =

G"4!
?!?"

	,               (15) 

where 𝑈!8" or 𝑈"8! is the U statistic in the Mann–Whitney U test. 
Accordingly, the NSP of Group A over Group B is  

     
 𝜉 = EP!8" − EP"8! =

G!4"	&	G"4!
?!?"

	.               (16) 

It is worth mentioning that the concept of exceedance probability (EP) and its analysis have been 
used in many engineering fields.  For example, U.S. EPA (Environment protection agency) (1991) 
established a probabilistic chronic toxics standard: EP=0.0037 to protect aquatic life.  Di Toro 
(1984) performed an exceedance probability analysis of river quality due to runoff.  Huang and 
Fergen (1995) performed an exceedance probability analysis of river BOD (biochemical oxygen 
demand) and DO (dissolved oxygen) concentration due to point load.  Krishnamoorthy et al. (2007) 
used exceedance probability analysis to assesse the exposure level in work environments.  In 
addition, the term “return period” commonly used in hydraulic engineering and hydrology can be 
converted into exceedance probability.  For example, a 100-year flood is equivalent to EP=1%.  
Thus, practitioners in engineering fields are more familiar with the term EP than with the term 
CLES, AUC, or A.  
 
 
4.4 Example: comparison of old and new flavorings for a beverage 
 
Zaiontz (2020) considered the following problem (example).  A marketing research firm conducted 
experiments on the effectiveness of a new flavoring for a beverage.  Eleven people in Group A1 
and ten people in Group A2 tasted the beverage with the new flavoring and ten people in Group B 
tasted the beverage with the old favoring.  The people then took a questionnaire to evaluate how 
enjoyable the beverage was.  The scores for the new flavoring (Group A1 and Group A2) and old 
flavoring (Group B) are shown in Table 1.  The sample mean and standard deviation for each group 
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are shown in Table 2.  
 
Table 1 Scores of the three groups in the beverage flavor taste experiments 

New flavoring (Group A1) New flavoring (Group A2) Old flavoring (Group B) 
13 20 12 
17 32 8 
19 2 6 
10 25 16 
20 5 12 
15 18 14 
18 21 10 
9 7 18 
12 28 4 
15 40 11 
16   

 
 
Table 2 Sample means and standard deviations of the three groups in the beverage flavor taste 
experiments 

 New flavoring 
(Group A1) 

New flavoring 
(Group A2) 

Old flavoring 
(Group B) 

Sample mean 14.91 19.80 11.10 
Sample standard deviation 12.89 12.27 4.33 

 
 
Zaiontz (2020) performed the two-sample t-test (two-tailed) to determine whether there was a 
significant difference between the two flavorings.  He obtained a p-value of 0.04 in the two-sample 
t-test for Group A1 versus Group B.  He then rejected the null hypothesis at α=0.05, and concluded 
that there was a significant difference between the two flavorings. That is, the new flavoring was 
significantly more enjoyable.  On the other hand, Zaiontz (2020) obtained a p-value of 0.05773 in 
the two-sample t-test for Group A2 versus Group B.  He then stated that he could not reject the 
null hypothesis at α=0.05.  That is, there was no significant difference between the two flavorings.  
It is strange that Zaiontz (2020) did not comment the contradictory results given by the two t-tests.  

We examined this example using the descriptive statistic analysis method.  Table 3 shows 
the values of six descriptive statistics.  Table 4 shows the results of the probabilistic analysis based 
on the distribution-based comparison and Table 5 shows the results based on the nonparametric 
comparison. 

 
Table 3 Values of six descriptive statistics for the comparison of beverage flavoring 

Statistic Comparison between 
Group A1 and Group B 

Comparison between 
Group A2 and Group B 

Simple effect size (ES): Eq. (1) |∆| = 3.81 |∆| = 8.70 
Relative effect size (RES): Eq. (2) 28.52% 72.12% 
Standard uncertainty (SU): Eq. (4) 1.75 4.12 
Relative standard uncertainty (RSU): Eq. (5) 45.84% 47.31% 
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Signal-to-noise ratio (SNR): Eq. (6) 4.76 4.47 
Signal content index (SCI): Eq. (7) 0.83 0.82 

 
 
Table 4 Results of the probabilistic analysis based on the distribution-based comparison 

 Comparison between 
Groups A1 and B 

Comparison between 
Groups A2 and B 

Estimated distribution of Y: Eq. (9) 𝑌~𝑁(3.81, 5.78) 𝑌~𝑁(8.70, 13.38) 
Exceedance probability (EP) (A ≥ B): Eq. (10) EP7!87" = 0.745 EP7!87" = 0.742 
Exceedance probability (EP) (B ≥ A): Eq. (12) EP7"87! = 0.255 EP7"87! = 0.258 
Net superiority probability (NSP): Eq. (13) 𝜉 = 0.490 𝜉 = 0.484 

 
 
Table 5 Results of the probabilistic analysis based on the nonparametric comparison 

 Comparison between 
Group A1 and Group B 

Comparison between 
Group A2 and Group B 

Exceedance probability (EP) (A ≥ B): Eq. (14) EP!8" = 0.741 EP!8" = 0.725 
Exceedance probability (EP) (B ≥ A): Eq. (15) EP"8! = 0.259 EP"8! = 0.275 
Net superiority probability (NSP): Eq. (16) 𝜉 = 0.482 𝜉 = 0.450 

 
 
As can be seen from Table 3, the ES is 3.81 and the RES is 28.52% for the comparison of Group 
A1 versus Group B, while the ES is 8.70 and the RES is 72.12% for the comparison of Group A2 
versus Group B.  Our domain knowledge (common sense in this case) tells us the difference 
between the two flavorings is practically significant.  Note that due to the small sample sizes, the 
RSUs are large: 45.84% and 47.31%.  However, the SNRs are large: 4.76 and 4.47, and the SCIs 
are also large: 0.83 and 0.82, indicating that the effect size estimates are reliable.  In other words, 
the experimental data are credible.  

It can be seen from Tables 4 that, the estimated distributions of Y for the two comparisons: 
Group A1 versus Group B and Group A2 versus Group B are significantly different: 
𝑌~𝑁(3.81, 5.78) versus 𝑌~𝑁(8.70, 13.38).  However, the difference in the values of the RSU, 
SNR, SCI, EP7!87", EP!8", and NSP between the two comparisons are not significant.  Thus, the 
two comparisons: Group A1 versus Group B and Group A2 versus Group B should give the same 
conclusion: the new flavoring is better than the old flavoring. 

Note that the values of EPs and NSPs from the distribution-based comparison are consistent 
with the values from the nonparametric comparison.  EP7!87" = 0.745, 0.742, and NSP=0.490, 
0.484 based on the distribution-based comparison, while EP!8" =0.741, 0.725, and NSP=0.482, 
0.450 based on the nonparametric comparison.  These results indicate that the new flavoring is 
significantly superior to the old flavoring. 

Therefore, the comprehensive descriptive statistics given by the descriptive statistic 
analysis suggest that we should be in favor of the new flavoring over the old flavoring. 
 
5. Why should the t-interval method for measurement uncertainty calculation be 

abandoned? 
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In measurement science, the half-width of the t-interval is defined as the Type A expanded 
uncertainty for a measurement with a small number of observations (e.g. JCGM 2008).  It is called 
the t-based uncertainty.  In this section, we discuss two main issues with the t-interval and t-based 
uncertainty: rationale and methodology, which explains why the t-interval method for 
measurement uncertainty calculation should be abandoned.  We also discuss the issues with the t-
distribution, which is the basis of the t-interval and t-based uncertainty. 
 
5.1 Rationale issue: “coverage” is a misleading concept 
 
The rationale behind using the t-interval method for measurement uncertainty calculation is 
“coverage”.  Indeed, “coverage”, as expressed as confidence level or coverage probability, 
is the central concept in Neyman confidence interval theory (Neyman 1935, 1937).  
However, it should be noted that confidence level is not the probability in the mathematical 
sense; it is the so-called “long-term success rate” (e.g. Willink 2010) or “capture rate” (Huang 
2018b).  In Monte Carlo simulation of the t-interval, the success rate or capture rate approaches 
the nominal confidence level (1 − α) asymptotically.  That is, 
 
 
 success	rate	or	captrue	rate = lim

I→9

𝑘
𝑚 = 1 − α	, 

(17) 

 
where m is the total number of the simulated intervals and k is the number of the simulated intervals 
that have captured the true value μ. 
 Therefore, strictly speaking, confidence level is not the mathematical probability that must 
satisfy Kohnogorov’s axioms of probability calculus; it is a relative frequency.  However, 
according to Bunge (1981), “… frequencies alone do not warrant inferences to probabilities …”.  
This is because “… whereas a probability statement concerns usually a single (though possible 
complex) fact, the corresponding frequency statement is about a set of facts and moreover as 
chosen in agreement with certain sampling procedures.” Bunge (1981) argued, “… the frequency 
interpretation [of probability] is mathematically incorrect because the axioms that define the 
probability measure do not contain the (semiempirical) notion of frequency.” 

It is important to note that “coverage” (the frequency of “success” or “capture”) is a 
property of a confidence interval procedure (e.g. the t-interval procedure).  The “coverage” can be 
achieved only in the long run of repeated sampling or simulation; it is meaningless for a confidence 
interval calculated from a sample. 

We must distinguish between the result of a procedure (statistical method) and the coverage 
of the procedure.  In measurement uncertainty analysis, we are interested in the estimated 
uncertainty (measurement precision), which is the result from a procedure.  Kempthorne (1976) 
stated, “…a statistical method should be judged by the result which it gives in practice.”  However, 
“coverage” is not a result given by a statistical method.  Therefore, “coverage” cannot be used to 
judge the method’s performance in practice.  In fact, it would be paradoxical to judge an 
uncertainty estimation method by “coverage” (Huang 2018c)”.   

It should be emphasized that, a confidence interval procedure is merely to generate a 
collection of confidence intervals (called “sticks”) with a stated capture rate for the unknown true 
value (Huang 2018b).  Therefore, the t-interval provides an “exact” answer to the following 
question: “What is the interval procedure with which the population mean μ would be captured by 
1-α of all intervals generated in the long-run of repeated sampling.”  However, this is a wrong 
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question for measurmenet uncertianty analysis.  The purpose of measurement uncertainty analysis 
is to determine (or estimate) the measurement precision.  The right question is: “How we estimate 
measurement precision with a given sample?” (Huang 2018d).  The t-interval procedure is not a 
statistical method for inferring measurement precision.  Morey et al. (2016a) stated, “Claims that 
confidence intervals yield an index of precision, that the values within them are plausible, and that 
the confidence coefficient can be read as a measure of certainty that the interval contains the true 
value, are all fallacies and unjustified by confidence interval theory.” Therefore, the t-interval 
method is actually misused in measurement uncertainty analysis because it is an “exact” answer 
to the wrong question (Huang 2018d). 
 
5.2 Methodological issue: the t-interval or t-based uncertainty is a distorted mirror of physical 
reality 
 
The half-width of the t-interval is written as 𝑈K = 𝑡L/(

;
√?

 (called the t-based uncertainty), where n 
is the number of observations, s is the sample standard deviation, and 𝑡L/( the t-score.  The true 
expanded uncertainty of the sample mean of n observations is written as 𝑈O = 𝑧L/(

P
√?

 and is called 
the z-based uncertainty, where 𝑧L/( is the z-score and 𝜎 is the population standard deviation.  The 
t-based uncertainty artificially dilates uncertainty.  The artificial dilation can be measured by the 
‘dilation factor’ that is defined as the ratio between the expectation of the t-based uncertainty and 
the true expanded uncertainty.  That is (Huang 2018b), 

 
!
!

Dilation	factor =
E(𝑈%)
𝑈&

=
𝑐',(𝑡)
𝑧)

	.! (18) 

 
The dilation factor is extremely high when the sample size is small.  For example, at n=2, the 
dilation factor is 5.17 for the nominal coverage probability 1 − 𝛼 = 0.95 and 19.72 for 1 − 𝛼 =
0.99.  The dilation factor decreases with increasing the sample size.  At n=30, it is 1.03 for 1 −
𝛼 = 0.95 and 1.06 for 1 − 𝛼 = 0.99. 
 It is important to note that the z-based uncertainty 𝑈O = 𝑧L/(

P
√?

 expresses a physical law, 
known as the -1/2 power law.  The -1/2 power law describes the relationship between the random 
uncertainty of the sample mean and the number of observations.!!That is, the random noise of the 
sample mean decreases as the sample size increases, following 1/√𝑛.   The expectation of the t-
based uncertainty Ut is E(𝑈K) = 𝑐=,?𝑡L/(

P
√?

, which significantly deviates from the -1/2 power law 
when the sample size is small as shown in figure 1.   Therefore, the t-based uncertainty or the t-
interval is a distorted mirror of the physical reality.  
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Figure 1.  Uz and E(𝑈K) (normalized by 𝑧L/(𝜎 at 1-α=0.95) on the log-log scales (Huang 2018b) 

 
 
It might be worth mentioning that, prior to Student (William Sealy Gosset), the expanded 
uncertainty (called “probable error” in Student’s 1908 paper) was calculated based on the 
maximum-likelihood estimate of the population variance.  This method significantly 
underestimates the uncertainty when the sample size is small, leading to the relative biases -43.6%, 
-20.2%, -7.7% at n=2, 4, and 10, respectively.  To solve this underestimation problem, Student 
(1908) invented the t-distribution.  However, the t-based uncertainty Ut, derived from the t-
distribution, results in overestimation of the uncertainty, as indicated by the dilation factor, Eq. 
(18).  Also, it is interesting to note that, according to Ziliak and McCloskey (2004),  “Student used 
his t-tables a teensy bit…”  They said, “We have learned recently, by the way, that “Student” 
himself—William Sealy Gosset—did not rely on Student’s t in his own work.”   
 
5.3 Issues with the t-distribution 
 
The t-interval and t-based uncertainty are constructed based on the t-distribution.  Therefore, the 
methodological issue with the t-interval and t-based uncertainty must be traced back to the t-
distribution or the scaled and shifted t-distribution (called the location-scale t-distribution in 
Wikipedia).  

First, the t-distribution is subject to the so-called “t-transformation distortion” (Huang 
2018a).  The statistic t is a transformed quantity (i.e. the ratio between the sample error and the 
standard error of the sample mean).  The original sample space Ω(ε, s) is tranformed into the 
distorted sample space Ω(t).  The t-transformation itself is mathematically valid, so is the t-
distribution.    However, the inferences (such as the t-interval) based on the t-distribution may not 
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be valid because the inferences are actually performed in the distorted sample space Ω(t) (Huang 
2018e).  To understand this, consider that plums are dried to make prunes.  The drying process is 
an analogy to the “t-transformation”; it distorts the shape of plums, which is analogical to the “t-
transformation distortion”.  Therefore, we cannot correctly infer the shape of plums based on the 
shape of prunes. 

Second, the scaled and shifted t-distribution is not an appropriate sampling distribution for 
the sample mean of n observations.  According to the Central Limit Theorem, the sampling 
distribution for the sample mean of n observations approximates the normal distribution (also 
called the scaled and shifted z-distribution), regardless of the original distribution.  The Central 
Limit Theorem does not support the scaled and shifted t-distribution.  Moreover, according to the 
entropy metric, the scaled and shifted t-distribution is not the best distribution among the three 
candidate distributions considered (Huang 2023b).  Two other candidate distributions are the 
scaled and shifted z-distribution and the Laplace distribution.  The minimum entropy criterion 
states that the distribution with the minimum entropy should be chosen because it has the least 
information loss among a set of candidate distributions.  For a given dataset obtained from n 
observations, the minimum entropy distribution is the scaled and shifted z-distribution (Huang 
2023b).  This is consistent with the Central Limit Theorem.  Furthermore, the informity metric 
confirms the result given by the entropy metric (Huang 2023c).  The informity metric is the 
counterpart of the entropy metric; it can be used as an alternative to the entropy metric (Huang 
2023c).  In summary, according to the Central Limit Theorem, the entropy metric, and the 
informity metric, the scaled and shifted z-distribution should be used instead of the scaled and 
shifted t-distribution.  There is no mathematical or physical principle to support the t-distribution 
or the scaled and shifted t-distribution. 

It is worth mentioning that, the statistics textbook written by Matloff (2014a) does not 
cover the t-distribution and t-intervals.  Matloff (2014b) stated, “I advocate skipping the t-
distribution, and going directly to inference based on the Central Limit Theorem.” 
 
6. Alternative to the t-interval method for measurement uncertainty calculation: unbiased 

estimation method 
 
6.1 Unbiased estimation method 
 
Again, for a measurement with a small number of observations, when σ is known, the z-based 
uncertainty Uz is the true expanded uncertainty.  In practice, σ may be known from manufacturer’s 
precision specification for a measuring instrument.  Thus, Uz is can be regarded as the true 
precision.  When σ is unknown, the true precision (i.e. Uz) cannot be known.  However, we want 
to know approximate precision.  Therefore, the purpose of uncertainty analysis is to estimate the 
true precision based on a sample at hand.  Note that Uz depends on the population parameter σ.  
According to the theory of point estimation, σ can be replaced by a sample-based estimator 𝜎q when 
σ is unknown.  Accordingly, Uz can be replaced by a sample-based uncertainty estimator, denoted 
by 𝑈r.  We want 𝑈r to be the same as Uz on average, i.e. 𝑈r to be a mean-unbiased estimator of Uz.  
Note that 𝑠/𝑐=,? is a unbiased estimator of σ.  Thus, 𝑈r = 𝑧L/(

;
<-,/√?

 is an unbiased estimator of Uz.  

Note that 𝑈r = 𝑧L/(
;

<-,/√?
 conform to the -1/2 power law. 

Hirschauer (2022) stated,  
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“What we can extract – at best – from a random sample is an unbiased point estimate 
(signal) of an unknown population effect size and an unbiased estimation of the 
uncertainty (noise), caused by random error, of that point estimation, i.e., the standard 
error, which is but another label for the standard deviation of the sampling distribution.”  

 
Indeed, the sample mean 𝑦- (effect size) and the unbiased standard error ;

<-,/√?
 are “what we can 

extract – at best – from a random sample…”  
The unbiased estimation method can provide realistic uncertainty estimates.  The 

“uncertianty paradox” caused by the t-interval method disappers when using the unbiased 
estimation method.  For carpenter’s laugh example given by D’Agostini (1998) (mentioned in the 
introduction), the t-score at (1-α)=0.999 is 636.62, due to severe t-transformation distortion at n=2.  
On the other hand, the z-score at (1-α)=0.999 is 3.29 and the bias correction factor c4,n at n=2 is 
0.7979.  The unbiased estimator gives 𝑈r= 0.62 mm, which is much more realistic than the 
ridiculous result 𝑈K =95 mm given by the t-interval method.  Moreover, unlike the t-based 
uncertainty 𝑈K = 𝑡L/(

;
√?

, which cannot be used for measurement quality control due to its high 

false rejection rate, the unbiased estimator 𝑈r = 𝑧L/(
;

<-,/√?
 can be used for measurement quality 

control.   Importantly, the unbiased estimator 𝑈r is adopted in the ISO standard for streamflow 
measurements with acoustic Doppler current profiler (ISO:24578:2021(E)).  

It should be emphasized that the unbiased estimation method is based on the theory of point 
estimation and the unbiasedness criterion.  It is not an interval procedure like the t-interval method 
that is based on the confidence interval theory and the “coverage” criterion.  These two methods 
are mutually incompatible and incommensurable.  Therefore, the “coverage” criterion should not 
be applied to the unbiased estimation method.  In other words, the performance of the unbiased 
estimation method should not be judged with the long-term success rate (or capture rate) that is 
commonly used to evaluate the performance of a confidence interval procedure (Huang 2018d, 
2020).  

Statistics textbooks usually claim that interval estimation is more informative than point 
estimation.  However, this claim is wrong and misleading.  Suppose we employ a statistical 
distribution model (e.g. normal distribution) in our analysis.  As long as the model parameters are 
given by a valid statistical method (e.g. the method of maximum likelihood) applied to a given 
dataset, we can obtain an estimated distribution.  We can then use this estimated distribution to 
construct any probability interval we want.  For example, in the case of n observations, the sample 
mean 𝑦- and the unbiased standard error ;

<-,/√?
 are the estimated location and scale parameters.  

Then, the estimated sampling distribution of the sample mean 𝑌-  is 𝑁(𝑦-, ;,

<-,/, ?
) (Huang 2019b).  

Certainly, this estimated distribution is more informative than any confidence interval. 
The unbiased estimation method has been extended to the case where multiple uncertainty 

components are involved in the measurement uncertainty analysis, which is called the WS-z 
approach (Huang 2016).  The WS-z approach resolves the Ballico paradox caused by the WS-t 
approach (a t-interval method) mentioned in the introduction. 

 
 

6.2 Example: a comparison of the WS-z and WS-t approaches 
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Consider two random variables: X and Y.  We assume that X is normally distributed with unknown 
mean and variance, and Y is normally distributed with mean zero and variance σY.  We randomly 
take a sample from X:{x1, x2, ..xn} and a sample from Y:{y}.   Then, 𝑍 = 𝑋- + 𝑌 is an unbiased 
estimator of the true value of the quantity Z=X+Y; the associated variance can be estimated as 
 
 
 Var(𝑍) = Var(𝑋-) + Var(𝑌) =

𝑠7(

𝑛 + 𝜎Q(, 
(19) 

 
where 𝑠7 is the sample standard deviation of the n observations {x1, x2, ..xn}.   
 Our job is to estimate the expanded uncertainty of the estimate 𝑧 = �̅� + 𝑦.  According to 
the unbiased estimation method, the expanded uncertainty is calculated as 
 
 
 𝑈rR3&O =

𝑧L/(
𝑐=,S

s𝑠7
(

𝑛 + 𝜎Q(	, 
(20) 

 
where 𝑐=,S  is the bias correction factor and 𝜐 is the effective degrees of freedom (DOF).  The 
effective DOF can be calculated using the Welch-Satterthwaite (WS) formula.  For the two-sample 
problem considered the Welch-Satterthwaite formula can be written as (Huang 2016) 
 
 
 𝜐 = (𝑛 − 1) u1 + 𝑛

𝜎Q(

𝑠7(
v
(

. 
(21) 

 
On the other hand, the t-interval method, i.e. the WS-t approach, for this problem is written as 
(Huang 2016)  
 
 
 𝑈rR3&K = 𝑡L/(,Ss

𝑠7(

𝑛 + 𝜎Q(	. 
(22) 

 
To obtain some numerical results for comparison, we assume 𝑠7 = 3, σY varies in the range 0 to 3, 
n=4, and 𝛼=0.05.  Figure 2 shows the expanded uncertainty estimated by the WS-z and WS-t 
approaches. 
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Figure 2.  Expanded uncertainty estimated by the WS-z and WS-t approaches (𝑠7 = 3, n=4, and 
𝛼=0.05) 
 
 
It can be seen from Figure 2 that, the WS-z approach gives realistic estimates of the expanded 
uncertainty.  Importantly, the expanded uncertainty increases continuously with increasing σY, 
which conforms to our domain knowledge (and common sense) about measurement uncertainty.  
In contrast, the WS-t approach gives unrealistic estimates of expanded uncertainty, not only 
because it overestimates uncertainty when σY is small (dilates the uncertainty), but also exhibits a 
paradoxical behavior: the uncertainty decreases with increasing σY in the range that σY=0 to 0.9.  
Note that 𝑈rR3&K converges to 𝑈rR3&O only when σY becomes large.  This is expected because when 
σY is large, σY is more dominant than 7𝑠7(/𝑛.  This example shows that the WS-t approach or the 
t-interval method for measurement uncertainty calculation is inherent flawed. 
 
7. Conclusion and recommendation 

 
According to Jaynes (2003, p758), a paradox is “something which is absurd or logically 
contradictory, but which appears at first glance to be the result of sound reasoning.”  Also, “A 
paradox is simply an error out of control: i.e. one that has trapped so many unwary minds that it 
has gone public, become institutionalized in our literature, and taught as truth.”  In this regard, the 
two-sample t-test and the t-interval are such paradoxes.  Statistics textbooks, journals, and 
computer software packages contribute greatly to spreading these paradoxes.  As Hurlbert et al. 
(2019) stated that, “Many controversies in statistics are due primarily or solely to poor quality 
control in journals, bad statistical textbooks, bad teaching, unclear writing, and lack of knowledge 
of the historical literature.”   

Therefore, in order to implement statistics reform, statistics textbooks and computer 
software packages should be updated to reflect the paradigm shift from significance testing to 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

E
xp

an
de

d 
un

ce
rta

in
ty

 

σy 

WS-z approach, Eq. (20) 

WS-t approach, Eq. (22) 



19 
 

estimation statistics.  The author agrees with Hurlbert et al. (2019), “… the term “statistically 
significant” and all its cognates and symbolic adjuncts be disallowed in the scientific literature 
except where focus is on the history of statistics and its philosophies and methodologies.”  
Specifically, the two-sample t-test and the t-interval method for measurement uncertainty 
calculation (both are bad statistical methods) should be removed from statistics textbooks and 
computer software packages.  On the other hand, good statistical methods such as least squares 
method and maximum likelihood estimation should withstand statistics reform. 

The descriptive statistic analysis should be used instead of the two-sample t-test to compare 
two groups.  The eight descriptive statistics: effect size (ES), relative effect size (RES), standard 
uncertainty (SU), relative standard uncertainty (RSU), signal-to-noise ratio (SNR), signal content 
index (SCI), exceedance probability (EP), and net superiority probability (NSP) extract the 
evidence embedded in the data from different aspects.  We do not recommend setting a 
threshold on any of these statistics for inferences.  Whether the estimated effect size is of practical 
importance should be judged on the basis of our domain knowledge with the consideration of these 
descriptive statistics.  

The unbiased estimation method should be used instead of the t-interval method for 
measurement uncertainty calculation or effect size precision estimation.  The “uncertainty paradox” 
and Ballico paradox caused by the t-interval method disappear when using the unbiased estimation 
method. 

The author believes that the success of statistics reform depends on collaboration between 
statisticians and practitioners.  The author hopes that this paper will stimulate the 
discussion among statisticians and practitioners about fundamental issues in the two statistical 
methods derived from the t-distribution: the two-sample t-test and the t-interval method for 
measurement uncertainty calculation. 
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