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Correspondence: papers@team.geios.com — Qeios will forward to the The dimension of the space of linear transformations that leave this 3-D

surface invariant is thus the same as that of the Lie group SO(4) and this
dimension is 6 = (3(3 + 1)/2. Therefore, this surface with the metric induced
from the metric

222 ds* = dx® + dy? + dz* + du® = drTdr + (du)®

on R* is also invariant under the induced diffeomorphism, ie, under the
diffeomorphism

2+ ut =82 2:x2+yz+zz

r=Re 5?2
spherical surface immersed in R*. This

where R, b satisfy the constraint (a). Note that this induced metric is given
by

di? = dr"dr + (dS? - 1)?

or equivalently, using polar coordinates,

r R b)\(r
u eI d r:rh,h=[nl,nz,n3]T,n%+n§+n§:1,

so that

ny = cos(P)sin(), y = sin(@)sin(6), z = cos(6),

dr=rdn+dr.n
and hence, since 277 = 1, so that #7da = 0,
drlar = 2diTdn + i =
F2(d6* + sin*(0)d@?) + di?

=1, Rb+ed =0,
since

b'b+d? =1

dndn = d6* + sin*(9)d¢?
This gives us the metric of our 3-D maximally symmetric space as
dI* = dr® + r(d0” + sin*(0)d@?) + (d|S? — 1r)?

= dr2(1 + r2/(S2 = 1) + r(d6? + sin*(0)dp?)

c= —(1-bTb) V2R,
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= 8% (S? = 12) + r2(d6* + sin*(0)d )
or equivalently, changing the radial coordinate to the "comoving” one r,,
where

r=5r1,
we get
di? = S22 /(1 = r2) + S%2(d6? + sinX(0)d$?)
An alternate parametrization is to choose
ry = cos(y)
to get
di* = S2(dy? + sin*(x)(d6? + sin*(6)d¢?))

The space with this metric is called a spherical maximally symmetric 3 - D
space. The fact that this metric is invariant under a 6-dimensional Lie
group of transformations is usually addressed by saying that the metric
admits six Killing vectors. Another kind of maximally symmetric space is a
hyperbolic maximally symmetric space defined by the equations

o JR S J )

or equivalently,

This space is again a 3-D surface imbedded in R*, invariant under the linear
transformations of R* defined by

where T € 503, 1), i.e.,

TUT=T- - - ()
with

J = diag[1,1,1, — 1]

Actually, this surface has two connected components defined by
u = ++/5?+? unlike the spherical case where u = + /5% - /2 got connected

at r=S. Again, the dimension of the Lie group SO(3,1) that leaves this
surface invariant is six, and the induced transformation on this 3-D surface
is given as

r=Rr +b

where the R, b again satisfy a constraint determined by (b). As before, this is
a six-parameter family of diffeomorphisms on the 3-D hyperbolic surface
that leaves the metric on the surface invariant, where the metric is that
induced by the metric

ds? = di? + dy2 +dz? — du®
on R* with u = \/TS2 The induced metric on the surface is therefore,
using polar coordinates for x, y, z,
di? = dr? + r}(do* + sin®(0)d@?) — r2dr*/(r* — §?)
= 8%dr?/(S? = 1) + rA(d6? + sin*(0)d$?)

Since on this surface, » > S, we can change the variables to r = S. cosh(y) to
get the metric in the form

di? = S2(— dy* + cosh*(y)(d6? + sin¥(0)d¢?))

On the other hand, if in the surface equation, we replaced S by iS so that the
surface equation becomes

w2 =s2

then again this surface is invariant under SO(3, 1) and the metric induced by
the SO(3, 1) invariant metric

geios.com

ds® = dx* + dy2 +dz? - du?

on R* would now be given by
dI* = dr? + r}(d0? + sin®(0)d@?) — (d\S? + 1r2)?
= 82dr2/(S% + r2) + r2(d6* + sin*(O)dp?)

Now we observe that on this hyperbolic surface, »>$ and there is no
constraint on r. Thus, this is a more realistic hyperbolic model for our 3-D
space. We can change the variable

r=S.sinh(y),x >0
to get the metric in the form
di* = S2(dy? + sinh*(y). (d6° + sin*(0)d %))
A remark

More generally, suppose that we have an » dimensional surface s imbedded
in an N dimensional space with the metric on the N-dimensional space
being given by

ds® = dyTG(v)dy,y eRrV

Suppose that this metric is invariant under the diffeomorphism 7: R — RY
, so that

' WGIeNT () = GO),y € RY
or equivalently,
dT)TG(T)ATY) = dyTG()dy
Suppose that the surface § is defined by the equation
z=F(x),x € R?,z ERN7P
Write
»=(x, F(x)),x €R’

for the equation of the surface § as viewed in RY. Then, the metric induced
on § from the metric ds? on R" is given by

de
di? = (dxT, dF(x))G(x, F(x))( szx) )
= dxTH(x)dx
where
P
F'(x)

1
HE) = (1, F )N G(x, F(x))( ),x ER’

Note that this relationship between the metric on R" and the induced
metric on S can be expressed equivalently in the form

x \T x
d(F(x) ) G(x, F(x))d(F(x) )

= dxTH(x)dx

Note that x parameterises the point on the surface § (which is assumed to
be an open subset of R”) and its coordinates in R" are given by (x, F(x)). Now
suppose, in addition, that 7 leaves the surface invariant, in the sense that
the points 7(x, F(x)) are again the coordinates of a point on § for any (x, F(x))
in . Then, we can write

T(x, F(x)) = (K(x), F(K(x)))
where X is a diffeomorphism on R?. In other words, we can write
T, F) = (', Fx ), x' = K@)

Then, we claim that this induced metric on S is also invariant under 7, or
equivalently, under K. To see this, we observe that
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"K' (o) TH(K()K (x)dx =
Ip

Te' 7, "(Keo)D
&K' 07, F (K@) NOKE), FU“")))( F'(Ke)

)K "()dx

, , dK(x)
= [dK ) dF(K () IGK ), F(K(x)))( . K(x)))

= dT(x, F(x)) T G(T(x, Fx)))dT(x, F(x)) =

x \T x
= d(F(x)) G(x, F(x))d(F(x))

= dxTH(x)dx

where in the second last equation, we have used the assumed invariance of
the metric on RV under 7.

This result enables us to construct metrics on manifolds having various
kinds of symmetries by embedding the manifold in a larger manifold
having a metric with a set of symmetries in such a way that the embedded
manifold is invariant under these symmetries and then inducing the
metric from the larger manifold to the embedded one, ensuring thereby, by
the above result, that the induced metric on the embedded manifold will
have the same symmetries as the metric on the larger manifold has.

Now let C be an » x n real symmetric non-singular matrix with p positive
and ¢ = n - p negative eigenvalues. Then, we can write
c=opo’

where D is a diagonal matrix with p diagonal entries positive and ¢ diagonal
entries negative, and O is a real orthogonal matrix, i.e, 0’0 =00"= -1,
Write

D =diaglAy, ..., Ay —u1,--s ~Hy]

sothat2; > 0,4, < 0. Forx € R", define y € R" by

y=|D|"?0x
where
|D| = diag[iy, . .. ,ip,,ul, L. ,yq]
Then we have
xTox = yTyy

where J is the standard SO(p, ) metric, i.e.,
J= diag[[p, - Iq]

Thus, the » dimensional surface § imbedded into R”*! and parametrized by
coordinates x € R” with the imbedding defined by the equation

xTCx +u? = 52
can equivalently be parametrized by y with the imbedding defined by
yT Jy + W2 =2

When ¢ = 0, this surface becomes an »-sphere, and when ¢ = 1, it becomes a
hyperbolic surface. The metric on this surface is that induced by the
SO(p + 1, g) metric on R"*! given by

.
2
2

14
ds? = dyTudy + du? = 3 y7 +u? -
Jj=1 J=p+1

This induced metric is

di2 = dyTJdy + (dN[S? = yTIy)? =

dyJdy + (" Jdy)?1(S? = yTy)
= dyT+ IS =y )y

Note that

geios.com

P n

2 2

=25t 2 v
Jj=1 Jj=p+1

The metric ds> on R"*! is invariant under the group SO( +1,¢) and the
induced metric d/*> on the »-dimensional surface S is invariant under the
induced transformations

y=Ry +bu,u=cly' +du’ :\/SZ*yTJy

or equivalently, under
y= Ry' +b \/Sz *y’TJy'

where

satisfies
711, =,
with J, the SO(p + 1, g) metric defined by

Jo=11

o 71[/, 1] = diag[J, 1]

The metric on the surface § is thus invariant under a
dimSO(p + 1, q) = n(n + 1)/2-parameter family of diffeomorphisms and is
therefore a maximally symmetric space. Let us now study Maxwell’s
equations in such a maximally symmetric space after including a time
coordinate. In the special case when » = 3, as considered at the beginning,
the metric is

di? = di? - di? = di2 — S(O)*(r)? — S(1)2r(d6? + sin*(0)d Pp?)
where
AN =1/(1-r)
The coefficients of the metric tensor are thus
800 = L& = ~ SO 0.8 = — S0 g53= - SH 0 sin’(6)
so that
g = S}y sin(9)

Here, the scale factor S(/)of the universe is determined by solving the
Einstein field equations with a homogeneous and isotropic energy-
momentum tensor

T,'j =(p() + p(t))vivj - P(t)gij

The four-velocity field v, will be determined by the fluid dynamical
equations owing to the Bianchi identity satisfied by the Einstein tensor or,
equivalently, by the geodesic equations which turn out to have the
comoving solution

vo=Lv;=0,i=1,2,3
so that
Too =p@, Ty =Ty =T33 = —p0), T;=0,i %)

The field equations give us just two independent ordinary differential
equations in ¢ for the three variables p(¢), p(1), S() with the third equation
being determined by the equation of state p(¢) = h(p(¢)). These equations in
the radiation-dominated era give a pressure p(r) which corresponds to the
isotropic and homogeneous electromagnetic radiation pressure. To obtain
the anisotropic and inhomogeneous components of the radiation energy
density and flux, and momentum density and flux, we must set up the
Maxwell equations in this metric and derive general solutions. The relevant
Maxwell equations are

(FN=8) , = O0.F =4, ,~ 4, ,
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These become
(F'NFg)  + (FPNFg) 5+ (F™\=g) 5 =0,
(F1\Fg) o+ (F2\=g) ,+ (F3\Fg) 5 = 0.
(F\=g) o+ F'Ng) |+ (FP\"g) ;=0
(FO\=g) o+ (FPINFg) y + (F2g) , =0,
or equivalently, defining the electric and magnetic field components as
E,=F.r=123,B= —Fy,B,= —F3,By=F,,
and noting that
g \Fg = - S3%sin(0)/S%2 = — SPsin()1f,
g2\Fg = - S3%sin(0)/5%7 = — Sfsin(0),
3\g = — % sin(0)/ % sinX(0) = — Sf/sin(0)
g'g?\g = sin(0)151,
g22e3\g = f15/%sin(0),
g3 \Fg = 1187 sin(9)
we can express these equations as
(S2sin(O)E, 1f) |+ (SHin(O)E,) , + (SfE3/sin(0)) 5 =0,
(Srsin(O)E, 1f) o — (sin(0)B3/Sf) 5+ (By/ Sfsin(0)) 5 =0,
(. sin(O)E,) o+ (sin(0)B3/Sf) |~ (B, /S sin(0)) 5 =0,
(SJE5/5in(@)) o= (B,/Sfin(@) | + (/B,/Srsin(9)) 5 = 0

These equations are to be supplemented with the homogeneous Maxwell

equations that are equivalently a consequence of Fu=A, =4,
F/w,u + FWW + Fa/m’ =0

and these are
Forat a0+t F20,1 =0,
For3+tFi3,0%F30,1=0,
Fog,3+ Fay3,07F30,2,=0,
Flo sty 1 +F3,=0

or equivalently,

Ey = B307Ey =0,
Ey3+By 0= E; =0,
Ey3=B1 07 E3,=0,
Bl,1+32’2+83.3:0

Now consider the special case when the fields £, B are independent of x> = ¢
. Then, these reduce to

(sin(OE | 1f) |+ (Bin(O)E,) ,=0- = —(1)
(Sr2sin(O)E,) o~ (sin(0)B3/S) , =0~ — —(2)

(S Ey) o+ Bs3/S) 1 =0~~~ (3)
(S/E3/5in(0)) o — (B! Sfsin(0)) | + (fBy/Srsin(@)) , =0~ — = (4)
Ef,=B30=Ey =0~~~ (5
By o= E;1=0-=—(6)

By otE; ;=0-—~(7)

geios.com

By %8y ,=0---(®)
These equations have a solution with

B, =0,B,=0,E;=0

so that the above eight equations reduce to the following equations for
(B3, Ey, Ey):

(ZsinO)E 1) | + (in(O)F,) , =0~ — (1)
(SPSin(OF,) o~ (sin(@)B,/1S) 5= 0 — —(2)
(FEp o+ (By/SH 1 =0- - -(3)
Ej 5= By o= Ey =0~ ——@4)
The first one implies

PsinO), If = yy 5 Sin()Ey =~y |
for some function y(z, r, ). The second then implies

(Sfiry ) o~ (sin(0)B3)/S) ;=0
or equivalently,

(Sfiry) op ~ (sin(0)B3/S) , =0
and therefore,

(Sfp1) 0 = sin(0)B3/S = y(t, r)
ie, v, is independent of 6. This gives

By = (8/sin(O)(Sfwy) o~ vp)
Substituting these expressions for £, E,, B, into the third equation gives

=Sy o1 H Y o1 W2/ 1 =0
or equivalently,
W/ 1 =0
so that
wat, ) = i)y @0)

i.e, y, is independent of r, 6. Finally, substituting into the fourth equation
gives us

(firy o/ 7sin(0)) 5~ [(S/sin(ON(SFr)) o~ frdl o
+yy y/fosin@) =0
which simplifies to
sin(O)(wy 5/sin(0) 5= r2[S(Syy) o= w3l o
+( N AN =0
In particular, taking y(7) = 0 gives us a linear wave equation for y,(, r, 0):
sin(O)(y, ,/sin(0)) 5~ rISOWSOW) ol o
Oy A0 =0
Use separation of variables to solve this:
wi(t. 7, 0) = T(OR(r)x(0)
Substitution gives
(sin(0)/x(O) G (0)/sin(9)

= FASOSOTEN ) 170 ~ P LANRCDR () fr)

The LHS is a function of ¢ only, while the RHS is a function of (z,r) only.
Hence, both sides must equal a constant, say 4:

' (O)/sin(0))" = (BIsin(O)(0) = 0,
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SOSOTO) ) /10 = /7> + LAIROIR AR
Again, the LHS is a function of  only, while the RHS is a function of » only.
Hence, both sides must equal a constant, say —/:

SOEOTM)) +2.T0) = 0,
PR PR+ G+ HRE) = 0
2. The general case when fields depend on all the
space-time coordinates

We define the operations div
D=pxl=rx2=0,x= ¢as

and curl in the system

divC=Cy 1 +Cy 5+ C33,C=(C,Cp C3)
curlC=(C3 ,=Cy 1€ 3765 1,Cy 1 =€y D)
and then observe that the equation
(SP2sin(O)E 1) | + (Sfsin(O)Ey) 4+ (S/E5/sin(0) 5 =0,
can be expressed as
divD =0
where
D, = Srsin(O)E, /f, Dy = Sfsin(0)E,, Dy = SfEs/sin(6)
Thus, there is a 3-vector C such that
D = curlC,
or equivalently,
E, = (f1Srsin(@))(C3 , ~ C, 3),
E, = (1/Sf.sin@)Cy 5~ C5 ),
Ej3 = (sin(0)/S)(Ca,1 — C1,2)
The equations
(Srsin(O)E, 1f) o — (sin(0)B3/Sf) 5 + (By/ Sfsin(6)) 5 =0,
(S sin(OE,) o + (sin(O)B3/S) | — (1B, /Srsin(0)) 5 =0,
(SFEy/sin(0)) o~ (By/Sfsin(0)) | + (fB,/Sr'sin(0)) , =0

can now be expressed as, after substituting the above expressions for
E|,E, Es,

[Cy. = sin(@)B3/Sf] , = [Cy o= B,/ S.sin(®)] 3.
[Cy.o— By /Srsin(O)] 5 =[C3 o~ Bsin(@)/S] |
[Cy.o— By/Sin(O)] | = [Cy o= Bf/Srsin(0)] ,
The first implies the existence of a function y,(z, r, 6, ¢) such that
C3,0—sin(0)B3/Sf =y 3,
CZTO - BZ/Sﬁ sin(0) = Vi
The second therefore implies
[Cy.o—/By/Srsin(0) —yy {1 5=0
and hence there is a function y,(s, r, ) independent of ¢ such that
Cy o= 1By/S%sin(@) — v, = vy~ = —(a)
Likewise, the third implies
[Cy.0— ByfISsin(0) = yy 1] 2 =0
and hence the existence of a function y,(z, , ¢) independent of 6 such that

Cy o= ByISPsin(0) = wy | = w3~ — —(b)

geios.com
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1t follows, therefore, from (a) and (b) that
wot, 1, 60) =yt 7, @) = wy(t, 1)

"

is independent of both ¢ and ¢. Denoting y(tr.0, §) + [[w,(t. dr by
wit,r, 0, ¢), it follows, therefore, from the above equations that the
magnetic field components can be expressed as

By = (Srsin(@)/N(C, o=y 4]
By = Sin(00(Cy o~ vy o),
B3 = (Sf/sln(()))(C3_0 — Y, ,3)

Substituting for the electric and magnetic field components into the
homogeneous Maxwell equations

Ei 278307 E,,=0,
Ey 3+ By 0= E3;=0,
Ey37Bi o E3,70,

BI,I+BZ,2+B3,3:0

their expressions obtained above in terms of C|, C,, C;, v, then give us

3. Some general remarks about electromagnetic
wave equations in a diagonal metric

Consider a metric of space-time for which =0, 1 # V. The Maxwell
equations in such a metric are

2 (€"g"\gF,,) , =0,
;

F;zv :Av.;z 7A;4,v

The covariant Lorentz gauge condition (4%-g) .~ 0now reads

2.(g"\ed,) , =0

4. Alternate analysis of the Maxwell equations in
any diagonal metric

An alternate way of analysing the propagation of electromagnetic waves in
the absence of sources in any diagonal metric is to start with the Maxwell
equations

(FN=) = 0. Fyy o+ Fyp  + F 0

o, v =
and to write
E=(E)) =Fo)),B=((B))= —(Fp3,F31,F2)

and to note that we can write
(F"\-g) = G.E,

where G is a 3 x 3 diagonal matrix whose components are functions of x*
with x? = rand

7\/5([;23’ FSI’FIZ))T: K.B

where K is another 3 x 3 diagonal matrix whose entries are functions of x*
and then note that the Maxwell equations (#*y-g) , = 0 can be expressed
as

div(G. E) = 0, curl(K. B) = — 0(G. E),

and the Maxwell equations 7, +F _  +F 0as

w,o Vo, 1 ou,v

div(B) = 0, curlE+0,B =0

Thus, there exists a 3-vector field € and a scalar field ¥ such that
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E=G LeuwrlC,B=K '.(-0,C+VV)
which satisfy

div[K~ 1. (-9,C+VN)] =0,

curl[G™ . curlC)+ 0 [K . (=9, + V)] =0
We write
K~V = K (S(), 1, 0) = diaglk,, kp, k3, G~ = G(S(1), r, 0) = diaglg,, 25, &3]
where
= g/(S(). 7, 0), k; = k(S(0). 7, 6)

Then, the above equations are in component form, the same as

2= (kG )+ (K ) ) =0,
J

2. [esr(g;ekm)C,, )

mhjr

Hh(=Cs gtV D) =0

Note that we can change Cto ¢’ = C+Vyand Vto V' = V= o for any scalar
field , without affecting the values of E, B. This is analogous to the Lorentz
gauge transformation in special relativistic electrodynamics.

Remark: We can, for example, choose y so that the following generalization
form of the Coulomb gauge holds:

> k€ ;=0
j
holds, or equivalently, renaming C' as Cand V" as 7,
2 kC) ;=0
J

Then, the first equation above becomes

LV ) )+ 2 oG =0
j j
Now, observe that
gj€sry)€(jkm)
= gj\ €&(sr)) | (0(sk)o(rm) — d(sm)o(rk))

So

2. Ll s | (gekm)C,, ),

mhjr

= D 1) (gHC s~ Cy )

Jr

and hence the second equation can be expressed as

D) @{Cr = Cy D)+ k(= Cy gtV 0) =0
Jr

Note that if the gj.'x were all one, as would be the case in cartesian

coordinates in flat space-time, then we would get the usual formula

2 &I AC,  ~Cy ),

Jr
= Y1 IC, = C, ),
Jr

For s = 1, this evaluates to
6(123)(6'2’1 - Cl,z),z + \e(l}Z)\(Cll - C173)73
=(C1=C )2t (C31=C3) 3

=€ -G DAt (1= Cr )2t (G 1-Cr3) 3

geios.com
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= (div0) | - V3¢,
as expected.

We rewrite the basic equations now:

2D IEHC, = Cy )+ k(= C gtV ) =0

Jjr
Z( ~(kCyp) j+ KV ) ) =0
J

Note that | €(s7j)| is one if all the three indices s, r,j are distinct and is zero
otherwise.

5. Analysis of Maxwell’s equations in a diagonal
metric based on electric scalar and magnetic
vector potentials
Defining

E=((Fy)1B= = (Fy F31. F 1),
and writing

(F"NF2) = (8" gFo) = G.E,

~(FB, P F)T =Kk B

where G, K are diagonal matrices, we obtain from the curved space-time
Maxwell equations

divB = 0, curlE + 8,8 = 0, diNG. E) = 0, curl(K. B) = — 0(G. E)

where
G= ((g”‘ﬁ)),K — (g22g33\/fé',g33glI\/f—gqgllgzzﬁ)
so that
B=curld,E= —VV-034,4=((—4,)),V=4,
and

curl(K. curld)) — 0(G. (VV + 8 4)) = 0,din(G. (V¥ + B A)) = 0

In case the medium carries a charge density ri0 and current density
J = ((—J,)), then the generalization would be

curl(K. curld) = 9(G.(VV+0,4) = = G.J,
diuG. (TV+04)) = p.N-g

We require to supplement these with the general relativistic form of the
Lorentz gauge condition:

2@\t , =0
ﬂ
or equivalently, assuming g, = 1, as in the case of the Robertson-Walker
metric,
o,(\-gh —div(G.4)=0
Then, the above equation for ¥ reduces to
div(G. VV) + 37 (\=gV) — din(2,G). 4) = p\-g
Note that the charge conservation condition can be expressed as
U"\F2) =0,
or equivalently, since the metric is diagonal, as
3p\g) — div(G.J) = 0

Remark: In the previous analysis, we had used G.E = curiC,K. B~ C = V.
This method would fail if there are sources of charge and current.
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Making this choice of gauge, the differential equation satisfied by 4 is given
by

curl(K. curld) = 0,G. (V(~ )~V /*[{G. Adi) + 0,4) = = G..J
Note that the first component of curi(K. curld) is

7(K3(A2‘l ’Al.z))z*(Kz(Al,s 7‘43‘1),3 +(Glg”(’4|,1 7’41,]))'1

and likewise for the other components. This first component can be
expressed as

©"Gp 4y ) 5+ ("G4 3) 5+ "G4y )
“(Ksdy 1) 5= Kady ) 5= (Gig''4y )
= @6y 4, y) ,+ ("G, 3) 5+ ("G4, )
’(ng”Az,1),2’(ngnA3¢1),3 - (G]g”Al,l),l
=@"Gp Ay p) o+ (8"G3d ) 5+ (8614 )
~(Gag"'42) 15~ (G3¢"45) 13~ (Gig'4y)
+(Gag™) 142) 5+ (Gag™) 343) 1 + (Gig") )
The first component of 6(G. (V' + 6,4)) is given by
00(G (V1 +4, o)
=G .01 = (G111 0t (Gi4) 0) 0
Now suppose instead that we impose the gauge condition
difG.8,4) =0~ — (@)

This equation is the analogue of the Coulomb gauge condition. In this case,
the equation for ¥ simplifies drastically to

divG. V) = p\-g
Since we are assuming the Robertson-Walker metric, we have
G = ("2 = —SOCsin(O)/fir). . sin(0), )/ 5in(0))
= —S(Hh(r, 0)
where h = i(-, 6) is independent of ¢, ¢. Also recalling that \—g = $*sin(9),
we get
V(h(r, VI, 1,0, §) = — p(t, 1, 0, @). SHOrsin()

1t follows from this equation that (1, , 6, ¢) can be expressed in the form
Ve, r, 0, ) = SXO[ L, 6, @1, 0", ¢ (i, 1, 6, $)drdodp

ie 7 is a matter field, in the language of quantum field theory. Its value at
time ¢ at any spatial location is a function of only the matter density over
space at that time « In particular, if p = 0, the solution will be ¥ =0. So
assuming that there is no charge distribution in space, we can assume that
V=0. In other words, the electromagnetic field in space-time in an
evolving Robertson-Walker space-time, ie, in an expanding universe, is
given by the magnetic vector potential only, which satisfies the wave
equation

curl(K. curld) = 0(G.04)) = —G.J= = = (¢)

Note that the charge conservation condition with p = 0 assumed reads
div(G.J) = 0 and this equation is consistent with (¢) and our choice of the
gauge. In particular, if in addition, J =0, ie., there are no charges and
currents, then using the above gauge, 4 satisfies the wave equation

curl(K. curld) = 0(G.0,4)) = 0— — ()
and the electric and magnetic fields are given by

E=((Fo,= ~ 04,
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B=curld = —(Fy, F5, F )
Once we have solved for 4 and hence E, B, we can calculate the energy-
momentum tensor of the electromagnetic field as

S = (= Ud)g FPF y+ F Fo

oy

with

FUF = ZﬁgaagﬂﬁFiﬂ
p

and
F;utFi = ZgaaF;vaa
o

where the metric tensor components are those of the RW metric and £,
have components given by the electric and magnetic fields thus solved for.
We are usually interested in the case when the initial electric and magnetic
fields had a certain spatial statistical correlation function, ie.,
< F ot r)FW(z', r')> wasgiventousats=: =0atall , " and then we wish
to compute this correlation function for all times ¢ /" at all »,»". We now
outline the procedure for performing this calculation.

6. Maxwell’s equations
symmetric space-time

in a maximally

Now assume that we have an » + 1-dimensional space-time, with one time
dimension and » space dimensions with a maximally symmetric metric

di? = di® - S0 X(r)dr? — S2(H)r?dQ>
where we write the spatial vector as
x=ri,alh=1
so that
dx = driv + rdn, i Tdi = 0, diTdh = dQ?
and the spatial line element becomes
AP = dxTdx + (@S2 = )2 = di? + 12402 + dr? (52 = 1) = S22 1(S? - ) + Q>

and replacing r by Sr, this becomes

di* = §%dr? + §%Q% £ = 1/(1 - 12,

We can parametrize 7 by » - 1 independent angles x?, ..., x" so that dw? has
a diagonal form

n
dQ% =Y (% X" dxh?
k=2

Then, as before, we define the electromagnetic field tensor components
Fo, =4 o= Ao pk=12....n
F, :Ax,k_Ak,S’k’S =1,2,...,n

ks

Maxwell’s equations become

2 ) =0,

k=1

(F"™\g) o+ 2 (F"™\Fg) ,=0.m=1,2,....n
k=1

or equivalently, since the metric is diagonal with
2o = 1&gy = — SO0, g = — SO 62 k=230
so that assuming » is odd,
Vg = S e, X = T

We can express the Maxwell equations as
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((gr,,n1\/7‘g(A(]M7Am’0)’OJr Z@mmgkk\/,_g(/’k'm7,4’”1/{))’/‘»: 0O,m=1,2,...,n
k=1

2@ N gy o= Ag ) =0

k=1

We choose our gauge condition as earlier to be the generalization of the
Coulomb gauge:

Z(gkk\/TgAk,O),k =0

k=1

and then the Maxwell equations simplify to

z (gkk\lg)A(),A) k= 0,

k=1

@""NFed = A, 0+ 2" N gy = Ay ) = O

k=1
We can write
g“\/% = =Sl =
and
gMgtNFg = 5"t o ko m = 1,2,
where
n = e l)((xz, XM/ fir),
M= A 302 xR X k=23,
Vi = r]k/fz,k= 2,3,...,n,
Vo = iyk/rz)(m :A/'rnfs;(/)(m)(k, 2<m<k<n

The Maxwell equations

2@ o4, 0 =0,

k=1

for the scalar potential, derived above by assuming generalization of the
Coulomb gauge, can be expressed as

2o ) 1 =0

k21
which is a purely spatial equation and hence has a unique solution
Ay=0

Thus, the equations in this gauge satisfied by the vector potential
components 4, k > 1 are given by

PN 0+ T N E Uy A D)= O = 12
k=1

or equivalently,

M8 204, 0) 0+ 8" 4O X 0y 1y = Ay ) =0
k=1

We can solve this using separation of variables: Writing
A, (t,x) = T(OR ,(x)
we get
&"2Or' @) /18" 01 = 4,

2 ()R (x) + Z(mG(x)(Rk,m(X) Ry (X)) = 0m=1,2,....n
k=1

for some constant /. Superposition over all possible values of . then
completes the solution. Note that here,

x=(rnx% ..., x"

with 0 < r < 1. This completes our discussion of the solution of the Maxwell
equations in a spherically maximally symmetric space-time. We then
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proceed to a discussion of the same problem in general elliptic-hyperbolic
space-times.

7. Magneto-hydro-dynamics in an n+l
dimensional maximally symmetric space-time

The basic Einstein field equations in the presence of a fluid field and an
electromagnetic field are

Ry = (1/2)Rg,, = KI(p+ PV, = P2y )

where K = - 82G/c* and

oy

Sy = (~ VAFPF g, + F, F

We assume that the metric of space-time is the RW metric in n+ 1-
dimensional space-time and is unaffected by the matter fluid perturbations
around the homogeneous and isotropic field and electromagnetic field.
This is the zeroth order of approximation. In other words, if this
unperturbed metric is denoted by g%, then the corresponding Einstein
field equations are given by

Rﬁv - /2)R0g2v =k7°

w

where

7o, = (o0 + PO = po(0)e),

so that S(),p(s),p(r) satisfy the standard unperturbed Einstein field
equations for these three functions of time. The perturbations. Note that by

the comoving nature of the RW metric, as seen from the associated
geodesic equations, we have

0_n 0 _
v —0,1—1,2,3,1/0—1

Inhomogeneous and anisotropic perturbations to these quantities involve
density and velocity perturbations as well as the presence of an
inhomogeneous and anisotropic electromagnetic field. We denote the
velocity perturbations by dv,, the density perturbations by dp and the
pressure perturbations by dp. These perturbations are all functions of « x
where x denotes the spatial coordinates. The perturbed equations, after
taking into account a ~[4,[~gd"*x, where

J=0. F%,
with ¢ being the medium conductivity, are
(F"\Fg) 0. F™ \Fg=0,
(o +pV") ., —&"p = FJ,
= oF"Flv,

Note that v, = 1+ dv,, v, = dv, because the unperturbed velocity is comoving
w.r.t. the RW metric. Also, v, is of the quadratic order of smallness in ov,
because

A+ + Y g, ()2 =1
B

We shall assume that v, is small, ie, much smaller than the
electromagnetic field, so that quadratic terms in the v, can be neglected,
but bilinear terms in v, and the electromagnetic field cannot be neglected.
In order to obtain the MHD effects, we shall also not neglect terms that are
quadratic in the electromagnetic fields and linear in v, i.e., a special sort of
trilinear term.

This assumption is based on the hypothesis that we are in the radiation-
dominated era. In the transition phase between the radiation-dominated
era and the matter-dominated era in the expansion of the universe, we
cannot neglect quadratic terms in the v,. We shall set up the MHD
equations in both of these eras.

Then, we get from the above
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((p+ ™). W+ (p+ ™V = g"p
= a'F“VF‘;vp
Multiplying both sides by v, gives us
(p+p") v _p,vvv = ”FMFI‘J,-vaﬂ

The term on the rhs can be neglected because it is of second degree in the
vr's and also of second degree in the electromagnetic field. Thus, we get

0+ PV~ g%+ p yW = — PRy

Consider first the case when x = 0. We have

since +? is one plus a quadratic term in v and hence can be neglected, and
Iy, = 0 for the RW metric. Likewise,

v?r = v(?r + l'f),sv“' = F?Sv“'

since v* is again one plus a term that is quadratic in v". Also
g% tp W =p "

up to the required order. Thus, we get the fluid energy equation:

— 0 X
p "= oF(F + Fiv)

Note that if we also take into account quadratic terms in the v/, then the
energy equation would become

(p +p)v?0 tp v +[7,0(V0 -1)= - (IFO"(F{: + F‘;VS)

If we neglect the pressure, then this equation approximates the energy
equation for the fluid as we learn in non-relativistic fluid dynamics:

p.0p° = E.J,J = o(E +v * B)

Now, consider the MHD equation for x = Again neglecting quadratic
terms inv,, we get

(b + )0+ 200 = g"p ,+p o = 1) = — o(FF v+ FMF + FFy )
Note that
ry =(1/2g"g, o= S8, r=1,2,3

This is the general relativistic analogue of the Lorentz equation in non-
relativistic linearized hydrodynamics of a conducting fluid:
p.0y= —Vp+JxB,J=0o(E+vxB)

If further, we take quadratic terms in v, into account in the kinetic term as
well as in the pressure term, then we obtain

(p+ PO TV 40 3+ (T + T7 VR = g p (v = 1) = = o(FOF}y + FMEC + FE v )

Note that
Ik =23 T vk Y T ()2
k#r s

for the RW metric.

8. Some general remarks on the Einstein-
Maxwell-Klein-Gordon-Dirac equations in a
maximally symmetric space

Consider a maximally symmetric space of dimension » defined by the
equation

n+1

Z(X,-)Z -
i=1

geios.com
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The line element on this surface is
n+1
dP = Z(dxi)Z,XnJrl — (2 Z (il
i=1 i=1"
Thus, writing
n
r= e,
i=1

and

i_ —
X =rnyn;=1,2,....n

so that

(and therefore Y. n,dn; = 0) we have
dxi:dr.ni+rdni,i: 1,2,...,n

and hence,
n n
Z (dx[)2 =+ rzz (dn[)2
i=1 i=1
This gives
n
di? = dr? /(82 = )+ dr? + 7Y (dn,)?
i=1
n
= S22 /(S = ) + 12 Y (dn)?
i=1
Replacing r by Sr, we get
n
di? = S2dr2 /(1 = ) + S22 (dn))>
i=1
For example, if » = 3, we can write
ny = cos(0)sin(0,), ny = sin(0y)sin(6,), n3 = cos(0,),
giving
dn} -+ dn}+ dn3 = 03 + sin*(0,)d0"
If n = 4, then
ny = sin(03)cos(0,)sin(0,), n, = sin(03)sin(0,)sin(0,), ny = sin(03)cos(0,), ny = cos(03)
giving
4
Y. dn? = d63 + sinX(8,)(d6} + sin*(6,)d63)
i=1

In general, » > 3, we can write, after appropriate parametrizations of the n’.'s,
in terms of angles, just as we do on 52,

n
Zdn? =
i=1

+ (l—[nfl

2 ; 2 : ; 2
do>_ |+ sin®(0,_d0> _ + sin*(0,_ )sin*(0,_y)d6%_ + ... il

N 2
N sin*(0,,))d0 2t
n—1
= > " sinX6,,))d6>
= m=k+1 m k

where the coefficient H;’:]”sinz(ﬂm) is to be interpreted as 1. Thus, denoting
0,byx**1 k=1,2,...,n—1,and r by x!, our metric can be expressed as
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n—1
di? = S22 /(1 = ) + S22 Y )k Ty
k=1
n—1
= S22 /(1= (D) + S X syt
k=1

= 8%axH)/(1 - (cH) + 526D Y g @)y
k=2

where

) = % x) = T sin(em

=T sin (™) = K X k= 1,2,3,. . 0=

Now we compute the Christoffel connection symbols in the space-time
metric

n—1
de? = di? — dI* = di? - S0 2dr? = S0 Y g @) h?
k=1
so that
800 = 15811 = _Szfz,gkk: _Sz){ksk: 2,3,....n
where

F=Fw=1a-r

Remark, defining r = sin(9,) = sin(x'), we can equivalently express this
metric as

= SX(dx")? = S0 sin(x ) Y g @)

di? = ar®

or equivalently,

n

e = di* - SA(0)(dx")? - S0 Y sin(x )T
k=2

N s S (dxb)?

Now define the following permutation of coordinates:
yl=xlyk=xn27k k=23 .. »n
Then, we can write

de? = di? — S2(i)(dy")? — S2(1) Y., sin(y!)(IT"

" sin2(yn 2 m)(dyn 2 k2
k=2

n
- dtz _ SZ(dyl)Z _ SZZSinZ(yI)Hﬂmilszsinzojm))(dyn+2*k)2
k=2

n

Sz(dyl)Z SZZ (Hn+l kwnZO}m))(dynJrZ*k)Z

n
= dr? = S¥ayh)? - 82 (I sin® () ayh)?
k=2

n
= di? - 52y, @ sin? "))
k=1

We now rename y*as x¥, k = 1,2, ..., n so that the metric is

di* = di* - SZZ (l'[k lsmz()c”’))(dxk)2
k=1

n

= di® = 52 g (xhy?
k=1

where

where 5,(x) = 1 is understood. Our metric is thus given by

o= L&y = — Sz(t)nk(x),k =L2,....ng,=0u#v
We write
log(sin(x™)) = f,,(x) = [, &™), m=1,2,....n
and
&y(x) = cotx™) =1, ,(x)

Note that

k-1 k-1

log(ng) =2 . log(sin(x™) =2 . f,,(x)

m=1 m=1

and therefore,

(logg) s =0,7#s,7,5=1,2,...,n

and the only non-zero Christoffel symbols are
T = Tho = Uoggyy) o/2 = 2z 40/ 2y,
1% = —guo/2=55
Ik 8kk,0 3

Forl <m<k<n,

k

ka km

(loggkk) w'2= g, w2 =g, 1 <m<k<n,

D= ~ 8" 8/ 2= ~ M !/ 20 =
We then compute the Ricci tensor: For &, m > 1,

-re -rirloerert

_ra
Riw =T km,oa " km af kB m

ka,m

D _ 10 P _ 10 "
kp,m km ,0 km ,p km™ Or

S YSNIED VAVASS /A il
+I? l“jnp
1t is easily verified that
Ry =0,k #m, k,m > 1
because the metric is diagonal, i.e.,

n

d? = di? + Y g (¥)(dx)?

k=1
with

(loggkk),km =0,k>m=>1
and

(loggmm)vk =0,k>2m>1
Further, for k= 1,2,...,n, we have

a a  _yoarpf o f
R rkak Fkk,a Fkkraﬂ+rl:ﬂrka

0

P P o)
kak l—‘kk,O rkkp l—‘kkr[)s
TP
rkkrps

2
+arp Ik + Z(rf’) +2Zrkp A
Now,

0 —
Fkk,O - 7gkk,00/2‘

Sl L Sm<k<n,

2T, o= 2 0008(g,)) /2= (1= Ry = (1= Kigy = (1= Kig,
P p>k

) = 16 L sin?emy = etk k=12,

geios.com doi.org/10.32388/JXIAL3
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2=~ 2@y ) 2
P p<k

2Tl = 2(~ Uty 82y o= 2 (~S /290y =55’
s s y

s

= nSS'qk

2L = (— 14 (78 g 18,
p.s p,s

= (- 1D X ey f,

s>p
0k _
Fialio = (= /gy o(loggyy) o
= —gu.0S /28 = Sy,

2 )= Y (ogg,,) p* = 2 (1) = (0= kf)?
p r

p>k

k rp
z rkprkk
pFk

= (~ U4 Y loggy) %, = (~ DX f ey ,
p<k p<k
Finally,

Roo=T0, 0 +rg/?rga
= Y (1/2)logg,,) o0+ 2. (05 ) =
» P
(8'/8) +n(S' /= (n—1)S 152 -5"15

The Einstein field equations are

R, =K(T,, ~Tg,/2) = KS,
where
T,=@+pVv,y,—rg,
with Va being comoving, ie, v,=0,k=1,2,...,n because it satisfies the
geodesic equation
k k — 0.0 = ko~
dv /dz’+l"00 0,V 1,1"00 0
We compute
T=g,"=ptp-(m+p=p—np
so that

So0 = Too = T8o/2=p+p—p—(p—np)/2 = (p+np)/2

The matter conservation equation: The Bianchi identity for the Einstein
tensor implies the momentum conservation equation

=0

which gives

((p+ "), =p* =0
or

(p+pW") .+ (p+pWV —p =0

so that

((e+pW")., =P =0
or

@+ P8 ,0-p. g =0

or

(=2 o+ P(N-2) 0=0
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Writing
g= =Sl =y pp'?
since the number » of space dimensions is assumed to be odd, we get
\"g =8
and hence the above matter conservation equation reduces to
(S +p(s™ =0
Note that we are assuming p, p to be functions of only .

81. The KG equation in an n-dimensional maximally symmetric
space

The metric is
n
de? = di* = S(02 Y, 1, (dxN?,
k=1
where
1) = Hﬁ]: lsin2(x’”), k=1,2,...,n

"¢ N2 ,+m\gp=0

Writing

I 2,0 = 2%,
we have, assuming » odd (i.e., an odd number of space dimensions),
V=g = 8",
g = =S ) e k=1,2,. ., n
g"\g = \Fg = "0
so the KG equation becomes

n

28" o) =S 2D b 1)

k=1
+m*8"y. =0
Or separating variables,
@, x) = T(ORX),
SO
(S"OT' (©) 18" 20T + m252(1) = 7)) T'RE) ™ Y GOIR 10 x0)
k=1
Both sides must equal a constant /:
SHOT" (t) + nSHS (OT () + (m2S*() = NT(1) = 0
and

DGR L)1) g~ A DRG) = 0

k=1

9. Heat and mass transfer equations in an n+l
dimensional = space-time  specialized to
maximally symmetric spaces

Assume that the metric has the form

de? = di* = S(02 Y, ) (x>
k=1

This is a generalization of the spherically symmetric metric
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m=1

n
di? = di* = SOX Y (11 sinX(6,,))d67
k=1

In analogy with this metric, assume that y, is a function of only x!, ..., x~ 1.
Further, in analogy with this specialization, that

240 = )
This ensures that
(logx) jm = 0.j #m
and hence also ensures that
Ry =0,k #m
As regarding R, we have

P _p  _70 kpp 0~k P \2
R =Tk ™ Vikp ™ Tieo T 20k ki T 20l i0 + 2 T
p#k

If the background metric is Robertson-Walker, with comoving velocity,
then v, = 0, v, = 1 and this equation simplifies to

AT =0
Now, for the RW metric with comoving velocity,
HO = 0, Ok = , prkm = ghm
and we find
AT® =0,
AT% = g% 0 = 0 g (T 1= Tvi0) = 2 T o+ TUR) = ;g™ (T 4+ (T/2)(loggis) o)
=x0:8NT ,+TS'/9)

and the heat conduction/temperature diffusion equation in the RW metric
becomes

k 0 k m 0k _
AT?k+rkkA7* +Tp AT% =0

= (1/2) Y (logg,,) i+ (11228 ) ,+ (1D 00— (1/2) 2 g%e(loggyp) ) or
4 r

P

~(1/ gy o (log(gyy) o+ (1/4) ). (logg,,) o)
P

Az{’i +(1/2)(loggy) (AT + (1/2)(logg,,,) AT =0

Writing the RW metric as

= (1= h)/2).log(f)" + (1 /Z)ng;\g‘"”(lagf;) (82488 e+ 28 V2 + (114~ R)((logf) )

P

The energy-momentum tensor of the matter field: Assume
vF=0,k=1,2,...,n. Then g,»v' =1 implies W=, or equivalently,
vo=1Lv;=0,k=1,2,...,n. The energy-momentum tensor of the matter
field

T = (o + i’ — pg®
has only the following non-vanishing components:
0 =ptp-p=p, %= —pg=pisi k=12 n

Now, in the presence of viscous and thermal effects, the energy-
momentum tensor acquires a correction A7*"” given by [Steven Weinberg,
Gravitation and Cosmology:Principles and Applications of the General
Theory of Relativity, Wiley]

AT = g HOH (v, v, )+ (HPYY + B0,
where
HY = g,uv _ Vyvv’
Q4 =T = Ty P

where x,,y, are positive, depending possibly on the temperature 7. The
energy equation is then

(p. s+ ATy, /T, = AT,/ T)., = = — (1)

where s is the entropy per unit mass. This equation can be derived from the
conservation of the total energy-momentum tensor 7*"+A7" and the
number conservation equation (m*). , = 0, the first law of thermodynamics

dr® = di? = S(0)*((dx")? + sin* () dxD)? + sin’(xy)(dx*)?))
3
=dr’ - S(t>2<kZ]n,((x)(va")2))
where
M) = L) = sin*("), n300) = sin (Mysin (),
our adiabatic heat conduction equation becomes

Az‘?’; +(S"/IAT + (1/2)(log(\-g)) 4T% = 0

where
Vg = 53). sin®xVsin(x?)
Note that
AT = —27,g%g(r})
which is zero for k # j and

AT = xl(g"")zg,,’o

for the RW metric with comoving velocities.

10. The linearized Einstein field equations for
perturbations in the metric and matter fluid
around the RW space-time metric

The energy-momentum tensor of the matter fluid is given by

Td(s/n) = d(p/n) + pd(1/n) =T+ ATV
Note that s/x is the entropy per particle and p = mn is the density where nis  where
the number of particles per unit volume and m is the mass per particle.
When we impose the condition that the lhs of (1), which represents the rate Ty = (p+pv” —pg',
of entropy increase per unit volume, be non-negative, then we obtain the R
above form for the correction to the energy-momentum tensor A7" due to AT = HICHY /]ATu/f
viscous and thermal effects. If the fluid is adiabatic, we can set (ps»") ., to be Y+ 0
zero, and the result is the generalization of the temperature diffusion “
equation after taking into account convective terms, namely the heat where
transfer equation:

- Qa:){Z(T,a_Tva:/fvﬁ)
ATy, =0 nd
geios.com doi.org/10.32388/JXIAL3 12
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AT =10V p* Vg0
+ Xl‘)/;]pgaﬂ
where y, x,, 1, geq0. The unperturbed velocity is comoving, i.e.,
vi=0,v,=0,i=1,23"=v,=1
Note that the unperturbed metric is RW:
800 = 1811 = — SYOAN% 82y = — SHO2, 833 = — SO sin*(6)

By appropriate choice of coordinates, we can assume that the perturbation
to this metric has nonvanishing components

g, 1 <1, 5<3

ie, 98, = 0,1 =10,1,2,3. We denote the velocity perturbations by ¢v' and ov;.
Note that

ov; = J(gmv“) = ég[!v W +gi,lz§v"
=g
since V' = 0, dg,, = — 0. Also, the equation
(g, =0
implies
2009((v)?) + g,(5()?) + Iggy = 0

Since v/ = 0 implies 6 * ((+))?) = viovi =0 and dgy, = 0, it follows therefore
that

=0
(0o = 1,892 = v%3? = »P). The fluid equations are
(T + AT™)., = 0,

for p, v/ given the equation of state, while the heat transfer equation for the
temperature 7 under adiabatic conditions is

(AT™), ¥ =0
Here,
HEY = gl — iy

To study small perturbations around the comoving velocity, density, and
metric, we use the linearized field equations:

OR = KT,

n

—(1/2)Tg,,, + AT,

v

- (1/2)AT.g,).
O[T + AT/‘V):V] =0,

AAT?). ] =0

=00,y =T vy)

In particular,
o _ ks 0
()v[:/ = (5\/[7/- - l"lj()v,( - 51"’,1,,
_ k
Wizo = v~ Tigdvk
=0v; 0~ F;O(Sv,v
= Jv,-’o = (1/2)(logg;)) ,0‘5"1'
=0v; o= (S'/9)dv;
Consider next
) H
()(v"v“v:a)
For v = 0, this is
(S(VOV{’V":’G) =
3 —
SO ) =
= 30 ) + @V,
= 00"+ T ")
+(>‘vk(\/" i)
For u = 0, this is zero, while for x = r, this is
k
(5\/_0 +2.Gammag, v
— 5.0 rosor — sl !
=o'+ 2.00,00" = (S /S)ov"
(No summation over r). For v = k,
AV ) = a0k )
= vk v iy
o
— ovk i = gpk TH =
ov v”o o AFOO 0

Proceeding in this way, we can linearize the differential equations for heat
and mass transfer in the expanding universe. Currently, work is going on to
generalize these equations to higher dimensional space-time.

11. Quantum noisy Boltzmann equation taking
into account quantum noise based on the
Hudson-Parthasarathy  noisy = Schrodinger
equation

The HPS (Hudson-Parthasarathy-Schrodinger) equation taking into
account a single creation process, a single annihilation process and a single

Now let conservation process is given by
sy = HE (v, £V dU(t) = (— (iH + P)dt + L dA(t) — L,dA(t) ¥ + SAA(1)) U(t0
= e 1 v S where for unitarity of U(r), we require that
_ %k
S;Zw = ('Y +Hmvﬂ)Qa P= L2 L,/2,
* _ ok _ - _7 X _yXgo_
Then, L¥ =S*L,=Ly=0,L,—LF ~L*S=0
S'g" = PV VI — Vot — itV S+8* +5%5=0
o a
since Equivalently, writing Lz* = L, we get for the condition of unitarity,
V,.p=0 Ly =L +8),L,=L* S*S+5+85% =0
Now Writing
o i S=Z-1,
geios.com doi.org/10.32388/JXIAL3 13
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this is equivalent to the conditions
Ly =LZLy=L*z*Z=1,P=LL*/2
Thus, the HPS equation becomes for this special case,
dU(t) = [ = GH + LL * /2)dt + LZdA(t) — L ¥ dA* + (Z - )dA@®)]U()

Assuming that the system comprises N indistinguishable particles, all
connected to the same bath with the same coupling operators, we can
write

so that
*
+zr7,=1,
N
12=3 Wz =Y+ Y Vig
k k=1 1<k<jsN
»
= * = *\®N
P=LL*)2 kzl(Lij )eN/2
5] =

and the HPS equation becomes

AU = (i Hy+ 2 Vi) + DL L*) ® N/ 2)di

k k<j k.j
+ 2 L4z VA - YL} @ Naaw * + BN - Danwu
k k

Owing to the indistinguishability of the particles, the state p(s) of the
system and bath can be expressed as

P =N+ Y g ® pi0)

k<j ith,j

Y gmepot...+
k<j<m,i#k,j,m

g12..M0

where the pi's are all copies of p, and likewise, for each r=1,2,..., N, the

p, sare all identical copies of each other for each 1 <i; <... <i, <N.In
Loy

order to get the correct marginals for the states, we must assume that
Tryg1p=0,Tr38153=0,...,Tr, 813, = 0,r=2,3,...,N

Then, for example,
_ . ® ®r-2
P12s.r =P ’*Z/Jl ey

®r-3
2P P @yt e,

In particular,
/)12:P{®2+g12,
_ e3
P123=p TP1®gutpr®gytp3@gyy,
8123

Note that p,,,,p; are identical copies of each other but act in different
Hilbert spaces indexed by the corresponding subscripts.

We now derive the master equation for the system state alone by tracing
out over the bath with the bath maintained in a coherent state:

PO = Ul (0) @ | i) >< d(u) HU® *
so that, using quantum Ito’s formulae and properties of the partial trace,
p(1) = Tryp()

Then,

geios.com

dp(t) = — ilH, p(O}dt — Pp(0)dt = p ()Pt
Lyp (Du(t)dt — u(t)Lp (t)dt + Sp (t) |u(?) | 24t
+p, (LS it = p (DL u(vydt + p (DS * |u(e) | 2t
—Lop (S * a(t)dt — Sps(t)Lz* u(f)dt
+Sp (O * [u(t) | 2dt + Lyp (DL, dt

where p = L2* L,/2. Making the above substitutions, we get

PO = — il Y Hi+ 2V p(0)]

k k<j
+0,(py(0)

where
00p) = (= V2L Lop,+p L Ly=2Lop LF)
U Lypg = p Ly’ = Sp L)+ HOP LS = Lop, = Lop S*)+ |u) | *(Spy + p,S* + Spyd
= 01(py) + u®0s(py) + H(DO3(py) + |u(®) | *0a(py)
where
01(pg) = (= VDL Lops + pL Ly = 2Lop LF)
=(—1U2)IL*p,+pLL* —2L % p L)
Oap) = Lipy=p Ly ~Sp L =12p ~pL—SpL
03p) =p L —Lop, ~LypS* =pZ*L* —L*p—s-L*pS*
O4p) = Sps+p S* +5p S*

In order to derive an approximate second-order Boltzmann equation, we
assume g ,; . =0,7=3,4,...,Nsothatonlyp,,g,, and their copies are non-
vanishing. Thus, we are assuming that (using the simplified notation p for
Py)

®N ®N-2
p=pPN+ Y, ® g3

(Note that 5 °V ® g,, is the same as T ¢, ® p"~?). Substitution of this
expression, followed by partial tracing, then gives us

Try3 N1(p) =
= (= 12)Try; fLL*p+pLL* —2L%pL)
= (2 1Dy XL N+ DLyl *) N
722}{:1‘/’* ®NpL1;®N)
= (= UTLL p ) L o+ il S 2L piLy)
—((N= DN =2/ DTALLT p V7 (Tl L) 30y ® 233+ 95 ® g19))
+Trylpy ® 8) Lyl ) 3+ (py ® g 1)L ) ©%)
*Z-szz[Lj* 301 ® 823+ p2 @ gL
~((N = DN =2/ TALL Y p )N 2 T L) gy, + gL ) ®?
—2L/.* ®2g,L 2%
= (S DT p DV  py + pr Lyl = 2L p Ly
~(N= DN =24 THLLS) 22 DAL p )Y ) ILL  py +p Ll = 2L,
~((N = DN =2/ TALL Y p )2 Ty, ) @2y, + gL F) ©?

* ®2 ®2
“2L* ®%g L %)
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Likewise,
Trys. MO2(p)) =

Trys MLZp —pL —(Z = 1)pL) =

®N ®N ® N,
Trys MO LiZ)® Y= p. 2 LEN =22V - 1p. 1 L2Y)
k

k k

We evaluate the various terms on the rhs using the above second order
approximation to p:

Trys M(LiZ1) ®"p)

= (T Zp W 'LZp,

+(N = DN =2)/2). (TALZ,p WX 72 [T [(LZ) 230, ® 235) + 92 ® 215+ p3 ® g1)]

3p1(0) = Tryz_np (1) = = ilH}, py (O] + (N = DIry[V 15, p1(0) ® py(0] + Troz o\0,(p(0)
and likewise in the equation
0/py(1) ® py(0) +g15(0) =
Tryy o )+ [Hy +Hy+ Vip, pi(1) ® pi(0) + g15(0)]
TN =)Tr3[Vi3+ Vazp1 @ p1 @ pr+p1 @ g3+ 0y ® g3+ p3 ® g1l
+Tr3y NOLp()

with 7ry, \0,p(1)) being evaluated in a similar way as above. This
calculation gives us two nonlinear differential equations for p,(#), g,,(#) and
can be termed as the second-order quantum Boltzmann equations for an
open quantum system comprising N indistinguishable particles.

Some remarks: It should be noted that the form of the Lindblad operators

= (T Zip W' LiZipy + (N = DNV = 2)/2). (THLZip DV 3. [Trpsl(L4Z)) (0, ® 2)5that @waplith system of indistinguishable particles to a noisy quantum bath

HN = DN =2)/2). (T Zp DV 2. TH(L,Z) ® gLy Z p,
= (THLZp )V ' LZipy + (N = DN = 2). (THLZip )V 72 THIEZ) ® gy
HN = DI = 2)/2). (TrLyZ e DV 73 Tryg[(L4Z)) @ 2g03)LiZ oo,
Trys MZ2N. LM
= (T Zp L)V L Zp Ly
Ty M2V @ 2 2N
= (T Zip LN Zip L
+((N = DNV = 2)/2)(THZ 1. L)V T2 2 71,2 27
Likewise,
Trys, \03(p) = (Trys_p\02(pD) ¥,
and finally,
Tros. n04(p) =
Trys N(Sp+pS* +SpS*)

=Trys M@ZEN=1p+pzF N =1+ ZBN - 1)p. (2 N - 1)

Now, based on the second-order approximation of the joint state of the
particles, consider the term

Trys MZ2 ™01 = (T Z,p DN 1Z,p,

+T’23...N[Z]® N Z(ﬂl&wz ® g53)]
=(Zp DN 'Zp,

(V= DV =2)/2). (THZp )V Trp[Z23(0, ® gy3+ 0, ® 213+ p3 ® 2]
=(IrZp DV 'Z,p,
(N = DN = 2). (T Zp )N 2 Try(Z2 B %g )
V= DN =2)/2). (THZy. ) (112222 1). Z1py
Further,

®N

*®N
Tryy N2y P2

1

can also be evaluated along similar lines. Finally, we substitute these partial
trace expressions into the partial traces of the equation

pO= L Hy+ 2,V p(0)]

k k<j

+0,p(0)

geios.com

has been selected so that the interaction of the particles with the bath is
symmetric with respect to interchange of the particles. For example, such
an interaction term involving the annihilation process would have the
general form MdA () where

p
M=[2 DL ®... ®L, )
k=1 0o

with £, pk=12....pj=12....N and ¢ running over S,, namely, the
group of all N! permutations of {1,2,...,N}. It is easy to see that M can be
expressed in the form

M=y LN
k

where the operators L, are linear combinations of the L, L2 LN For
example,

L, ®L,+L,®L, =
(/D[Ly + L) ®2-LBI-L 27,
L, ® L, ® Ly + allpermutations

=Ly +Ly+Ly) @3 = (L +L) B = (L, + L) ®3 - (L, + Ly ®?

®3, ,®3, ;83
TL AL,y T L]

12. How to compute the perturbation to the
velocity and density/four current density of
matter comprising of electrons, positrons,
leptons caused and small perturbations to the
metric around the RW metric at the quantum
level using Feynman’s path integrals for fields

1. Let Hy+ V(1) = H(r) be the Hamiltonian of a field with H, being time
independent and ¥{(¢) time dependent. The propagator of the field is an
operator Kernel k(s + ) that satisfies the differential equation

(8, — Hy— VO)K(t, 1) = 8t —t)).1
SO we can write its expansion as

K=(i,~ Hy) '+ @o,~ Hy)~\. D (V.(id,~ Hy) ™"

n=1
=(0,~Hp) L.(1—(.(o,-Hp) H7!

This is well approximated up to linear orders in the time-varying
perturbing potential by the expression

K= (i0,— Hy) ™' +(i0,~ Hy) V. (i6,~ Hp) !

In order to see how this is calculated, we assume that #, has a complete

orthonormal set of -eigenfunctions |n>= |u,>=u,(), with energy
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eigenvalues E,. Then, we can write
(i8,~Hy) ' = @n)~ lI(E ~ Hy) lexp(— iE(t -t ))dE
[n><n| .
_ -1 s
en”' % = exp(— iE(t — t ))dE
so, for example, writing
G=(id,~ Hy) V. (i0,~ H) "

we find that its kernel is given by

= Tr(y"S(x, x| V)
Note that

S,y 11) = 060 =30 <y, () > = 00° = %) < p0wix) >

where y(x) = w(x) *y%. 1t follows easily from the canonical equal time

anticommutation relations
W0, v, ) ¥} = P =) 20 =)0
that the electron propagator S(. | /) in a gravitational field satisfies
DS(x,y) = iyV0). 64— )

where D is the Dirac operator in a gravitational field, i.e.,

Gty = (2n)’2j'dEdE’d,sZ (E-E)E —Ey) L exp(—iE(t - s5)). exp( = iE (s — )| n >< n| V(s) | m >< m |

n,m

= (2n)’2jdEdE'Z((E—E”)(E—Em))*‘ <n|WE-E)|m> |n><m

n,m

where
E) = [ Vs)expiEs)ds

This formula will play a fundamental role in computing the velocity and
density perturbations in our expanding universe determined by the
quantum mechanical version of the Einstein field equations linearized
around the RW metric based on Feynman'’s path integral for fields.

Consider now the action functional for metric perturbations around the RW
metric obtained from the Einstein-Hilbert action plus the action functional
for the metric interacting with the Dirac field of electrons and positrons.
The total Lagrangian has the form

871+ [l VA, + T ) — mlpo)d*s
= S+ SV, v

where S [ris the Einstein-Hilbert action as a functional of the tetrad Vg(x)
of the metric field and I',(x) is the spinor connection of the gravitational
field given by

b
L) = T0 @)y /4
TaP0) = (LYY, 9= )

The quantum-averaged four-current density field of matter, comprising
electrons and positrons, is then

<) >= 27 m[expliS (V] + S [V y. yD@)y p(x)DV. Dy. Dy
where
Z = [expliS [V1 +iS [V, v, y))DV. Dy Dy

More generally, the higher-order quantum correlations in the matter
current density at the space-time points x, .. ., . x, are given by

<JN(x)). . Six,) >=
z ]mrJ.C’xP(ng[ V1+iS V. v, ‘/_/])(n;: 1 Yy kp(x))DV. Dy. Dy

The integral w.r.t Dy. Dy is a Fermionic Gaussian integral, and evaluating
this part gives us for the average current

< JH(x) >=
C. [exp(SIV). det(P*y(id), + T ) — m). Tr(S(x. x| DV
where
G,y V) =< Tw)w() >
with 7 being fixed. Note that we have used the identity

< WY W) >= Tr(p" < p(op() >)

geios.com

D =y V(id, +il )~ m
Thus,
Sy =@ Ve
= [PVii0,, +iT,) = m] iy 2. )
Assuming that the gravitational field is weak, we write
Vi(x) = ob + €(x)

where €/(x) is of the first order of smallness. Then, up to first order in ¢, we
have

ab _ _ _ P b
r, 7(1/2)1/”1/';:#7(1/2)1/”(1/” !

v vu

=(1/2p -Tb)

v~ Do
_ a ba.
= (12" - T4
where

ba _ b o_
FO}A - navrm - navﬂbcrcvﬂ

Note that for a weak gravitational field, we take
Guv = My 0y = ”ﬂhyﬁyf
where
5ng =€,t €,
S0

r, . =(/2)€

avu av,u + €

an,v uv.,a
T Cuay T Ed
Thus, we can write up to linear orders in e
D = [iy*0,—m] + iejl‘(x)y"’éﬂ
+iyT (%)
where

7T %) = K, v, a)€; (x)

a,v

summation over all the repeated indices is understood and Ky, v, a) consists
of constant matrices built out of linear combinations of products of three of
the Gamma matrices y,.. In case the electron is bound by a potential (), the
Dirac operator for the electron, taking into account gravitational effects,
will be given by

D = [0, ~ m+ V] + i€i(x)y"d),
+iK(y, v, )€ (x)

and then, if [» >, E,,
energy eigenvalues of the Dirac electron bound by the potential 7, we get

n > 1 denote the stationary states corresponding to the
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approximately, for the electron propagator taking into account both the
binding potential 1 and the weak gravitational field €/,

5= )=
Dyt -py i€ (x)y“2,
+iK(, v, Q)€ (¥)]. Dy !
where
Dy = iy*0,—m+iy°V = iy’0,+ V) + (¢, V)
wherey = (7', 72 y%). Now, we can write
Dy 3) = [0 12 <reln><n|r,> I(E~E,)exp( — iE(t, ~ 1, )}dE
n
where
X=(t,r),y= ([w rv)
Therefore,
S.y) = Dy (.3 = [ Dy (x.2). li€hGn
+iK(, v, )€l ()] Dy Yz, y)d*z
In case the binding potential ¥ = 0, we have
Dy, y) = [exp(— ip. (v = y)d*p/ . p ~ m)
where
p-(x=y) = p,H =y p.p=y,p"
and the above formula reduces to

S6e,) =Dy ) =

~Jewp(=ip. (= 2Dly.p—m] " [€g,0" + i K v, @)l @) [y.q = m]lexp(—ig. =

This expression can be simplified by defining
[e'@exptip. 2)d*z = € p)

which implies that
[ @ewtip. o'z = ~ &)
so that
8,3) = Dy ' (x.3) =
~[p=m " g = m lewp(— ip.x + gD + 0y~ 0K v, 1P - @)dpd’q

In particular, for computing the quantum average perturbation to the four
current density field, as seen above, we require

S(x,x) =Dy l(x, x)

~[l-p =g = m) T exp(— ip — ). 0)g,0 + (0, ~ 4, )K(, v, DIE(p ~ )dpdy

This completes the formulation of our problem of calculating the
approximate average four current field or equivalently, the density and
velocity perturbations of the matter field and more generally, the space-
time moments of the four current density field caused by metric
perturbations around a flat space-time metric. More generally, if we wish to
calculate the quantum average/space-time moments of the four current
field perturbations caused by small perturbations around a given classical
metric like the RW metric, we must first express the metric perturbations
in terms of the tetrad perturbations in both the Einstein-Hilbert action and
in the Dirac action, and path integrate w.r.t these tetrad perturbations.

geios.com
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13. Conclusions

We analyze various parametrizations of maximally symmetric spaces in
higher-dimensional spacetime that provide natural generalizations of the
four-dimensional Robertson-Walker metric corresponding to a
homogeneous and isotropic expanding universe, and then look at the
Maxwell, Klein-Gordon, and fluid dynamical equations in such a space-
time. As regards the former two equations, we separate the space and time
variables and are able to obtain separate differential equations for the
spatial and temporal components. As regards the fluid dynamical and heat
transfer equations, we introduce corrections to the energy-momentum
tensor of matter caused by viscous and thermal effects and are able to
formulate the required differential equations for temperature diffusion and
convection. Future work is being directed toward formulating the Einstein
field equations for such higher-dimensional maximally symmetric spaces
and also analyzing the problem of density, velocity, and metric perturbation
evolutions in a homogeneous and isotropic background, which is expected
to provide a clue to galactic evolution in higher-dimensional space-times.
To this end, in this paper, we explain how to compute the Ricci tensor
components in higher-dimensional maximally symmetric space-times and
also how to compute the partial differential equations satisfied by the
velocity and temperature fluctuations using linearized heat and mass
transfer equations in general relativity. It should be mentioned that as
regards computing the contribution to the energy-momentum tensor of
the matter fluid caused by viscous and thermal effects, we use the existing
results in the literature based on the second law of thermodynamics, which
yields the general form of the viscous and thermal contribution to the
energy-momentum tensor of the matter fluid. We also present some
computations on the quantum Boltzmann equation for open quantum
systems and touch upon the problem involving computing the quantum
average of the matter four-current (i.e., density and velocity perturbations)
when the matter consists of only electrons and positrons, using the
Feynman path integral formula for the Dirac field interacting with the
quantum gravitational field via the spinor connection of gravity. The
importance of the quantum Boltzmann equation stems from quantum
cosmology, wherein we have a very large number of particles in a volume
and‘we @tk interested only in the dynamics of a single, or at most a small
finite number of particles, from the quantum mechanical angle.
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