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Neural Networks Use Distance Metrics

Alan Oursland1

1. Independent researcher

We present empirical evidence that neural networks with ReLU and Absolute Value activations learn distance-based

representations. We independently manipulate both distance and intensity properties of internal activations in trained

models, �nding that both architectures are highly sensitive to small distance-based perturbations while maintaining

robust performance under large intensity-based perturbations. These �ndings challenge the prevailing intensity-based

interpretation of neural network activations and o�er new insights into their learning and decision-making processes.
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1. Introduction

The foundation for interpreting neural network activations as indicators of feature strength can be traced back to the

pioneering work of McCulloch and Pitts in 1943[1], who introduced the concept of arti�cial neurons with a threshold for

activation.1 This concept, where larger outputs signify stronger representations, was further developed by Rosenblatt’s

1958 perceptron model[2]  and has persisted through the evolution of neural networks and deep learning[3]. Throughout

this evolution, the �eld has largely upheld this interpretation that larger activation values indicate stronger feature

presence – what we term an intensity metric. However, despite the remarkable success achieved through this lens, the

statistical principles underlying neural network feature learning remain incompletely understood[4].

This work builds on our recent theoretical framework[5] that proposed neural networks might naturally learn to compute

statistical distance metrics, speci�cally the Mahalanobis distance[6]. Our analysis suggested that smaller node activations,

rather than larger ones, might correspond to stronger feature representations. While this previous work established a

mathematical relationship between neural network linear layers and the Mahalanobis distance, we need empirical

evidence to determine whether networks actually employ these distance-based representations in practice.

We use systematic perturbation analysis[7][8]  to provide empirical evidence supporting the distance metric theory

proposed in our previous work. Using the MNIST dataset[9], we modify trained models by independently manipulating

distance and intensity properties of network activations. By analyzing how these perturbations a�ect model performance,

we identify which properties – distance or intensity – drive network behavior. Our investigation focuses on two key

questions:

Do neural networks naturally learn to measure distances rather than intensities when processing data distributions?
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How do di�erent activation functions (ReLU and Absolute Value) a�ect the type of statistical measures learned by the

network?

Our results show that networks with both ReLU and Absolute Value activations are highly sensitive to distance-based

perturbations while maintaining robust performance under intensity perturbations, supporting the hypothesis that they

utilize distance-based metrics. These �ndings not only validate our theoretical framework but also suggest new

approaches for understanding and improving neural network architectures.

2. Prior Work

In 1943 McCulloch and Pitt introduced a computation model of a neuron to explore logical equations in biological brains[1].

Their de�nition   marks the beginning of our path using intensity metrics. Rosenblatt adapted this into

an activation value   in 1957 with the perceptron, further solidifying the intensity metric interpretation[10].

The development of multilayer perceptrons (MLPs) and the backpropagation algorithm enabled the training of deeper

networks with continuous activation functions.[11][12][13]  The interpretation of activations continued to focus on larger

values as being more salient, re�ected in visualizations of activations and analyses of feature maps, where stronger

activations were highlighted.[14][15][16][17]

The rise of deep learning, with the widespread adoption of ReLU and its variants, further reinforced the intensity metric

interpretation by emphasizing the importance of large, positive activations.[18][19]  Visualization techniques, such as

saliency maps and Class Activation Mapping (CAM), often focused on highlighting regions with high activations.[20]

[21] Similarly, attention mechanisms, which assign weights to di�erent parts of the input, often rely on the magnitude of

these weights as indicators of importance.[22][23]

While the intensity metric interpretation has been dominant, recent work has highlighted its limitations.[24] Considering

the relationships between activations, particularly through distance metrics, o�ers a promising avenue for understanding

neural network representations.[8][25][7]  Distance-based methods, such as Radial Basis Function (RBF) networks and

Siamese networks, demonstrate the potential of incorporating distance computations into neural network architectures

and interpretation.[26][27][28] This approach could lead to more nuanced and e�ective representations.

3. Background

In our previous work, Interpreting Neural Networks through Mahalanobis Distance, we established a mathematical link

between linear nodes with absolute value activation functions and statistical distance metrics.[5] This framework suggests

that neural networks may naturally learn to measure distances rather than intensities.

We explore this idea within the MNIST dataset, a well-known digit recognition problem that o�ers a structured

environment for examining neural network behavior[9]. MNIST’s clear feature structure and abundant prior research make

it ideal for investigating core properties of neural network learning. A distance metric quanti�es how far an input is from a

learned statistical property of the data[29]. While an intensity metric re�ects a con�dence level — larger values indicate

higher certainty that the input belongs to the node’s feature set. This dual interpretation of a node’s output — either as a

TRUE = (Wx > b)

y = f(Wx + b)

qeios.com doi.org/10.32388/K8RYTK 2

https://www.qeios.com/
https://doi.org/10.32388/K8RYTK


measure of distance or as con�dence in feature presence — can help us understand the nature of neural network learning.

For instance, an intensity �lter could be viewed as a disjunctive distance metric that measures how close an input is to

everything the target feature is not.

3.1. From Theory to Practice

The distinction between distance and intensity metrics becomes critical when analyzing network behavior. Traditional

interpretations suggest that the node detects the presence of 0, with higher activation values indicating greater con�dence.

However, another possibility is that the node measures the distance from class embeddings that are not 0 — that is, how

di�erent the input is from all other digits. Both interpretations lead to the same result, but the disjunctive distance-based

view aligns more closely with known statistical distance metrics. While there may be statistical intensity metrics, we have

yet to identify one that models con�dence signals in the same way. This reframing suggests that neural networks might

fundamentally operate by comparing inputs to learned prototypes rather than assessing the strength of individual features.

However, proving this requires more than mathematical relationships; we need empirical evidence that networks indeed

learn and use distance metrics in practice. This leads to several key questions:

Do neural networks naturally learn to measure distances rather than intensities?

How can we experimentally distinguish between distance-based and intensity-based feature learning?

What evidence would convincingly demonstrate which interpretation better re�ects network operation?

These questions inform our experimental design, which uses controlled perturbations to test the nature of the learned

features. By independently manipulating the distance and intensity properties of network activations, we can determine

which aspects truly drive network behavior.

Our investigation focuses not on proving speci�c mathematical relationships but on demonstrating that distance-based

properties, rather than intensity-based properties, govern network performance. This approach aims to improve our

understanding of how neural networks process information and may lead to more e�ective network design and analysis

methods[30][31].

4. Experimental Design

To empirically investigate whether neural networks naturally learn distance-based features, we designed systematic

perturbation experiments to di�erentiate between distance-based and intensity-based feature learning. This

experimental framework directly compares these two interpretations by examining how learned features respond to

speci�c modi�cations of their activation patterns. We hypothesize that perturbing the ”true representation” will result in

a drop in model accuracy.

We train a basic feedforward model on the MNIST dataset to test our hypotheses. Our goal is to obtain a robust model for

perturbation analysis, not to optimize model accuracy. The network processes MNIST digits through the following layers:

The perturbation layer is a custom module designed to control activation patterns using three �xed parameters: a

multiplicative factor ( ), a translational o�set ( ), and a clipping threshold ( ). During training, these

x → Linear(784) → Perturbation → Activation (ReLU/Abs) → Linear(10) → y (1)

scale offset clip
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parameters remain �xed ( ,  ,  ), ensuring the layer does not in�uence the network’s learning.

During perturbation testing, these parameters are modi�ed to probe the network’s learned features. For each input  , the

perturbation layer applies the following operation:  , where  ,  , and    are

adjustable for each unit.

The model was trained on the entire MNIST dataset (rather than using minibatches) for 5000 epochs using Stochastic

Gradient Descent (learning rate = 0.001, loss = cross-entropy). Data normalization used  ,  . To ensure

statistically signi�cant results, we repeated each experiment 20 times.

4.1. Perturbation Design

The core of our experimental design centers on two distinct perturbation types: one targeting distance-based features and

the other targeting intensity-based features.

Distance-based features are expected to lie near the decision boundary. By shifting the decision boundary, we increase the

distance between active features and the boundary. If these features are critical for classi�cation, this shift should result in

reduced model performance. We also seek to maintain the position of intensity features in this operation. For each node,

we calculate the output range, scale by the speci�ed percentage, and then apply the o�set as a percentage of the range. The

perturbation equation for a given percentage   and range   is:  .

We lack a statistical framework for intensity metrics, so we rely on heuristics to identify perturbations that might disrupt

them. Two operations are tested: scaling and clipping. Scaling changes the speci�c value of the intensity feature, while

clipping changes the value and removes the ability to distinguish between multiple intensity features.

Scaling simply multiplies node outputs by a scalar value. Distance-features are a�ected too, but the change is small since

they are small. For a scaling percentage  , the perturbation equation is  .

Clipping caps activations at threshold value. This destroys information about relative di�erences among high-activation

features. For a cuto� percentage   and range  , the equation is 

4.2. Evaluation

Perturbation ranges were selected to span a broad spectrum to ensure comprehensive evaluation. The ranges overlap to

facilitate direct comparison between distance and intensity metrics. All percentages are applied to individual node ranges

over the input set. Intensity and cuto� range over  . O�set ranges over  .

We select a percentage in the perturbation range, calculate and apply  ,  , and   for the active test, evaluate on

the entire training set, and calculate the resulting accuracy. We use the training set, and not the test set, to observe how

perturbations a�ect the features learned during training. Changes in accuracy indicate reliance on the perturbed feature

type, while stable accuracy suggests that the features are not critical to the model’s decisions. The use of the training set

ensures a comprehensive assessment with a su�cient number of data points.

scale = 1 offset = 0 clip = ∞

x

y = min(scale ⋅ x + offset, clip) scale offset clip

μ = 0.1307 σ = 0.3081

p r {scale = (1 − p) ⋅ r, offset = p ⋅ r}

p {scale = p}

p r {clip = p ⋅ r}

[1%. .1000%] [−200%. .100%]

scale offset clip
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5. Results

Figure 1. E�ects of intensity scaling and distance o�set perturbations on model accuracy. Shaded regions represent 95%

con�dence intervals across 20 runs.

Our experiments provide strong empirical support for the theory that the tested models (Abs and ReLU) primarily utilize

distance metrics, rather than intensity metrics, for classi�cation. This means that the models rely on features residing near

the decision boundaries for classi�cation, rather than in regions with high activation magnitudes. As shown in Table 1,

both models achieved high accuracy on MNIST before perturbation testing[9].

Consistent with theory, both models resist intensity perturbations but are sensitive to distance ones (Figure 1).

Speci�cally, both models maintain their baseline accuracy (approximately 98% for ReLU and 99% for Abs) across a wide

range of intensity scaling (from 10% to 200% of the original output range) and threshold clipping (from 50% of the

maximum activation and above). The minor �uctuations in accuracy observed within these ranges were small and not

statistically signi�cant ( ), as detailed in Table 2 and Table 3. This robustness to intensity perturbations suggests

that the models are not heavily reliant on the absolute magnitude of activations, or intensity metrics, for classi�cation. This

aligns with �ndings in adversarial example literature, where imperceptible perturbations can drastically alter model

predictions[7][8].

In contrast, both models exhibit a rapid decline in accuracy with relatively small distance o�set perturbations. ReLU

maintains its baseline accuracy over an o�set range from -3% to +2% of the activation range, while the Abs model is even

more sensitive, falling below 99% accuracy outside of -1% to +1%. These �ndings, presented in detail in Table 4,

underscore the importance of distance metrics, particularly the distances to decision boundaries, in the learned

representations for accurate classi�cation.

The high  -values associated with the intensity perturbations (see Appendix A) further support our hypothesis. These

non-signi�cant results indicate that the observed variations in accuracy under intensity changes are likely attributable to

p > 0.05

p
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random �uctuations rather than a systematic e�ect of the perturbations. This reinforces the notion that the models

prioritize distance metrics over intensity metrics, focusing on the features close to decision boundaries for classi�cation.

6. Discussion

Figure 2. This series of �gures illustrates how linear nodes process features using ReLU and Absolute Value activation

functions. Each blue peak represents a feature (a-e), with the red dashed line showing the decision boundary. The top row

shows features after linear projection but before activation. The bottom row shows how ReLU and Absolute Value functions

transform these projections, highlighting their distinct e�ects on feature space.

We explore how ReLU and Abs activations represent features within a distance metric interpretation. Figure 2 illustrates

the key di�erences in how these activation functions process information. In the pre-activation space (Figures 2a and 2b),

both models can learn similar linear projections of input features. ReLU is driven to minimize the active feature   and

ends up being positioned on the positive edge of the distribution. Abs positions the decision boundary through the mean,

or possibly the median, of the data. After activation, ReLU sets all features on its dark side to the minimum possible

distance: zero. Abs folds the space, moving all distributions on the negative side to the positive side. The ReLU activated

node selects for features  . The folding operation of the Abs activated feature results in   being the sole feature

with the smallest activation value.

{c}

{a, b, c} {c}

qeios.com doi.org/10.32388/K8RYTK 6

https://www.qeios.com/
https://doi.org/10.32388/K8RYTK


6.1. O�set Perturbations

Figure 3. E�ects of decision boundary o�sets on feature representation. Negative o�sets (top row) and positive o�sets

(bottom row) demonstrate how shifting the decision boundary a�ects feature selection in ReLU and Abs activated nodes.

Figure 3 illustrates how o�set perturbations a�ect feature selection for both ReLU and absolute value activation functions.

With ReLU, o�set perturbations modify the set of accepted features. The negative o�set (Figure 3a) removes feature   from

the accepted set, leaving only  , while, with this distribution, a positive o�set doesn’t result in a change (Figure 3c).

In contrast, absolute value activation selects a single feature. A negative o�set shifts the selection to feature   instead of

the originally trained feature    (Figure  3b). A positive o�set results in features    having the minimum values

(Figure 3d). However, neither of these aligns with the decision boundary, e�ectively resulting in an empty set.

These complete shifts in feature selection for the absolute value activation, compared to the incremental changes with

ReLU, explain the more dramatic performance impact observed in Figure 1, even with small o�set perturbations.

6.2. Scale Perturbations

Analyzing the impact of scaling on intensity features presents a challenge due to the lack of a precise de�nition for what

constitutes an intensity feature. Our experiments demonstrated that scaling activations, which directly modi�es their

magnitude, did not signi�cantly a�ect the performance of either ReLU or absolute value networks. This invariance is

unexpected if we assume that precise large activations values indicate feature presence.

One possible explanation for this invariance could be the normalization e�ect of the LogSoftmax operation within the

cross-entropy loss function[32]. By renormalizing the output values, LogSoftmax might mitigate the impact of scaling on

the relative di�erences between activations, potentially masking any e�ects on intensity-based features. However, this

c

{a, b}

b

c {c, d}
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does not explain the performance drop observed when activations are scaled down to the magnitudes associated with

distance features, suggesting a complex interplay between scaling and the di�erent types of learned features.

6.3. Cuto� Perturbations

To further investigate intensity features, we introduced a threshold cuto� perturbation. This perturbation directly targets

the ability to distinguish between features based on activation magnitude by clipping activations at a certain threshold. Our

results showed a minor performance degradation for cuto� thresholds up to the 50th percentile, followed by a more

moderate degradation as the threshold is further reduced. This suggests that the ability to distinguish between features

with very high activations might not be critical for classi�cation, especially if subsequent layers utilize sets of features

rather than relying on individual activations, as indicated by our analysis of ReLU networks.

While the results of our intensity perturbation experiments generally support our hypothesis that neural networks

prioritize distance-based features, the evidence is not as conclusive as with the distance perturbation experiments. Further

investigation is needed to fully understand the role of intensity features and their interaction with di�erent activation

functions and network architectures.

6.4. The Problem with Intensity

Our perturbation analysis appears to support distance-based feature interpretation, but we must address a signi�cant

challenge: we cannot de�nitively disprove intensity-based interpretations due to the lack of a widely accepted de�nition of

what constitutes an intensity feature. This ambiguity has persisted despite decades of research, with various

interpretations proposed but no consensus reached. Some studies suggest that intensity features are indicated by

maximum activation values, as seen in the foundational work on arti�cial neurons and perceptrons[1][2]. Others propose

that intensity features might be de�ned by activation values falling within a speci�c range, aligning with the concept of

con�dence intervals or thresholds.

The absence of a clear mathematical foundation for intensity metrics further complicates the matter. Distance metrics like

Euclidean and Mahalanobis distances have well-de�ned statistical measures with clear linear formulations[29][6].

However, we �nd no equivalent statistical measure for intensity that can be expressed through a linear equation. This lack

of a concrete mathematical basis makes it challenging to design experiments that de�nitively target and assess intensity

features.

Our scaling experiments highlight this di�culty. One might expect that doubling a strong signal (high activation) should

make it stronger, yet our networks maintain consistent behavior under scaling. If we propose that relative values between

nodes preserve intensity information, this begins to sound suspiciously like a distance metric.

The distance features in the network are easily explained as a Mahalanobis distance of a principal component as described

in[5]. But what is the statistical meaning behind the intensity features? It implies a complement to the principal

component, a principal disponent consisting of an antivector, antivalue, and an unmean. I don’t think that principal

disponents are real. What looks like an intensity metric is really a distance metric that matches everything except the large

value. Perhaps statistical network interpretation has stymied researchers because we have been looking for the

mathematical equivalent of Bigfoot or the Loch Ness Monster.
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7. Conclusion

This paper provides empirical validation for the theoretical connection between neural networks and Mahalanobis distance

proposed in[5]. Through systematic perturbation analysis, we demonstrated that neural networks with di�erent activation

functions implement distinct forms of distance-based computation, o�ering new insights into their learning and

decision-making processes.

Our experiments show that both architectures are sensitive to distance perturbations but resistant to intensity

perturbations. This supports the idea that neural networks learn through distance-based representations. The Abs

network’s performance degrades more dramatically with small o�sets than the ReLU network’s performance. This may be

because the Abs network relies on precise distance measurements, while the ReLU network uses a multi-feature approach.

Both architectures maintain consistent performance under scaling perturbations, which appears to support distance-

based rather than intensity-based computation. However, the lack of a precise mathematical de�nition for intensity

metrics makes it di�cult to de�nitively rule out intensity-based interpretations. This limitation highlights a broader

challenge in the �eld: we cannot fully disprove a concept that lacks rigorous mathematical formulation.

These results provide empirical support for the theory that linear nodes naturally learn to generate distance metrics.

However, more work is needed to strengthen this theoretical framework, particularly in understanding how these distance

computations compose through deeper networks and interact across multiple layers. The evidence presented here suggests

that distance metrics may provide a more fruitful framework for understanding and interpreting neural networks than

traditional intensity-based interpretations.

Appendix

A. Statistic Tables

A.1. Baseline Performance

The following table presents the detailed performance metrics for both architectures across 20 training runs:

Model Training Acc (%) Test Acc (%) Loss

Abs 99.99   0.00 95.29   0.20 0.0047   0.0005

ReLU 98.33   0.15 95.61   0.14 0.0610   0.0044

Table 1. Baseline model performance averaged across 20 training runs (mean   standard deviation).

A.2. Intensity Scale Perturbation Results

Results for intensity scaling perturbations compared to baseline performance:

± ± ±

± ± ±

±
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Scale Abs ReLU

Change Acc (%) T-stat P-value Acc (%) T-stat P-value

1% 94.76 16.6 9.0e-13 75.33 15.6 2.8e-12

5% 99.86 6.4 4.0e-06 97.33 11.9 3.1e-10

10% 99.98 5.5 2.9e-05 98.10 10.4 2.9e-09

25% 99.98 1.1 3.0e-01 98.31 4.7 1.7e-04

50% 99.99 -2.0 5.6e-02 98.33 -3.7 1.6e-03

Baseline 99.99 -1.3 2.0e-01 98.33 -3.6 1.7e-03

1000% 99.99 -1.6 1.3e-01 98.33 -3.2 4.9e-03

Table 2. E�ects of intensity scaling on model accuracy. Scale values are shown as percentages of the original range.

A.3. Intensity Cuto� Results

Results for intensity cuto� perturbations compared to baseline performance:

Cuto� Abs ReLU

Change Acc (%) T-stat P-value Acc (%) T-stat P-value

1% 52.90 28.1 6.1e-17 75.93 36.6 4.5e-19

5% 60.13 24.8 6.4e-16 82.57 27.8 7.2e-17

10% 71.05 21.9 6.0e-15 87.56 23.0 2.5e-15

20% 88.55 21.0 1.3e-14 93.84 20.6 1.9e-14

30% 96.11 24.5 7.8e-16 96.67 18.6 1.2e-13

40% 98.70 -25.3 4.3e-16 97.74 -23.4 1.8e-15

50% 99.60 -26.7 1.6e-16 98.14 -26.8 1.5e-16

75% 99.98 -26.5 1.8e-16 98.33 -27.8 7.4e-17

Baseline 99.99 -26.5 1.8e-16 98.33 -28.1 6.3e-17

Table 3. E�ects of intensity cuto� on model accuracy. Cuto� values are shown as percentages of the maximum activation.
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A.4. Distance O�set Perturbation Results

Results for distance perturbations (o�set) compared to baseline performance:

O�set Abs ReLU

Change Acc (%) T-stat P-value Acc (%) T-stat P-value

-200% 11.04 49.6 1.4e-21 18.77 211.3 1.7e-33

-100% 12.60 48.8 1.9e-21 41.68 78.9 2.2e-25

-75% 14.79 47.1 3.9e-21 55.16 60.2 3.8e-23

-50% 21.78 43.7 1.6e-20 72.90 43.4 1.8e-20

-25% 49.03 32.0 5.3e-18 90.24 33.1 2.9e-18

-10% 86.25 -31.5 7.3e-18 96.55 -36.7 4.1e-19

-5% 95.49 -39.5 1.1e-19 97.78 -38.8 1.5e-19

-3% 97.86 -41.3 4.6e-20 98.13 -39.3 1.1e-19

-2% 98.95 -42.1 3.2e-20 98.24 -39.4 1.1e-19

-1% 99.82 -42.7 2.4e-20 98.31 -39.8 8.9e-20

Baseline 99.99 -42.8 2.3e-20 98.33 -40.0 8.3e-20

+1% 99.81 -42.7 2.4e-20 98.26 -39.6 9.8e-20

+2% 98.85 -42.0 3.3e-20 98.14 -39.3 1.2e-19

+3% 97.70 -41.0 5.2e-20 97.99 -38.5 1.7e-19

+5% 95.00 -38.3 1.8e-19 97.62 -36.6 4.5e-19

+10% 81.40 -19.5 4.9e-14 96.31 -28.3 5.3e-17

+25% 23.43 15.0 5.2e-12 81.60 14.7 8.1e-12

+50% 11.14 29.7 2.2e-17 32.54 64.3 1.1e-23

+75% 9.81 42.8 2.3e-20 13.94 61.1 2.8e-23

+100% 9.78 44.6 1.1e-20 9.41 493.8 1.7e-40

Table 4. E�ects of distance o�set on model accuracy. O�set values are shown as percentages of the activation range.
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Footnotes

1 The implementation for this work can be found at

https://github.com/alanoursland/neural_networks_use_distance_metrics.
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