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1. Independent researcher

The inability to define the true target (TT) precisely in a TT learning task is a common challenge

across various artificial intelligence (AI) application scenarios. In this article, we define this challenge

as undefinable TT learning (UTTL). We explicitly propose that the fundamental assumption

underlying UTTL is that the TT does not exist in the real world. To justify the necessity of introducing

UTTL, we conducted a series of studies aimed at rigorously addressing the intrinsic question: why is

UTTL needed? These investigations affirm that, under the assumption that the TT is nonexistent in

the real world, UTTL is both necessary and significant. From the perspectives of problem definition,

alternative formulations, methodological development, and application scenarios, we present a formal

theoretical foundation for UTTL to effectively address learning tasks where the TT cannot be precisely

defined. In doing so, this article not only establishes the theoretical basis of UTTL grounded in the

explicitly stated assumption but also reveals, from a theoretical standpoint, the potential benefits of

noisy labels in enabling UTTL.

Corresponding author: Yongquan Yang, remy_yang@foxmail.com

1. Introduction

A common situation in various artificial intelligence (AI) application scenarios is that the true target (TT)

for a TT learning task cannot be precisely defined. A TT learning task here involves implementing a

predictive model based on machine learning (ML)-based AI technologies for automatically predicting the

TT for future useful applications. For example, in the scenario of applying ML-based AI technologies to

implement a tool for automatically segmenting tumor/lesion areas in whole slide histopathology images,

the TT of the tumor/lesion areas for learning a predictive model to implement the tool is even impossible

for pathological experts to label precisely [1][2][3]. In this article, we refer to this situation in AI application

scenarios as the problem of undefinable TT learning (UTTL), which belongs to the realm of ML [4][5][6]. As
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the TT cannot be precisely defined in UTTL, only inaccurately labelled data can be provided to UTTL.

This leads us to explicitly propose in this article that the fundamental assumption about the TT for UTTL

is that the TT does not exist in the real world.

In the current literature on ML, UTTL is similar to learning with noisy labels (LWNLs)  [7][8], which is a

typical type of weakly supervised learning  [9]. LWNLs consider the situation where the labels of the

provided data contain certain noise, which leads to the inaccuracy of the labels in annotating the TT [7][8].

For the situation of LWNLs, inaccurately labelled data are provided mostly for the purpose of alleviating

the labor-intensive labelling of the TT  [10]. As the data prepared for the situations of UTTL and LWNLs

can be identically inaccurate, UTTL shares a certain similarity with LWNLs. This seems to indicate that

existing approaches for addressing LWNLs can be alternatively selected to address UTTL. A brief review

of LWNLs is provided in Section 2.

However, for a TT learning task in the current literature of LWNLs or even in the current literature of the

entire ML realm, the acquiescent assumption about the TT is that the TT exists in the real world. This

means that although inappropriate, the assumption that the TT exists in the real world is still being used

for situations where the TT for a TT learning task cannot be precisely defined. As a result, the

assumption that the TT exists in the real world for the situation of LWNLs intrinsically indicates that

existing approaches for addressing LWNLs are not suitable for handling UTTL, as the explicitly proposed

fundamental assumption about the TT for UTTL is that the TT does not exist in the real world.

The existence of this issue can be proven with an underlying logic in ML, which is as follows: the

assumption about the TT is the foundation for establishing the evaluation strategy, and the evaluation

strategy established on the basis of the assumption about the TT will eventually affect the formation of

the learning concept. In short, this underlying logic in ML is that the fundamental assumption about the

TT will eventually determine the formation of the learning concept. In this work, we comprehensively

illustrate how this underlying logic in ML is concluded and how the existing approaches for addressing

LWNLs are not suitable for handling UTTL, which is proven with this underlying logic in ML. These serial

works were conducted to provide a scrupulous answer to an intrinsic question of why we need to present

UTTL. First, we discuss the definitions of labels and targets in ML. Second, we analysed the evaluation

and learning procedures in ML. Third, we summarized existing assumptions for the TT in the evaluation

procedure. Fourth, we organized the effects of different assumptions for TT on the evaluation procedure.

Finally, we summarize an underlying logic in ML from the previous four serial works, which assumes

that the TT will eventually determine the formation of the learning concept in ML, to prove the existence
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of the issue that existing approaches for addressing LWNLs are not suitable for handling UTTL. These

serial works eventually led us to realize that it is indeed necessary and important to present UTTL on the

basis of the explicitly proposed assumption that the TT does not exist in the real world. More information

is provided in Section 3.

Because of the necessity and importance of presenting UTTL, in this article, we aim to formally present a

theoretical foundation for UTTL on the basis of the explicitly proposed assumption that the TT does not

exist in the real world. To achieve this goal, we systematically analysed UTTL from the perspectives of

problem definition, alternative solutions, specific methods, and particular applications. Specifically, the

definition for the UTTL problem is formally presented on the basis of the fundamental assumption that

the TT for the UTTL problem does not exist in the real world. On the basis of the presented definition, the

UTTL problem is transformed into a combination of the ML problem and the logical reasoning problem,

and an alternative solution to the transformed UTTL problem is presented. Referring to the presented

alternative solution, specific methods such as one-step abductive multitarget learning (OSAMTL) and its

extensions, which have been proposed in recent works [1][2][3][11], are presented for addressing the UTTL

problem in different scenarios. Referring to the specific methods OSAMTL and its extensions, the

implementation rules and techniques of these methods are summarized with respect to particular

applications in real-world scenarios. With these works, we formally established a theoretical foundation

for UTTL to handle situations where the TT for a TT learning task cannot be precisely defined. More

information is provided in Section 4, Section 5, Section 6, and Section 7.

To the best of our knowledge, this article is the first to explicitly propose the fundamental assumption

that the TT does not exist in the real world to formally present a theoretical foundation for UTTL to

appropriately handle the situation where the TT for a TT learning task cannot be precisely defined in

various AI application scenarios. In addition, as only inaccurately labelled data can be provided to UTTL,

this article also naturally shows the benefits of noisy labels for realizing UTTL from a theoretical point of

view while providing the theoretical foundation for UTTL on the basis of the explicitly proposed

fundamental assumption that the TT does not exist in the real world. The rest of the contents of this

article are structured as follows: In Section 2, we briefly introduce LWNLs and the similarities and

differences between UTTL and LWNLs. In Section 3, we perform a series of works to answer the intrinsic

question of why UTTL is needed. In Sections 4, 5, 6 and 7, we present the definition, alternative solution,

specific method and particular application for the UTTL problem, respectively. Finally, in Section 8, we

present a discussion, conclusion and future work for this article.
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2. Related work

As the labels for the data prepared for the situations of UTTL and LWNLs can be identically inaccurate,

UTTL shares a certain similarity with LWNLs. In this section, we briefly review approaches for the

situation of LWNLs.

In the literature on LWNLs, numerous approaches have been proposed to address this problem, including

robust architectures, robust regularization, sample selection, and robust loss design [12]. In particular, the

objective of robust architectures [13][14][15][16][17][18][19][20] is to apply a noise adjustment layer over a deep

neural network (DNN) to grasp how labels change or to construct a unique architectural design that

accommodates a wider variety of label noise categories, which strives to hinder a DNN's tendency to

overly adapt to incorrectly labelled examples through the implementation of training constraints. A key

advantage of robust regularization  [21][22][23][24][25][26]  lies in its capacity to readily acclimate to novel

scenarios with minimal adjustments. Sample selection strategies [27][28][29][30][31][32][33][34][35] endeavour

to pinpoint and prioritize the samples deemed most plausible to be clean for the purpose of enhancing

the optimization process. Robust loss [36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51] design seeks to

calibrate the loss value in accordance with the certainty of a particular loss (or label) through various

tactics or devises a novel loss function tailored to cope with imprecise guidance. Typically, resilient loss

functions incorporate a provision that imposes a penalty on predictions made with low confidence,

which are more prone to result from noisy data points. For more information about the LWNLs problem

and its alternative solutions, readers can refer to [7][8].

For a TT learning task in the current literature of LWNLs or even in the current literature of the entire ML

realm, the acquiescent assumption about the TT is that the TT exists in the real world. In contrast, in this

work, the fundamental assumption about the TT for UTTL is that the TT does not exist in the real world.

3. Why is UTTL needed?

In this section, we systematically illustrate the necessity and importance of presenting UTTL on the basis

of the explicitly proposed fundamental assumption that the TT does not exist in the real world. This

section is structured as follows: In Section 3.1, the definitions of labels and targets in ML are discussed. In

Section 3.2, the evaluation and learning procedures in ML are analysed. In Section 3.3, existing

assumptions for the TT in the evaluation procedure are summarized. In Section 3.4, the effects of

different assumptions for TT in the evaluation procedure are organized. Finally, in Section 3.5, an
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underlying logic in ML is summarized from the previous four serial works, which shows that it is indeed

necessary and important to present UTTL on the basis of the explicitly proposed assumption that the TT

does not exist in the real world.

3.1. Label and target in ML

In ML, a label or a target is usually associated with an instance. The instance and its corresponding label

or target form a data point that can be collected to create a dataset for the evaluation and learning of ML-

based predictive models. The difference between a label and a target is that a label represents the

mapping objective associated with an instance, whereas a target represents a transformation from the

mapping objective for an instance that can be easily used for computation in specific procedures in

ML [52].

3.2. Evaluation and learning procedures in ML

In ML, two procedures play decisive roles in evolving predictive models for specific applications:

evaluation and learning procedures. The evaluation procedure aims to assess the performance of an ML-

based predictive model, and the learning procedure aims to develop a predictive model based on specific

ML algorithms. In ML, the evaluation procedure is typically closely related to the learning procedure.

Their relation is that successful evaluation strategies for the evaluation procedure are critical to the

learning procedure for developing ML-based predictive models, as successful evaluation strategies for

the evaluation procedure in ML are generally used to build up the learning procedure in ML (i.e., if an

evaluation strategy can be successfully used to evaluate an ML-based predictive model in the evaluation

procedure, then it can also generally be used to learn an ML-based predictive model in the learning

procedure).

3.3. Existing assumptions for TT in the evaluation procedure

To reveal the existing assumptions for TT in the evaluation procedure in ML, we should first summarize

various strategies proposed for the evaluation procedure for assessing the performance of an ML-based

predictive model. For the evaluation procedure in ML, there are two usual types of evaluation strategies:

usual evaluation with accurate ground-truth labels (AGTLs) and usual evaluation with inaccurate

ground-truth labels (IAGTLs). Each of these two usual types also has specific subtypes regarding

different preparations for evaluation. Usual evaluation with AGTLs can be classified into two subtypes:
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extracting TT from massive AGTLs  [53][54][55]  and extracting TT from limited AGTLs  [56][57]. Usual

evaluation with IAGTLs can be classified into two subtypes: selecting probable TTs from IAGTLs [58][59]

[60] and providing/estimating the TT error rate in IAGTLs  [61]. More recently, a new evaluation strategy

named the logical assessment formula (LAF) [62] was also proposed for evaluation with IAGTLs. LAF only

requires the extraction of multiple TTs from IAGTLs for evaluation  [63]. These classifications can be

summarized in Table 1.

On the basis of the summarization of Table 1, we can analyse the underlying assumption for the TT in the

three types of evaluation strategies for the evaluation procedure in ML. For the usual strategy of

evaluation with AGTLs, the acquiescent assumption for the TT is that the TT exists in the provided labels,

as the TT can be extracted from the provided massive or limited AGTLs. For the usual strategy of

evaluation with IAGTLs, the acquiescent assumption for the TT is also that the TT exists in the provided

labels, as the probable TT can be selected from the provided IAGTLs, or the TT error rate in the provided

IAGTLs can be provided/estimated (i.e., if the TT does not exist in the provided labels, then no probable

TT can be selected from the provided IAGTLs and no TT error rate in the provided IAGTLs can be

provided/estimated). However, for the strategy of LAF for evaluation with IAGTLs, the fundamental

assumption for the TT is not exclusive, as it only requires extracting multiple inaccurate TTs from the

provided IAGTLs (i.e., the TT can exist or does not exist in the provided IAGTLs). As a result, the

fundamental assumptions for the TT in the three types of evaluation strategies for the evaluation

procedure in ML can be summarized in Table 2.

Evaluation strategy Preparation for evaluation

Usual evaluation with AGTLs

Generating the TT from massive AGTLs

Generating the TT from limited AGTLs

Usual evaluation with IAGTLs

Selecting the probable TT from IAGTLs

Providing/estimating the TT error rate in IAGTLs

LAF for evaluation with IAGTLs Extracting multiple inaccurate TTs from IAGTLs

Table 1. Summary of various strategies proposed for the evaluation procedure for assessing the performance

of an ML-based predictive model
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Assumption for the TT Evaluation strategy

The TT exists in the provided labels

Usual evaluation with AGTLs

Usual evaluation with IAGTLs

The TT can exist or does not exist in the provided IAGTLs LAF for evaluation with IAGTLs

Table 2. Summary of the fundamental assumptions for the TT in different types of evaluation strategies for

the evaluation procedure in ML

3.4. Effects of assumptions for TT on the evaluation procedure

In fact, the fundamental assumptions for the TT are the causes that affect the emergence of various

existing strategies for the evaluation procedure in ML. In other words, there are cause‒and‒effect

relationships between the fundamental assumption for the TT and the various existing strategies for the

evaluation procedure in ML. The detailed effects of the fundamental assumption for the TT on the

evaluation procedure in ML can be summarized as follows: 1) The assumption that the TT exists in the

provided labels is the foundation for establishing the two usual types of evaluation strategies, including

usual evaluation with AGTLs and the usual evaluation with IAGTLs, for the evaluation procedure in ML;

2) the assumption that the TT can exist or does not exist in the provided IAGTLs is the foundation for

establishing the LAF for evaluation with IAGTLS for the evaluation procedure in ML. The effects of

different assumptions for the TT on the evaluation procedure in ML can be summarized in Table 3.

3.5. Necessity and importance of presenting UTTL

On the basis of the fact illustrated in Section 3.2 that successful evaluation strategies for the evaluation

procedure in ML are generally used to build up the learning procedure in ML and the summarizations of

Table 1, Table 2, and Table 3 presented in Section 3.3 and Section 3.4, in this subsection, we illustrate the

necessity and importance of presenting UTTL.

As successful evaluation strategies for the evaluation procedure in ML are generally used to construct the

learning procedure in ML, the assumption that the TT that has an effect on the evaluation procedure in

ML will eventually also have an effect on the learning procedure in ML. As a result, the assumption that

the TT exists in the provided labels has been affecting the learning procedure in the current literature of
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LWNLs or even in the literature of the entire ML realm, since the usual evaluation with AGTLs and the

usual evaluation with IAGTLs are the two types of evaluation strategies most commonly used in ML. In

other words, we can conclude that the acquiescent assumption about the TT for a TT learning task in the

current literature of LWNLs or even in the literature of the entire ML realm is that the TT exists in the real

world, even for situations where the TT cannot be precisely defined.

Cause Effects

Assumption for the

TT

Evaluation

strategy
Preparation for evaluation Evaluation procedure

The TT exists in the

provided labels

Usual

evaluation

with AGTLs

Generating the TT from massive

or limited AGTLs
Evaluating on the generated TT

Usual

evaluation

with IAGTLs

Selecting some probable TTs from

IAGTLs, or providing/estimating

rate of TT error in IAGTLs

Evaluating on the probable TT selected

from IAGTLs, or evaluating on IAGTLs

regarding to the provided/estimated

rate of TT error

The TT can exist or

does not exist in the

provided IAGTLs

LAF for

evaluation

with IAGTLs

Extracting multiple inaccurate

targets from IAGTLs

Evaluating on the multiple inaccurate

targets extracted from IAGTLs

Table 3. Summarization of different assumptions for the TT on the evaluation procedure in ML

Recent works [62][63] have shown that the new evaluation strategy of LAF for evaluation with IAGTLs can

be successfully established on the basis of the assumption that the TT can exist or does not exist in the

provided IAGTLs. With the common logical sense that a successful evaluation strategy for the evaluation

procedure in ML can be generally used to build up the learning procedure in ML, it is reasonable that we

can explicitly propose the assumption that the TT does not exist in the real world and present UTTL on

the basis of this assumption.
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In summary, a clear underlying logic in ML can be drawn from the serial works conducted in Sections 3.1

to 3.4, which assume that the TT is the foundation for establishing the evaluation strategy, and the

evaluation strategy established on the basis of the assumption that the TT will eventually affect the

formation of the learning concept. In short, the assumption about the TT will eventually determine the

formation of the learning concept in ML. Regarding this underlying logic in ML, the two assumptions

about the TT that the TT does not exist in the real world and that the TT exists in the real world will

eventually lead to different learning concepts. Specifically, with the assumption that the TT does not

exist in the real world, a new evaluation strategy of LAF for evaluation with IAGTLs is established, which

can eventually lead to the formation of the new learning concept UTTL presented in this article. With the

assumption that the TT exists in the real world, evaluation strategies of the usual evaluations with AGTLs

or IAGTLs have been established, which affect the concept of TT learning in LWNLs or ML. The

comparison of the two fundamental assumptions about the TT for establishing different evaluation

strategies that eventually lead to the two learning concepts of UTTL and TT learning in LWNLs or ML is

shown in Table 4.

Assumption about the TT Evaluation strategy Learning concept

The TT does not exist in the real world LAF for evaluation with IAGTLs UTTL

The TT exists in the real world

Usual evaluation with AGTLs

TT learning in LWNLs or ML

Usual evaluation with IAGTLs

Table 4. Comparison of the two fundamental assumptions about the TT for establishing different evaluation

strategies, which eventually lead to different learning concepts

With the underlying logic in ML that the assumption about the TT will eventually determine the

formation of the learning concept, Table 4 reasonably proves that existing approaches for addressing

LWNLs are not suitable for handling UTTL. As a result, it is necessary and important to present UTTL on

the basis of the explicitly proposed assumption that the TT does not exist in the real world to

appropriately handle the situation where the TT for a TT learning task cannot be precisely defined in

various AI application scenarios.
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4. Definition of the UTTL

Let us consider the situation where the true target of a learning task cannot be precisely defined. In

practice, this situation inevitably leads to a large problem in label preparation for the learning task, which

is that the label prepared for an entity/event contains severe inaccuracy in representing the true target

associated with the entity/event. Here, we refer to this situation as the problem of undefinable true target

learning (UTTL). Since large inconsistencies usually appear among experts regarding an agreement on

the true target for the UTTL problem, in this article, we explicitly propose the fundamental assumption

about the true target for the UTTL problem, which is that the true target does not exist in the real world.

On the basis of this fundamental assumption, the UTTL problem can be described as follows: on the basis

of a collected number of data points, each of which consists of an entity/event and a prepared label that

contains severe inaccuracy in representing the undefinable true target associated with the entity/event, a

function that can map the entities/events into the undefinable true targets can be found. Notably, as the

label prepared for the entity/event contains severe inaccuracy because the true target is undefinable, the

properties of the label prepared for the entity/event inevitably cannot precisely represent the properties

of the undefinable true target. Thus, the solution to the UTTL problem (i.e., the found function that can

map the entities/events into the corresponding undefinable true targets) should be subject to the

condition that the properties of the labels prepared for the entities/events are included in the properties

of the undefinable true targets mapped from the entities/events.

Denote the collected number of data points as  , where    represents the entities/events, 

  represents the prepared labels associated with    that cannot precisely represent the undefinable true

target, and the elements in    and    have a one-to-one correspondence. The function that can map the

entities/events into the corresponding undefinable true targets is denoted as  , where 

 represents the mapped examples of the undefinable true target and the elements in   and   also have a

one-to-one correspondence. The mapping function    should be subject to the condition that the

properties of   are included in the properties of  . The properties of   are denoted as  , the properties

of   are denoted as  , and the relationships included are denoted as  . Now, the UTTL problem is

formally defined as

H = {d, l} d

l d

d l

f : d⟼ t

t d t

f

l t l prop(l)

t prop(t) ⊆

=  f : d⟼ t           s. t.     prop(l) ⊆ prop(t).f̃ finding
f∈  Θf

(1)
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Here,   denotes the space of the mapping function  , and we do not constrain the specific formation

for  , as it can be semantic, numerical or both to describe the properties of *.

5. Alternative solution to UTTL

On the basis of the definition of UTTL, we propose an alternative solution to the UTTL problem.

Specifically, we first transform the UTTL problem into a combination of the machine learning (ML)

problem and the logical reasoning (LR) problem and then propose an alternative solution to the

transformed UTTL problem.

5.1. Common ML and LR methods

For the common ML problem, the prepared set of labels    is usually assumed to be able to precisely

represent the true targets   corresponding to the set of entities/events   in the collected number of data

points  . Thus, in this situation, the properties of   ( ) are equal to the properties of   (

) compared with formula (1). Formally, the common ML problem can be defined as

Usually, the alternative solution to the common ML problem can be described as an optimized mapping

function that can minimize the error between   and  , which can be formally expressed as

Here,   is a predefined loss function that can estimate the error between   and  .

For the common LR problem, in addition to the prepared set of entities/events   and the corresponding

set of labels  , an accumulated knowledge base ( ) containing various prior knowledge facts about the

true target is provided. The LR problem can be expressed as follows: a reasoning path ( ) can be searched

from the collected data points    and    to draw a set of conclusions ( ) that are consistent

with ( ) some knowledge facts in  . Formally, the common LR problem can be defined as

Here,   denotes the space of the reasoning path  . Usually, the alternative solution to the common LR

problem can be described as a validated logical path (a series of valid logical processes) that can maintain

the consistency between   and  , which can be formally expressed as

Θf f

prop(∗)

l

t d

H = {d, l} l prop(l) t

prop(t)

=  f : d⟼ t           s. t.     prop(t) = prop(l).f̃ finding
f∈  Θf

(2)

t = f(d) l

= arg  o(t = f(d), l).f̃ min
f∈  Θf

(3)

o t = f(d) l

d

l KB

r

H = {d, l} KB c

≅ KB

=  r : {d, l} ,KB → c           s. t.     c ≅KB.r̃ searching
r∈  Θr

(4)

Θr r

c = r < {d,L} ,KB > KB
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Here,   is a predefined procedure that can reflect the consistency between   and 

.

5.2. Transformed UTTL

A comparison of the UTTL problem definition (formula (1)) with the common ML problem definition

(formula (2)) reveals that the true learning target for the common ML problem can be precisely known,

whereas the true learning target for the UTTL problem cannot be precisely known. This fact reflects that

if we directly take the alternative solution to the common ML problem (formula (3)) as a solution to the

UTTL problem, the mapping function   will suffer from severe inaccuracies in predicting the true target

for the UTTL problem.

Referring to the common LR problem definition (formula (4)), we can observe that if we regard the

conclusions    drawn from the provided data points    and the accumulated knowledge base 

 as some statements about the undefinable true target for the UTTL problem, then it is plausible that

we can search a reasoning path that can draw some statements that are consistent with   to be able to

better describe the undefinable true target than the labels    in    for the UTTL problem. Thus, the

alternative solution to the common LR problem (formula (5)) can probably be leveraged to propose a

better alternative solution to the UTTL problem than naively employing formula (3).

We propose transforming the UTTL problem into a type of problem that is a combination of the ML

problem and the LR problem. Specifically, the transformed problem for UTTL can be divided into the

following three subproblems.

1. On the basis of a number of provided data points   in which   cannot precisely describe the

undefinable true target and an extra accumulated knowledge base  , which contains various

prior knowledge facts about the undefinable true target, the primary subproblem is to search for a

reasoning path    that can draw some statements    about the undefinable true target. The drawn 

 should be consistent with   to be able to better describe the undefinable true target for UTTL

than the labels   provided in  . Formally, referring to formulas (1) and (4), this subproblem can be

defined as

= arg  cons(c = r < {d, l} ,KB >,KB).r̃ maint
r∈  Θr

(5)

cons c = r < {d, l} ,KB >

KB

f̃

c H = {d, l}

KB

KB

l T

H = {d, l} l

KB

r c

c KB

l H

=  r : {d, l} ,KB → c           s. t.     prop(l) ⊆ c ≅KB.r̃ searching
r∈  Θr

(6)
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2. On the basis of   and   from 6), the subsequent subproblem is to build a program ( ) that

can generate a new set of learning targets   corresponding to  . The properties of the generated 

 should be equal to   when describing the undefinable true target for UTTL. This subproblem can

be formally defined as

Here,   denotes the space of the program  .

3. On the basis of   and   from 2), the final subproblem involves finding a mapping function that can

map    onto the corresponding final predicted true targets    for UTTL. The properties of the final

predicted    should be equal to the properties of  . Formally, referring to formula (2), this

subproblem can be defined as

Referring to formulas (6), (7), and (8), the UTTL problem definition expressed in formula (1) can be

transformed as follows

Formula (9) shows that the subject condition for the transformed UTTL problem definition is now 

, which is different from the subject condition   in the original

UTTL problem definition expressed in formula (1). More details on how we obtain the subject condition

in formula (9) from formulas (6), (7), and (8) are provided in Proof 1 of the Appendix.

5.3. Analyses of the transformed UTTL

From the subject condition of the transformed UTTL problem definition expressed in formula (9) (

), we can observe that the properties of the labels   in the provided data points 

 ( ) are included in ( ) the properties of the final predicted true targets ( ), and   is

also consistent with ( ) the extra accumulated knowledge base  , which contains various prior

knowledge facts about the undefinable true target. This subject condition reflects not only that the final

predicted true targets   are better able to represent the undefinable true target for UTTL than the labels in

the provided data points but also that the properties of the final predicted true targets   are consistent

with various prior knowledge facts about the undefinable true target for UTTL. This reflects that the

H = {d, l} c p

t∗ d

t∗ c

=  p : {d, l} , c ⇀            s. t.     prop (  ) = c.p̃ building
p∈  Θp

t∗ t∗ (7)

Θp p

d t∗

d t

t t∗

=  f : d⟼ t           s. t.     prop(t) = prop ( ) .f̃ finding
f∈  Θf

t∗ (8)

        s. t.    prop(l) ⊆  prop(t) ≅KB.

⎧

⎩

⎨

⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪⎪⎪

1)  =  r : {d, l} ,KB → c r̃ searching
r∈  Θr

2)  =  p : {d, l} , c ⇀       p̃ building
p∈  Θp

t∗

3)  =  f : d⟼ t                   f̃ finding
f∈  Θf

(9)

prop(l) ⊆ prop(t) ≅KB prop(l) ⊆ prop(t)

prop(l) ⊆ prop(t) ≅KB L

T prop(l) ⊆ prop(t) prop(t)

≅ KB

t

t
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transformed UTTL problem definition is better at finding the appropriate mapping function for

predicting the undefinable true target than the original UTTL problem definition is.

Although the final predicted true targets    possess better properties, which are consistent with  ,

compared with the labels  , we are still not sure about whether   can be precise enough to represent the

undefinable true target for UTTL. With respect to the subject condition    in

formula (9), we can deduce that how precisely   can represent the undefinable true target for UTTL will

depend on how precisely the prior knowledge facts contained in   can represent the undefinable true

target. However, theoretically, with more knowledge facts iteratively accumulated in   to represent the

undefinable true target, the final predicted   can be iteratively more precise to represent the undefinable

true target for UTTL. As a result, the transformed UTTL problem definition provides a promising

foundation for approaching the undefinable true target for UTTL.

5.4. Alternative solution to the transformed UTTL

Referring to the transformed UTTL problem definition expressed in formulas (6), (7), and (8), the

alternative solution to the transformed UTTL problem can also be divided into three subsolutions.

1. The first subsolution is the solution to formula (6), which can be expressed as formula (5).

2. The second subsolution is the solution to formula (7), which is to build a programme ( ) to generate

the learning targets    corresponding to    from    and the    produced by the first

subsolution. Formally, the second subsolution can be expressed as

Here,   indicates that the built program   can be in the space of the LR-based methods ( ),

in the space of the ML-based methods ( ) or in the space of the combined LR and ML methods (

).

3. The third subsolution is the solution to formula (8), which can be expressed as formula (3) with the

replacement of   with  .

In summary, the alternative solution to the transformed UTTL problem can be formally expressed as

follows.

t KB

l t

prop(l) ⊆ prop(t) ≅KB

t

KB

KB

t

p

t∗ d H = {d,L} c

= arg   = p ({d, l} , c).p̃ build
p∈{ ∪ } Θr Θf

t∗ (10)

p ∈ { ∪ }Θr Θf p Θr

Θf

∪Θr Θf

l t∗

 

⎧

⎩

⎨

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

1)  = arg  cons(c = r < {d, l} ,KB >,KB) r̃ maint
r∈  Θr

2)  = arg   = p ({d, l} , c)                          p̃ build
p∈{ ∪ } Θr Θf

t∗

3)  = arg  o(t = f(d), )                                    f̃ minf∈  Θf
t∗

(11)
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5.5. Additional notes

Notably, the optimal solution to the UTTL problem should not be limited to the alternative solution

presented in this section since the alternative solution here is proposed on the basis of the transformed

UTTL problem, which is mainly a combination of the ML problem and the LR problem. It is possible that

a better problem transformation and corresponding solution for the UTTL problem defined in formula (1)

can still be proposed on the basis of other original thoughts and perspectives.

6. Specific methods

Referring to the alternative solution presented for the transformed UTTL problem, which is summarized

in formula (11), one-step abductive multitarget learning (OSAMTL) and its extensions have been proposed

in recent works [1][2][3][11] to provide some specific methods for addressing the UTTL problem.

6.1. OSAMTL

As input materials, OSAMTL requires a number of collected data points containing labels that cannot

precisely represent the undefinable true target and an extra accumulated knowledge base that contains

various prior knowledge facts about the undefinable true target. In addition to the required input

materials, the key components of OSAMTL correspond to the three subsolutions presented in formula

(11), which include the component of one-step abductive logical reasoning, the component of generation

of multiple types of learning targets and the component of multitarget learning.

6.1.1. Input materials

The input materials for the OSAMTL method include a number of collected data points  ,

where   represents the entities/events,   represents the prepared labels associated with  , which cannot

precisely represent the undefinable true target, and an extra accumulated knowledge base ( ), which

contains various prior knowledge facts about the undefinable true target.

More specifically,   can be expressed as

 can be more specifically expressed as

H = {d, l}

d l d

KB

H

H = {d, l} = {{ , } ,   … ,   { , }} .d1 l1 dn ln (12)

KB

KB = { , … ,   } .k1 km (13)
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In formula (12),   denotes the number of data points collected in  , and each element   represents

a collected data point that consists of an entity/event   and its corresponding label  . In formula (13), 

  denotes the number of prior knowledge facts, and each element    represents an accumulated

knowledge fact about the undefinable true target.

6.1.2. One-step abductive logical reasoning

On the basis of the input materials    and  , the one-step abductive logical reasoning (OSALR)

component of OSAMTL draws some statements/conclusions ( ) that can more accurately describe the

undefinable true target than the labels provided in  . Formally, referring to subsolution 1) of formula (11),

this component can be expressed as

More specifically, the OSALR component consists of three substeps as follows.

From  , substep one extracts a list of groundings that can describe the logical facts contained in the

given diverse noisy samples. This grounding extraction ( ) step can be expressed as

Via logical reasoning, substep two estimates the inconsistencies between the extracted groundings   and

the prior knowledge accumulated in  . Formally, this logical reasoning ( ) step can be expressed as

Substep three revises the groundings in    via logical abduction, which aims to reduce the estimated

inconsistencies in  . Formally, this logical abduction ( ) step can be expressed as

With these three specific substeps ( ) for implementing    in formula (14), the final

statements/conclusions drawn are revised groundings that are consistent with   to better describe the

undefinable true target than simply the groundings of the labels   provided in  .

6.1.3. Generation of multiple types of learning targets

The generation of multiple types of learning targets (GMTLT) components aims to leverage    and 

  drawn by the OSALR component to abduce multiple types of learning targets. Formally, referring to

subsolution 2) of formula (11), this component can be expressed as

n H { , }dn ln

dn ln

m km

H KB

c

H

c = (H,KB) = { , ⋯ , } .r̃ c1 cw (14)

H

GE

g = GE(H) = { , ⋯ , } .g1 gs (15)

g

KB R

ic = R(g,KB) = { , ⋯ , } .ic1 icu (16)

g

ic LA

c = LA(ic) = { , ⋯ , } .c1 cw (17)

GE,  R,  LA r̃

KB

l H

H

c

=   (H, c) = { , ⋯ , } .t∗ p̃ t∗
1 t∗

v (18)
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Formula (18) indicates that the built program    can generate multiple types of learning targets (

) from   and   that are associated with each data point of   in  . Usually, the program   can

be specifically implemented via logical reasoning and machine learning methods.

As the multiple types of learning targets ( ) can be generated from    with the help of the

revised groundings ( ) that are consistent with    to better describe the undefinable true target, the

generated multiple types of learning targets in formula (18) can also possess certain consistencies with

our prior knowledge to better represent the undefinable true target.

6.1.4. Multitarget learning

The multitarget learning (MTL) component of OSAMTL is carried out on the basis of a specifically

constructed machine learning  [4][5][6]  architecture ( ) that can map entities/events ( ) into

corresponding predicted targets ( ), which can be expressed as  . Here, the MTL component of

OSAMTL aims to optimize the parameters of   to minimize the error between the targets ( ) predicted

by   and the multiple types of targets ( ) generated by the GMTLT component.

To estimate the error between    and  , a loss function ( ) is typically needed. As    contains multiple

types of targets, the error between    and the multiple types of targets in    can be estimated by the

weighted sum of the errors between   and the respective   in  , which can be expressed as

Commonly,   in formula (19) can be implemented via cross-entropy for classification and least squares for

regression. Furthermore, to produce the optimized machine learning model  ,    should be

minimized. Specifically, if    is constructed via state-of-the-art deep learning methods  [64]  based on

neural networks, the minimization of    can be implemented via stochastic gradient descent

variants.

As the multiple types of learning targets ( ) generated by the GMTLT component possess certain

consistencies with our prior knowledge to better represent the undefinable true target, the produced

machine learning model    can make reasonable predictions ( ) about the undefinable true target by

minimizing the error between   and  .

p̃

{ , ⋯ , }t∗
1 t∗

v H c d H p̃

{ , ⋯ , }t∗
1 t∗

v H

c KB

f d

t t = f(d)

f t

f t∗

t t∗ o t∗

t t∗

t t∗
v t∗

o (t, ) = o (t, )     s. t.    = 1.t∗ ∑
i=1

v

αi t∗
i ∑

i=1

v

αi (19)
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f̃ o (t, )t∗
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6.2. Extensions of the OSAMTL

In Section 6.1, we present formulas (12)-(19) to denote the original OSAMTL method. However, the

original OSAMTL method inevitably has limitations in handling some situations in real-world scenarios

for UTTL, as the presented formulas only denote the basic components to concisely present the OSAMTL

method. In this subsection, on the basis of the original OSAMTL method presented in Section 6.1, we

discuss several extensions of OSAMTL to expand the usage range of OSAMTL in real-world scenarios for

UTTL.

One extension of OSAMTL is that the data points provided for UTTL can be extended to diverse types

instead of only a single type of data point. Unlike the original OSAMTL, we denote this type of extension

as OSAMTL with diverse types of data points (DiTDP) (OSAMTL-DiTDP). Another extension of OSAMTL

is that the label   corresponding to the entity/event   in formula (12) can be extended to diverse types

instead of only a single type of label. In contrast with the original OSAMTL, we denote this type of

extension as OSAMTL with diverse types of labels (DiTL) (OSAMTL-DiTL).

6.2.1. OSAMTL-DiTDP

For the situation of OSAMTL-DiTDP, referring to formula (12), the provided DiTDP can be expressed as

Here,   denotes the number of DiTDPs, and   denotes the number of data points for each type.

In fact, DiTDP can increase the diversity of the provided data points, which eventually leads to labels in

the provided data points representing diverse aspects of the undefinable true target. By comparing

formula (20) with formula (12), we can deduce that if the sum of the numbers for the multiple types of

data points in formula (20) is equal to the number of data points in formula (12) (i.e.,  ), the

complexity of preparing DiTDP can remain essentially unchanged when a single type of data point is

prepared. As a result, this extension of DiTDP has the potential to significantly increase the diversity of

the labels of the prepared data to represent the undefinable true target while maintaining the average

complexity unchanged when a single type of data point is prepared for OSAMTL.

Moreover, this extension of OSAMTL is more complex to implement than the original OSAMTL is, as the

extension of DiTDP increases the complexity in implementing the OSALR and GLTMT components of

OSAMTL-DiTDP for particular applications. Specifically, for the OSALR component, formulas (15), (16),

ln dn

H = { , … , } = {{ , } , … , { , }}H1 Hk d1 l1 dk lk

= {{{ , } ,   … ,   { , }} , … ,{{ , } ,   … ,  { , }}} .d1,1 l1,1 d1,n1 l1, n1
dk,1 lk,1 dk,nk lk, nk (20)

k nk

= n∑k
i=1 ni
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and (17) need to be carried out multiple times regarding the prepared DiTDP to produce the final revised

grounds to better describe the undefinable true target. For the GLTMT component, formula (18) needs to

be used to consider the possible associations among the prepared DiTDP and their corresponding revised

groundings, which can make the implementation of the GLTMT component more complicated.

6.2.2. OSAMTL-DiTL

For the situation of OSAMTL-DiTL, DiTL can be expressed as  , where   denotes the

number of multiple types of labels included in  . Referring to formula (12), the provided data points with

DiTDP can be expressed as

In fact, DiTL can significantly reduce the complexity of the original OSAMTL method, as multiple types

of targets can be reasonably extracted from DiTL provided in the data points to represent the undefinable

true target. As a result, this extension of the OSAMTL can be less complex to implement than the original

OSAMTL. Although OSAMTL-DiTL requires diverse labels for the data points, it is practical in real-world

scenarios. This is because the diverse labels required can be inaccurate, which can make the label

preparation procedure much easier.

6.3. Essence of OSAMTL

The fundamental assumption for the proposed OSAMTL is that the undefinable target can be realized as

a set of multiple types of targets that possess certain consistencies with our prior knowledge about the

undefinable target. On the basis of this fundamental assumption, the three key components of the

OSAMTL contribute to this assumption.

Primarily, from the input materials of data points   and the knowledge base  , the OSALR component

of OSAMTL draws some revised groundings ( ) that are consistent with   to be able to better describe

the undefinable true target than simply the groundings of the labels   in  . Subsequently, leveraging the

provided data points    and the revised groundings    drawn by the OSALR component, the GMTLT

component of OSAMTL uses multiple types of learning targets containing information that is consistent

with our prior knowledge    about the undefinable true target. Finally, on the basis of a specifically

constructed machine learning architecture ( ), the MTL component of OSAMTL produces an optimized

machine learning model    that can make reasonable predictions about the undefinable true target by

= { , … ,   }ln ln,1 ln,j j

ln

H = {d, l} = {{ , } ,   … ,   { , }}d1 l1 dn ln

= {{ , { , … ,   }} ,   … ,   { , { , … ,   }}} .d1 l1,1 l1,j dn ln,1 ln,j (21)

H KB

c KB

l H

H c

KB
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f̃
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minimizing the error between the targets ( ) predicted by    and the multiple types of targets ( )

generated by the GMTLT component.

With these three key components of OSAMTL to realize the assumption that the undefinable target can

be realized as a set of multiple types of targets that possess certain consistencies with our prior

knowledge about the undefinable target, the essence of OSAMTL is that it forces the machine learning

architecture to learn from the weighted summarization of multiple types of targets that possess certain

consistencies with our prior knowledge about the undefinable true target. More specifically, this essence

of the OSAMTL reflects the following result.

Theorem 1. For a classification or a regression task, the loss constructed by can be

theoretically expressed as , where is a constant term.

Detailed proofs for Theorem 1 are provided in Proofs 2 and 3 of Supplementary 1. Through Theorem 1, we

can declare that OSAMTL is able to force the learning model reasonably to achieve logically rational

predictions about undefinable targets by learning from the weighted summarization of multiple types of

targets. Learning from the weighted summarization of multiple types of targets, which are consistent

with our prior knowledge about undefinable true targets, can lead to a trade-off among the multiple

types of targets and thus to a reasonable approximation of the undefinable true target.

7. Specific application

The proposed specific method OSAMTL and its extensions for UTTL have been successfully applied to

address some tasks in medical histopathology whole slide image analysis (MHWSIA)  [1][2][3][11]. In this

section, we summarize the implementation rules and techniques of these specific methods for particular

applications in practice. For simplicity, here, we provide the key points of implementing OSAMTL and its

extensions for practice. More detailed illustrations of the application of these methods to specific tasks in

MHWSIA are provided in Supplementary 2.

Referring to the contents of Section 6, OSAMTL and its two extensions, OSAMTL-DiTDP and OSAMTL-

DiTL, can be visually summarized, as shown in Fig. 1. Fig. 1 shows that there are two key points for

applying the three methods: 1) OSAMTL, OSAMTL-DiTDP, and OSAMTL-DiTL differ primarily in the

preparations of the data points with respect to the input materials; 2) OSAMTL, OSAMTL-DiTDP, and

OSAMTL-DiTL share the same abstract formulas from the perspectives of OSALR, GMTLT, and MTL,

t f t∗

o (t, ) = o (t, )t∗ ∑v
i=1 αi t∗

i

o (t, ) = o (t, ) + ct∗ ∑v
i=1 αit∗

i c

qeios.com doi.org/10.32388/KBK3P8.3 20

https://www.qeios.com/
https://doi.org/10.32388/KBK3P8.3


although these abstract formulas can differ in specific implementations regarding different methods and

applications.

Figure 1. Summary of the OSAMTL and its two extensions, the OSAMTL-DiTDP and the OSAMTL-DiTL.
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8. Discussion, conclusion and future work

In this article, we explicitly propose the fundamental assumption that the TT does not exist in the real

world to formally present the first theoretical foundation for UTTL to appropriately handle the common

situation where the TT for a TT learning task cannot be precisely defined in various AI application

scenarios.

To demonstrate the necessity and importance of presenting UTTL on the basis of the explicitly proposed

fundamental assumption that the TT does not exist in the real world, we performed a series of works to

address the intrinsic question of why we need to present UTTL. We discuss the definitions of labels and

targets in ML, analyse the evaluation and learning procedures in ML, summarize existing assumptions

for the TT in ML, organize the effects of different assumptions for TT on ML, and finally illustrate the

necessity and importance of presenting UTTL.

To formally present a theoretical foundation for UTTL to handle the situation where the TT for a TT

learning task cannot be precisely defined, we systematically analysed UTTL from the perspectives of

problem definition, alternative solutions, specific methods, and particular applications. Owing primarily

to the fundamental assumption that the true target for the UTTL problem does not exist in the real world,

the definition for the UTTL problem is formally presented. On the basis of the presented definition, the

UTTL problem is subsequently transformed into a combination of the ML problem and the logical

reasoning problem, and an alternative solution to the transformed UTTL problem is presented. In

addition, with respect to the presented alternative solution, specific methods such as one-step abductive

multitarget learning (OSAMTL) and its extensions (OSAMTL-DiTDP and OSAMTL-DiTL) are summarized

for addressing the UTTL problem in different scenarios. Finally, referring to the summarized OSAMTL

and its extensions (OSAMTL-DiTDP and OSAMTL-DiTL), the implementation rules and techniques of

these methods are discussed with respect to particular real-world application scenarios. The discussions

include applying the OSMTL to segment helicobacter pylori areas precisely in whole slide images  [1][3],

applying OSAMTL-DiTDP to tumor segmentation in HE-stained pretreatment biopsy images  [2], and

discussing the similarities and differences between the application of OSAMTL-DiTL and the applications

of OSAMTL and OSAMTL-DiTDP to reveal the potential of the application of OSAMTL-DiTL [11].

In addition, as the TT cannot be precisely defined in UTTL, only inaccurately labelled data can be

provided to UTTL. As a result, providing a theoretical foundation for UTTL based on the explicitly
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proposed fundamental assumption that the TT does not exist in the real world, this article also naturally

shows the benefits of noisy labels in realizing UTTL from a theoretical point of view.

As we have analysed in Section 5.5, the optimal solution to the UTTL problem should not be limited to the

alternative solution presented in the article, since it is based on the transformed UTTL problem, which is

mainly a combination of the ML problem and the LR problem. It is probable that better problem

transformations and corresponding solutions for the UTTL problem defined in formula (1) can still be

proposed with respect to other original thoughts and perspectives. In addition, with the fundamental

assumption that the TT does not exist in the real world, the concept of UTTL can also be applied in

various other AI application scenarios to establish different perspectives for addressing related tasks.
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