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1. Independent researcher

Assumptions regarding the true target (TT), which is a computationally equivalent transformation of the Ground
Truth, are crucial for the formulation of diverse machine learning (ML) paradigms. In this article, drawing on a
systematic review of T'T assumptions across current ML paradigms and insights from our previous work, we
explicitly posit the assumption that the TT does not objectively exist in the real world. We investigate the
implications of this non-existence assumption of TT and analyse how it may redefine our understanding of
designing ML paradigms. These implications and analyses lead us to propose the undefinable true target learning
(UTTL) framework as a pathway towards learning with democratic supervision (LDS). We establish the definition
of UTTL, illustrate its principles for revealing the undefinable TT, and discuss its practicability for LDS and its
uniqueness compared with existing similar learning settings. Based on these, we summarize example UTTL
principle-based solutions regarding existing works to show the practical value of UTTL in enabling LDS. In
summary, this article philosophically examines how shifts in assumptions regarding the existence of the TT give
rise to new perspectives and insights for ML-based predictive modelling, and correspondingly derives a new ML

paradigm termed UTTL for enabling LDS.

Corresponding author: Yongquan Yang, remy yang@foxmail.com

1. Introduction

The True Target (TT) is a computationally equivalent transformation of the Ground Truth and serves as a
fundamental concept in the formulation and deployment of machine learning (ML). Assumptions regarding the TT
are therefore crucial, as they implicitly define what is being learned, how supervision is interpreted, and how models
are expected to approximate and generalize the underlying reality. (In this article, the term TT is used instead of
Ground Truth to facilitate practical discussion. The transformation from Ground Truth to a computational TT and its

reverse are both essential in practice. Semantically, the two are equivalent.)

Despite their central role, TT assumptions are often taken for granted in mainstream ML paradigms, where the
objective existence of a well-defined TT is treated as a default premise. However, growing evidence from noisy-label

learning and multiple-annotator settings suggests that, in many real-world tasks, the TT may be ambiguous,
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subjective, or even inherently undefinable [L2IBIAIBN6IT7] These observations expose a tension between the
traditional existence assumption of TT and the practical realities of data acquisition and annotation. This tension

motivates a deeper philosophical examination of TT assumptions and their implications for ML paradigm design.
Unsupervised learning IO supervised learning (SL) MUM2I13] wweakly supervised learning (WSL) B4II15106I07] 55
reinforcement learning (RL) I8I120I21) ¢oljectively constitute the four foundational paradigms of modern ML. We

systematically examine the TT assumptions embedded in the four major ML paradigms, which can be summarized as

follows:
= Inunsupervised learning, the concept of TT is generally inapplicable I§1Q]-@1;

¢ In SL, it is typically assumed that the TT objectively exists in the real world m]-[Qﬂﬁl;
e In WSL, the prevailing mainstream assumption remains that the TT objectively exists, even though it may be

partially missing, coarsely represented, or inaccurately observed in the available annotations [MIBAGV6)7I14115]

[16][171[22][23][241[25][26][27][28][29].

» In two prevalent sub-paradigms of inaccurate supervision (a typical type of WSL), including learning from noisy
labels (LNL) 671 3nq learning from multiple annotators (LMA) ﬂl@]ﬁl&l&l, there is an emerging skepticism
toward the clarity, definability, or uniqueness of an objective T'T and this shift is particularly evident in LMA B3I

32](33][341[351[36][371[381[391[40][41][42][43][44 45;and

» For RL, the TT assumptions largely align with those of unsupervised learning, SL, and WSL.

Further elaboration and comparative analysis of TT assumptions across current ML paradigms are provided in the

systematic review in Section 2.

While the mainstream TT assumption across current ML paradigms is that the TT objectively exists in the real world,
the two prevalent sub-paradigms of LNL and LMA in inaccurate supervision are more likely to raise questions about
the appropriateness of this existence assumption. A clear emerging trend in both LNL and LMA is that a substantial
body of work increasingly challenges the clarity, definability, and uniqueness of TT [MEABIABIENTI[301[311[321[331[341(35]
[36I371[381(391[401 [411[42][431[441[451[46]1[47)[48] (491 (SO15L521(531[54] Although the scepticism expressed in these studies
typically manifests as the acknowledgment that the TT may not exist, few works explicitly reject the objective
existence of the TT, regardless of its clarity, definability, or uniqueness. With respect to the objective existence of a TT,
we argue that claiming/acknowledging the TT may not exist does not amount to a direct rejection of its objective
existence. A true rejection requires the stronger claim/acknowledgement that the TT does not objectively exist in the

real world.

Accordingly, we adopt a more radical stance by explicitly positing the assumption that the TT does not, rather than
may not, objectively exist in the real world, thereby directly rejecting the objective existence of TT. Here, the phrase “a
more radical stance” indicates a possible line of reasoning: even if a TT physically exists (e.g., in conventional SL

settings), one can still deliberately assume that it does not objectively exist in the real world. In this case, the non-
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existence assumption of TT can be understood as a situation, in which a practitioner lacks any prior specification or
understanding of what the TT is while exploring ML-based predictive modelling. Adopting such a stance of the non-
existence assumption of TT may open up new perspectives and insights. For example, from the first principles, it
reframes the question of how the ML-based predictive modelling should proceed when the practitioner initially has

no knowledge of the TT.

From first principles, we conduct comparison of shifts between the non-existence and existence assumptions of TT.
We elucidate the implications of the non-existence assumption of TT and analyse how it may redefine our
understanding of designing ML paradigms. Under the traditional existence assumption of TT, data prepared solely by
domain experts dominate the supervision, leaving ML experts with limited influence and excluding the non-experts
(a situation we regard as undemocratic supervision). In contrast, under the non-existence assumption of TT, experts
(domain experts and ML experts) and non-experts can equally and collaboratively contribute to data preparation,
forming a more balanced and participatory (democratic) supervision. The existence assumption can thus be viewed as
a special case of the non-existence assumption. The non-existence perspective offers a broader conceptual space and
more flexibility for developing ML paradigms for predictive modelling. These suggest that new data preparation
strategies grounded in expert democracy and new learning paradigms with democratic supervision should be both
explored. Together, the two explorations lead to an expanded scope towards learning with democratic supervision
551[56][571(58

(LDS). The term ‘democratic supervision’ was previously discussed in education [531561(571(58] professional

development 29, Here, we introduce this term into ML, under the non-existence assumption of T'T, for the purpose of

ML-based predictive modelling. More details are provided in Section 3.

The explicitly posited non-existence assumption of TT originates from our previous works on uncovering inherently
ambiguous TT through ML in the medical field 30l3L(52160] yhile carrying out these studies, we gradually realized
that assuming the objective existence of TT was fundamentally inadequate for tasks characterized by the intrinsic
indefinability of TT. A more appropriate assumption, we found, is that TT does not objectively exist in the real world.
These works thus served as the conceptual foundation that eventually led us to recognize the central importance of
the assumption concerning the existence of TT. Furthermore, insights obtained from our systematic review of TT
assumptions across current ML paradigms, together with the implications and analyses derived from the non-

existence assumption of T'T, confirm both the novelty and necessity of this assumption.

Table 1 summarizes how shifts in assumptions concerning the existence of the TT give rise to different perspectives
and insights for supervision democracy and learning concepts regarding ML-based predictive modelling. From a
philosophical standpoint, the explicitly posited non-existence assumption of the TT is fundamentally distinct from
both the default existence assumption and the sceptical may-not-exist assumption. Under the non-existence
assumption, experts (domain and ML experts) and non-experts are placed on an equal and collaborative footing in
principle, thereby supporting democratic supervision. In contrast, both the existence assumption and the may-not-

exist assumption maintain a hierarchical supervision structure in which domain experts dominate, ML experts play a
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supporting role, and non-experts are excluded, resulting in undemocratic supervision. Most importantly, under the
non-existence assumption of the TT, the resulting perspectives and insights imply that the conventional learning

concepts of SL and WSL can be subsumed and expanded into the broader framework of LDS.

Interpretation
Abbreviation of Supervision Learning
regarding Implied perspectives and insights
TT assumption democracy concept
existence of TT
Existence TT objectively
SL with perfect
assumption of exists in the real
Domain experts lead the supervision process, while supervision;
TT world ML ts ol tine role: Undemocratic
experts play a supporting role; WSL with
May-not-exist TT may not Supervision .
Non-experts are excluded imperfect
assumption of | objectively exist in .
supervision
TT the real world
Even if a TT physically exists (e.g., in conventional
Non-existence TT does not SL settings), one can still deliberately adopt this
Democratic
assumption of | objectively existin | assumption; Experts (domain and ML experts) and LDS
supervision
TT the real world non-experts can equally and collaboratively lead the
supervision process;

Table 1. Shifts in assumptions on TT existence and their implied different perspectives and insights for supervision

democracy and learning concepts

Further, grounded in the explicitly posited non-existence assumption of TT and its implications, we propose
undefinable true target learning (UTTL), which exemplifies a pathway towards LDS. We establish the definition of
UTTL, illustrate its principles for revealing the undefinable TT, and discuss its practicability for LDS and its
uniqueness compared with existing similar learning settings. Based on these, we also summarize example UTTL
principle-based solutions regarding existing works to show the practical value of UTTL in realizing LDS. More details

are provided in Sections 4 and 5.

To the best of our knowledge, this article is the first to explicitly posit the philosophical assumption that the TT does
not objectively exist in the real world and to correspondingly propose a new ML paradigm termed UTTL as a pathway
towards LDS. The primary contributions of this article are twofold: (1) it philosophically examines how shifts in the
assumptions regarding the existence of the TT give rise to new perspectives and insights for ML-based predictive
modelling; and (2) it proposes a new ML paradigm termed UTTL for enabling LDS, grounded in the explicitly posited

non-existence assumption of TT and its implications. The detailed contributions are summarized as follows:
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= Presenting a systematic review of T'T assumptions cross current ML paradigms;

= Explicitly positing the non-existence assumption of T'T, investigating its implications, and analysing how it may
redefine our understanding of designing ML paradigms;

= Proposing the UTTL framework to exemplify a pathway towards LDS;

= Summarizing example UTTL principle-based solutions regarding existing works to show the practical value of

UTTL in realizing LDS;

The remainder of this article is organized as follows. Section 2 provides a systematic review of the fundamental TT
assumptions underlying current ML paradigms. Section 3 compares the non-existence and existence assumptions of
TT and elucidates the implications of assuming that the TT does not objectively exist in the real world, particularly for
LDS. Sections 4 and 5 introduce the UTTL framework and summarize example practical solutions derived from UTTL

principles, respectively. Finally, Section 6 discusses the whole article.

2. Systematic Review of Fundamental TT Assumptions Underlying Current

ML Paradigms

In this section, we firstly categorize current ML paradigms and discuss their relations. Then, regarding the
categorization of ML paradigms, we comprehensively review the fundamental TT assumptions under respective ML
paradigms and related prevalent mainstream subtype paradigms. Finally, summarize the mainstream TT

assumptions and trends underlying current ML paradigms.

2.1. Categorization of current ML paradigms and their relations

Depending on the availability of supervision information, the paradigms in current ML research can be broadly
classified into unsupervised learning and learning with supervision. Unsupervised learning operates on data
prepared without the use of TT (Ground Truth) labels 811101 Learning with supervision can be further divided into
supervised learning (SL) and weakly supervised learning (WSL), regarding the perfection or imperfection of the TT
labels in the training data.

SL is founded on data with complete, exact, and accurate (i.e., perfect) TT labels m, whereas WSL is based on

data containing incomplete, inexact, or inaccurate (i.e., imperfect) TT labels [41051061117) Both SL and WSL can be
further subdivided into narrower categories. For instance, SL can be categorized into precisely supervised learning,
moderately supervised learning, and hybrid forms that combine both 31 reflecting different computational
transformations of the TT derived from Ground Truth labels. WSL encompasses learning with incomplete
supervision, inexact supervision, inaccurate supervision, and their cross-scenario M, corresponding to distinct

forms of imperfection in the provided Ground Truth labels.
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Another popular type of ML paradigm is reinforcement learning (RL) O8IN9N201121] Ry, §s a learning framework in
which an intelligent agent interacts with an environment and autonomously learns an optimal behaviour policy based
on reward signals. Rather than relying on explicit supervision, RL learns through trial and error and feedback to

maximize long-term returns.

Unsupervised learning, SL, WSL, and RL together constitute the four fundamental paradigms of modern ML. They
form a series in terms of how learning signals are obtained and how strongly supervision is imposed. Unsupervised
learning derives knowledge solely from the intrinsic structure and distribution of data, without relying on external
TT labels. SL depends on complete, exact and accurate TT labels to directly learn the mapping between inputs and
outputs. WSL bridges the gap between the two by leveraging incomplete, inexact, or noisy supervision to approximate
the true supervision signal. RL, in contrast, learns through interaction with the environment, optimizing behavior
based on reward feedback rather than explicit supervision. Details for the categorization of current ML paradigms are

summarized in Table 2.

These four paradigms are complementary rather than isolated. Unsupervised learning supports SL and WSL
paradigms by providing structural priors, robust representations, and auxiliary pseudo-supervision derived from
unlabelled data [OLI62IIG31I641165] g1, offers WSL with pretrained models, reliable loss functions, and well-established
optimization strategies that serve as priors or initialization for learning from imperfect supervision [nnellso) gy,
integrates unsupervised learning, SL, and WSL for decision-making and policy optimization in dynamic
environments, forming a coherent and interdependent learning [1212011661[671[681(69] The relations of the four

paradigms are shown in Fig. 1.
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ML Paradigm Data Basis and Remarks
Unsupervised learning Data without the use of TT (Ground Truth) labels [81[91[10]
Precisely
supervised
learning
Data with complete, exact, and accurate (i.e., perfect) TT labels 1
Perfect supervision: Moderately
[12I13]: Narrower categorizations reflecting different
supervised learning supervised
computational transformations of the TT derived from Ground
(SL) learning
Truth labels
Hybrid forms
. . that combine
Learning with
. both
supervision
Incomplete
supervision
Data containing incomplete, inexact, inaccurate, or their cross-
Imperfect supervision: Inexact
. scenario (i.e., imperfect) TT labels W; Narrower
weakly supervised supervision
categorizations corresponding to distinct forms of TT
learning (WSL) Inaccurate ) o .
imperfection in the provided Ground Truth labels.
supervision
Cross-scenario
Learning through trial and error and feedback to maximize long-
Reinforcement learning
term returns, without relying on explicit supervision [18][191[20](21]

Table 2. Categorization of ML paradigms
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Weakly Supervised
Learning (WSL)

Reinforcement Learning {.»

(RL)

Figure 1. Relations of unsupervised learning, SL, WSL and RL.

2.2. Unsupervised learning

In unsupervised learning, the concept of TT generally does not apply. The learning process does not rely on labelled
data or predefined target values. Instead, the goal is to uncover latent structures, patterns, or representations from the
data itself. Ground truth may only be introduced post hoc for evaluation purposes (e.g., when comparing discovered

clusters with known categories), but it is not inherent to the learning process (8191110,

2.3. Supervised learning

In supervised learning (SL), it is assumed that a true mapping exists between inputs z and their corresponding target
outputs y. The mapping is often referred to as the TT function f(x). Training data are viewed as observations of this
underlying function. The goal of learning is to approximate f as closely as possible. This situation implies that every
input has a well-defined and correct TT, even though in practice these labels may be imperfect due to annotation

errors, ambiguity, or measurement noise (2],

SL has been further categorized into narrower subtypes based on the complexity involved in transforming the
prepared Ground True labels into learnable true targets, including precisely supervised learning, moderately
supervised learning, and hybrid forms that combine both 3], Although the formulations of the T'T in these subtypes

may differ, they share a common underlying assumption that the TT in the prepared data is complete, exact, and

accurate. That is, the TT objectively exists in the real world.
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2.4, Weakly supervised learning

The classic classification of weakly supervised learning (WSL) is the categories proposed by Zhi-Hua Zhou in "A brief
introduction to weakly supervised learning” [181: incomplete supervision, inexact supervision, inaccurate supervision,
and their cross-scenario. In this subsection, we summarize how the labels in these cases are "weak” and what

mainstream assumptions are made about the T'T, primarily based on recent highly cited survey works [LBIAIEEIT]

(14][15](16][17](22](23](241(25](26][27][28](29]

2.4.1. Incomplete supervision

Incomplete supervision refers to learning scenarios in which only a subset of training instances is labelled, while the

161117 Typical forms of incomplete supervision include: semi-supervised

remaining instances remain unlabelled [
learning [22)023) ' where only a subset of training samples are labelled and the remaining are unlabelled; positive-
unlabelled learning (241(23)  here only positive examples are labelled while all others remain unlabelled and

20)27) where the learner iteratively

potentially contain both positive and negative instances; and active learning !
selects a small subset of unlabelled samples to be labelled by an oracle in order to minimize labelling cost while

maximizing learning efficiency.

Under this paradigm, several assumptions about the TT are stated. For example, Zhou (16) pointed out that the TT
labels are assumed to exist for all samples, even if not all are annotated. Similarly, Ren et al (17] treated labelled data as
TT and considers unlabelled data as merely missing annotations. Zhang et al 2] further discussed cases where

annotated data may contain noise, yet still relies on the assumption that true labels exist for all samples, with only

partial observation in the incomplete supervision setting.

2.4.2. Inexact supervision

Inexact supervision refers to learning settings where labels are available but are coarse-grained or imprecise 161171,

Typical examples include: image segmentation tasks, in which only image-level labels are provided rather than pixel-
or object-level annotations @@l; multi-instance learning (MIL) scenarios, where only bag-level labels are given
without specifying which individual instances are responsible for the label IEHAHEI; or situations in which class

categories are defined at an insufficient level of granularity.

Under this paradigm, several assumptions about the TT are reflected. Zhou 0361 defined inexact supervision as cases in
which “only coarse-grained label information is available,” assuming the existence of unobserved fine-grained TT.
Similarly, Yue et al. 4] described remote sensing tasks where only image-level annotations are available, implicitly
assuming the existence of pixel-level TT. In the literature on MIL, it is generally assumed that certain instances

within each bag genuinely possess the class property, even though only the overall bag label is provided 361 Thus,

again implies the existence of fine-grained TT that remains unobserved.
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2.4.3. Inaccurate supervision

Inaccurate supervision refers to learning scenarios in which the provided labels are not always correct and may
deviate from the TT due to labeling noise, human errors, or systematic biases (16)I17] Typical forms of inaccurate
supervision include: learning from noisy labels [817) where some of the provided labels are incorrect due to human or
systematic annotation errors; and learning from multiple annotators (crowdsourcing) QRIBIEIE, where labels are
collected from a group of annotators with varying expertise and reliability, leading to inconsistent or biased

annotations.

Under this paradigm, several assumptions about the TT are presented. Zhou 8] noted that, under inaccurate
supervision, “the given labels are not always the ground truth” , which reflects the existence of TT. Zhang et
al. (2] posited that a small portion of labels may be noisy but assumed that the TT exists and can be recovered with
the aid of unlabeled data and structured noise models. Similarly, Ren et al. [17) treated inaccurate supervision as a
setting where the provided labels may be erroneous, yet the TT labels are still regarded as existing and serve as the

conceptual reference point for model learning.

2.44. Cross-scenario expansion

The three types of weak supervision can simultaneously appear in cross-scenario settings. For example, Zhang et
al. 18] proposed a unified framework for addressing learning challenges where data are only partially labelled or
contain annotation errors. Yue et al. (141 jointly discussed how the three forms of weak supervision (incomplete,
inexact, and inaccurate) can facilitate optical remote sensing image understanding tasks such as classification,
segmentation, change detection, and object detection. The former reflects the assumption that the TT exists but that
some labels are missing or incorrect. The latter assumes that TT exists at all sample, pixel, or object levels, and that in

practice, some annotations are missing, some are coarse-grained, and some are erroneous.

2.4.5. Mainstream TT assumption observed in WSL

The TT assumptions underlying the three primary forms of weak supervision, along with their cross-scenario
extensions, are summarized in Table 3. Collectively, these summaries reveal a prevailing mainstream TT assumption
in WSL: that the TT objectively exists in the real world, even though it may be partially missing, coarsely represented,

or inaccurately observed in the available annotations.
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WSL Category | Representative tasks / paradigms TT Assumptions

Semi-supervised learning (221123

Incomplete Each sample possesses a unique TT label, although some samples
Positive-unlabelled learning [24](25]
supervision remain unlabelled (12116117]
Active learning 261271

Image-level supervised semantic Finer-grained (e.g., instance-level or pixel-level) TT labels exist, but the

Inexact ion [281129] . . . .
segmentation available annotations are aggregated or masked into coarse-grained
supervision
[14][16]
Multi-instance learning [M31f4115] labels
Learning with noisy labels e
Inaccurate Each sample has a unique TT label, but the observed label may deviate

L. Learning from multiple annotators . . .
supervision from it due to noise or annotation errors 121161171

(crowdsourcing) [I[B1[41[5]

Learning with multiple types of TT label exists universally, but its observations in data are incomplete,
Cross-scenario
weak labels (141121 coarse-grained, or corrupted (241151

Table 3. Taxonomy of WSL and its summarized TT assumptions

2.5. Two prevalent paradigms of inaccurate supervision

Inaccurate supervision is particularly challenging to the assumption that the TT objectively exists in the real world,
since the available labels are either corrupted by noise or generated by multiple, potentially inconsistent annotators.
Learning from noisy labels (LNL) 67 anq learning from multiple annotators (LMA) [I[[31[41(5] represent two
prevalent paradigms of inaccurate supervision in WSL. Both cases can potentially raise questions about the
appropriateness of the TT existence assumption. Therefore, in this subsection, we conduct a relatively comprehensive
survey of the TT assumptions underlying these two forms of inaccurate supervision. This survey helps to reveal
potential alternative assumptions that may deviate from the mainstream premise under WSL that the TT objectively

exists in the real world.

2.51. Learning from noisy labels

In the early literature on LNL, researchers generally assumed that the TT objectively exists. For instance, Angluin and
Laird 541 directly modelled the observed labels as outcomes of independent noise flips applied to true labels. In this

case, the annotator (or teacher) independently flips each label with a certain probability (the random classification

noise model). Natarajan et al. £l introduced an unbiased loss estimator based on noise-rate correction. The validity of

correction relies on a noise model assuming the existence of a single true label and class-conditional flip. That is,
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observed labels are corrupted by class-conditional random noise (where the flip probability depends on the class), and
the noise rate is either known or estimable. Patrini et al. 33! further proposed forward and backward loss correction
using an estimated noise transition matrix. Both their theoretical analysis and empirical studies are built upon the
assumption that a true label distribution exists but is distorted by class-dependent noise, which can be represented by
a transition matrix.

In subsequent works, researchers began to adopt more implicit assumptions about the existence of TT. Reed et
al. 48] posited the existence of a “true signal” learnable by the model. The corrected noisy labels through self-
consistency between model predictions and observed labels (i.e., soft labels or bootstrapping). Han et al. 149 3ssumed
that a subset of “clean samples” exists and that deep networks first fit these clean samples due to the memorization
effect. They proposed a co-teaching method to train two networks that mutually select small-loss samples to focus on
clean data. Song et al. 7 provided a systematic taxonomy of noise-robust learning approaches (e.g., loss correction,

sample selection, robust loss). They analysed which methods explicitly rely on true labels or noise matrices and which

can operate under weaker assumptions.

More recently, a number of studies have begun to explicitly question the clarity, definability and uniqueness of TT
under noisy-label settings. Frénay and Verleysen 53] symmarized and categorized various noise models—such as
random class-dependent noise, class-conditional noise, and instance and class-dependent noise models. They
pointed out that, for subjective tasks, objective ground truths may be ambiguous. Plank [44] 3nd Yang et al. [EUIENIEZ]
[33134] fyrther challenged the notion of a well-defined ground truth. These works suggested that label uncertainty
may be an inherent property of certain tasks. Zhang et al. %3] took a different approach by aligning instances with
their noisy labels rather than correcting them. They treated the noisy labels as the targets to be aligned with.

Conceptually, such approaches weaken the traditional assumption that a single, objective ground truth must exist.

2.5.2. Learning from multiple annotators

In the early literature on LMA, researchers typically assumed the existence of a consensual or latent TT. For instance,
Dawid and Skene 31l modelled each instance’s true label as a hidden latent variable. In this case, the observed noisy
annotations were generated through individual annotators’ confusion matrices (i.e., error rates). Their Expectation—
Maximization (EM) framework jointly estimated the annotators’ reliability parameters and the latent true labels.
Raykar et al. 2 explicitly treated the “true label” as a latent variable. They proposed a model that simultaneously
learns both a classifier and annotator reliability (accuracy/bias). Their objective was to recover a single hidden truth in

[52]

the absence of any gold standard. Whitehill et al. also assumed a single “correct answer” and proposed an ability-

weighted label aggregation model. In this case, annotators’ votes were weighted according to their inferred

competence to approximate the true label. Welinder et al. 29 further extended this framework by incorporating
image features and multi-dimensional annotator ability/bias factors, but the core assumption remained the

estimation of a single latent ground truth per instance. Sheng et al. VEl investigated whether and how repeated
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labelling improves annotation quality. This case is still under the premise that aggregation strategies (e.g., majority

voting) aim to approximate an underlying ground truth.

Subsequent studies introduced the notion of variable truth. Yan et al. (67 argued that annotator expertise might
depend on the instance itself (expertise conditional on instance). They emphasized that although a single ground
truth is still commonly estimated, annotator reliability may vary across samples. This led to the view of a “single truth
with instance—annotator interaction noise” Nguyen et al. 6] extended latent-truth modelling to sequential labelling
tasks. They introduced more structured latent variables (e.g., token-level true labels) that capture dependencies

among labels within sequences.

More recent works have begun to explicitly question the clarity, definability, and uniqueness of TT in multiple-
annotator settings. For example, Mokhberian et al., Li et al., and Ibrahim et al. [371381139] giscussed the ambiguity of
TT. They advocated modelling instance-dependent annotation noise or learning annotator-specific embeddings to
preserve opinion diversity. Yang et al., Wang et al., and Zhang et al. [0IBUI32I331[341351(36] qestioned the definability
of TT. They argued that when experts disagree, models should not blindly construct a gold standard but instead learn
representations aligned with annotator consensus or preserve probabilistic and multi-perspective label structures.
Snow et al., Subramanian et al., and Srinivasan and Chander [s011A1)[42] challenged the uniqueness of TT. They noted
that for inherently subjective or ambiguous tasks, a single gold label may not be appropriate. They emphasized that in
subjective domains, such as affect recognition, aesthetics, readability, or perceived relevance, the “single truth”
assumption may fail. They also underlined that modelling label distributions, multiple viewpoints, or population

subgroups is more appropriate than forcing consensus as a proxy for truth.

2.5.3. Emerging trend of TT assumption observed in inaccurate supervision

Regarding representative timeline works, the TT assumptions underlying the two prevalent paradigms LNL and LMA
within inaccurate supervision are summarized in Table 4. As observed from Table 4, both paradigms exhibit a clear
evolutionary trajectory: early studies typically assumed the arbitrary existence of TT; intermediate works gradually
relaxed this assumption; and recent research has increasingly questioned the clarity, definability, and uniqueness of
TT. This progression indicates an emerging trend in which researchers are beginning to challenge the very existence

of TT itself. Notably, this shift appears to be more radical in the LMA paradigm.

geios.com doi.org/10.32388/KBK3P8.5 13


https://www.qeios.com/
https://doi.org/10.32388/KBK3P8.5

Prevalent Paradigm of

Inaccurate Supervision

Representative Timeline Works

TT Assumptions

Learning from noisy labels

Early-stage studies: foundational works [6][531[54]

Assuming that the TT objectively exists.

Intermediate developments: expansion and

methodological refinement [7[48)[49)

Adopting more implicit assumptions about

the existence of TT

annotators (LMA)

methodological refinement 6147]

(LNL)
Recent advances: emerging trends and paradigm Questioning the clarity, definability or
shifts [BUBIB2(33[341[43][44][45] uniqueness of TT under noisy-label settings
Early-stage studies: foundational works (21201131 Assuming the existence of a consensual or
[52] latent TT
. . Intermediate developments: expansion and
Learning from multiple Introducing the notion of variable truth

Recent advances: emerging trends and paradigm

shifts [301311[32][33](34 35][36](371[381[39][40][41][42

Questioning the clarity, definability, or
uniqueness of TT in multiple-annotator

settings

Table 4. Taxonomy of WSL and corresponding TT assumptions

2.6. Reinforcement learning

In reinforcement learning (RL), the reward signal serves as the core driving force. The efficient implementation of RL

often relies on the representations, priors, and auxiliary signals provided by unsupervised learning, SL, and WSL.
Specifically, unsupervised learning contributes to effective exploration and state representation through
representation learning and intrinsic motivation mechanisms. It is helpful especially when external rewards are
sparse, thereby improving generalization and sample efficiency [671[68] g7, can provide policy priors or reward models
through expert demonstrations or human feedback, substantially accelerating policy optimization 91691 11y addition,
weakly supervised learning supports reward modelling and policy evaluation in cases where reward signals are sparse
or noisy. It helps to construct approximate supervision signals derived from human preferences, partial annotations,
or proxy feedback [201f66] Together, these learning paradigms reinforce the learnability and stability of the RL

framework at different levels. Therefore, the assumptions regarding the TT are not specifically discussed for the RL

paradigm in this section, as they can be referred to those already discussed for the other ML paradigms.
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2.7 Summary

The assumptions of TT across current ML paradigms can be summarized as follows (as shown in Table 5). In
unsupervised learning, the concept of TT is generally inapplicable. In SL, it is typically assumed that the TT
objectively exists in the real world. In WSL, the prevailing mainstream assumption remains that the TT objectively
exists, even though it may be partially missing, coarsely represented, or inaccurately observed in the available
annotations. Notably, in two prevalent paradigms of inaccurate supervision (LNL and LMA), an emerging trend has
been the growing scepticism toward the clarity, definability, and uniqueness of TT, indicating the possibility that the
TT may not exist in the real world. This shift is particularly pronounced in LMA, where the assumption of an objective
TT is increasingly being challenged. For RL, the TT assumptions are largely aligned with those in unsupervised

learning, SL, and WSL.
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ML Paradigm TT assumptions
Unsupervised learning None: the concept of TT generally does not apply (Section 2.2)
Precisely
supervised
learning
Supervised learning Moderately
The TT objectively exists in the real world (Section 2.3)
(SL) supervised
learning
Hybrid forms that
combine both
Incomplete
supervision
I . A prevailing mainstream TT assumption is observed in WSL-related surveys: the
nexac
Weakly supervised TT objectively exists in the real world, even though it may be partially missin
y sup supervision ] y ) g y be p y 8
learning (WSL) coarsely represented, or inaccurately observed in the available annotations
Inaccurate X
(Section 2.4)
supervision
Cross-scenario
Learning from
Two prevalent . Emerging trend of TT assumption is observed in more recent works in LNL and
noisy labels (LNL)
paradigms in LMA: researchers are beginning to question the clarity, definability, and
Learning from
inaccurate g uniqueness of TT in both noisy-label and multiple-annotator settings; and the
multiple
supervision P shift in LMA appears to be more radical (Section 2.5)
annotators (LMA)
Reinforcement learning Not specifically discussed, can be referred to the above assumptions (Section 2.6)

Table 5. Summarization of TT assumptions in current ML paradigms.

While the mainstream TT assumption across current ML paradigms is that the TT objectively exists in the real world,
the observed scepticism regarding the existence of an objective TT in current ML paradigms is limited to the
possibility that it may not exist. In this article, regardless of the level of clarity, definability, or uniqueness of TT, we

take a more radical stance by explicitly positing that T'T does not objectively exist in the real world.
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3. Implications of the Assumption that TT Does Not Exist in the Real World

In this section, from first principles, we conduct comparison between the non-existence and existence assumptions
of TT to reveal the implications of the assumption that TT does not exist in the real world towards learning with

democratic supervision (LDS).

3.1. Comparison between the Non-Existence and Existence Assumptions of TT

Let us first consider the existence assumption of T'T, where TT is assumed to objectively exist in the real world. Under

this assumption, the typical processes of designing ML paradigms proceed as follows:

1. Data preparation: domain experts prepare datasets under expert supervision, as TT is presumed to exist and
experts are regarded as professional and trustworthy identifiers of it;

2. Paradigm design: based on such supervised data, ML experts develop appropriate paradigms to transform the
data into predictive models;

3. Paradigm establishment: depending on the degree of supervision perfection, paradigms such as SL with perfect

supervision and WSL with imperfect supervision are typically adopted.

Now, let us consider the non-existence assumption of TT, where TT is assumed not to objectively exist in the real
world. A natural question arises: how would one design an ML paradigm for predictive modelling under the non-
existence assumption of the T'T, even if the TT physically exists? Addressing this question requires resolving several
fundamental issues, including: (i) how supervision data should be prepared for learning a predictive model intended
to approximate or uncover a currently non-objective TT; (ii) whether individuals beyond domain experts can
legitimately participate in the data preparation process when the TT does not objectively exist; (iii) if so, how and
under what conditions their contributions should be incorporated; and (iv) how learning should be conducted using
data prepared under the non-existence assumption of the TT. Thus, based on these perspectives and insights, the

processes of designing ML paradigms under the non-existence assumption of TT can change as follows:

1. Collaborative data conceptualization: experts (domain experts and ML experts) and non-experts can be placed
on an equal footing to jointly rethink how data should be conceptualized and prepared for capturing the
properties of the underlying reality, as TT does not objectively exist and domain experts are no longer the sole
authority for identifying it;

2. Democratic data preparation: data are constructed through democratic supervision, with both experts (domain
and ML experts) and non-experts equally participating in the supervision process;

3. Paradigm rethinking: given this data prepared under democratic supervision, it becomes necessary to
reconsider what forms of ML paradigms can be designed to effectively learn from such data to reveal the

underlying reality;

The comparison between the non-existence and existence assumptions of TT is summarized in Fig. 2.
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Under the existence assumption of TT, the data prepared under domain-expert supervision plays a decisive role, as
the ML paradigms subsequently designed by ML experts to transform the underlying reality into predictive models
are largely determined by the perfection of the expert-prepared data. This situation reflects a structural imbalance:
ML experts seldom participate in data preparation. We regard this as undemocratic, since the experiential knowledge
of ML experts, particularly their understanding of what kinds of data effectively capture the underlying reality for

model learning, is often neglected. Moreover, the non-experts are completely excluded in the supervision process.

Under the non-existence assumption of TT, the prepared data still retains its decisive role. However, the crucial
difference is that it embodies democratic supervision, where both domain experts and ML experts collaboratively
(democratically) contribute their insights to more effectively capture and represent the underlying reality. Moreover,
even if a TT physically exists, we can still proceed the ML-based predictive modelling following the processes under
the non-existence assumption of TT. This case indicates that non-experts can also be included in the supervision

process.

o e e e
-

-

PR

'

Non-Existence Assumption of TT

N

Semn
-~---——-—

relaxing

Assumption: TT does not exist in the real world

V

Experts (domain experts and ML experts) and
non-experts: Equally rethinking how should we
prepare the data for learning?

Y

Preparing data with democratic supervision

y

Learning with democratic supervision

Y

Rethinking what kinds of machine learning
paradigms should be designed regarding
democratic supervision?

Figure 2. Summarization for comparison between the non-existence and existence assumptions of TT

Thus, as shown in Fig. 2, when the non-existence assumption of TT is gradually tightened, it naturally degenerates
into the existence assumption; conversely, when the existence assumption is gradually relaxed, it evolves toward the
non-existence assumption. In this sense, the existence assumption can be viewed as a special case of the non-
existence assumption. This offers a broader conceptual space and more flexibility for inventing ML paradigms that

aim to transform the underlying reality into predictive models by LDS.
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3.2. Suggesting new data preparation strategies regarding democratic supervision

The non-existence assumption of TT suggests that new data preparation strategies should be explored regarding
democratic supervision, to which both domain and ML experts or even non-experts can collaboratively contribute.
Under the existence assumption of TT, the labelling rules are mostly designed by the domain expert annotators,
neglecting ML experts’ insights and completely excluding non-experts. In this situation, performing the data
preparation will be intense, as the labelling rules should be strictly followed to effectively capture the underlying
reality. However, under the non-existence assumption of TT, the labelling rules can be relaxed to that each one of the
domain and ML expert annotators is focusing on capture a single or a few properties for describing the underlying
reality. In this situation, performing the data will be relaxed, as the labelling rules should be democratically discussed,
in which we are able to even consider employing non-experts to help capturing the underlying reality. Thus, new data

preparation strategies are needed regarding expert democracy.

3.3. Suggesting new learning paradigm regarding data prepared under democratic supervision

The non-existence assumption of TT also suggests that new learning paradigms should be explored regarding the
data prepared with democratic supervision. Under the existence assumption of TT, the learning paradigms are mostly
designed to predict the TT from the data prepared by domain expert annotators. In this situation, usually a clearly
single TT is expected to be predicted by learning from the domain expert prepared data, which possibly contain
incomplete, inexact or inaccurate supervision information. However, under the non-existence assumption of TT, the
learning paradigms can be relaxed to that the predictive model learnt from the data prepared with democratic
supervision does not necessarily output a clear TT but a prediction that possess the observed key properties of the

underlying reality. Thus, new learning paradigms are needed regarding data prepared with expert democracy.

34. Expanding research scope towards LDS

Together, the suggested necessities for new data preparation strategies regarding democratic supervision and new
learning paradigms regarding data prepared with democratic supervision eventually enlarge the research scope of the
conventional learning with perfect or imperfect supervision, as the existence assumption of T'T is a special case of the

non-existence assumption of TT. Thus, the non-existence assumption of T'T expands the research scope towards LDS.

3.5. Summary

In summary, the existence assumption of TT can be viewed as a special case of the non-existence assumption of TT,
which implies that new data preparation strategies should be explored regarding democratic supervision and new
learning paradigms should be explored regarding the data prepared with democratic supervision. Together, these two
new requirements under the non-existence assumption of TT imply an expanded research scope of current learning

with perfect or imperfect supervision towards LDS.
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It should be noted that, within the UTTL framework, democratic supervision is limited to experts (i.e.,, domain
experts and ML experts), and non-expert participants are intentionally excluded to maintain a simplified democratic

supervision setting.

4. Undefinable True Target Learning

Grounded in the assumption that T'T does not exist in the real world and its implications, this section introduces the
conceptual framework of undefinable true target learning (UTTL). UTTL reinterprets data preparation and model
learning processes under the premise that the TT does not objectively exist in the real world. It serves as a
representative paradigm within the broader research scope of learning with democratic supervision (LDS). In the
following subsections, we formally define UTTL, reveal its principles for uncovering undefinable T'T, and discuss its
practicability for LDS and its uniqueness compared with the LMA setting. In UTTL, the democratic supervision is
limited to expert (i.e., domain expert and ML expert) democracy, excluding the non-experts to simplify the

democratic supervision setting.

4.1. Definition for methodology of UTTL

Let us consider a situation where the TT of a domain learning task is inherently undefinable. In practice, this poses a
fundamental challenge: how should we prepare data and design learning paradigms for predictive modelling when
the TT cannot be objectively defined? We present the UTTL paradigm for alleviating this challenge. Grounded in the
implications of the non-existence assumption of TT, which calls for new data preparation strategies based on expert
democracy and new learning paradigms built upon such data, the UTTL paradigm is decomposed into two key

components: 1) data preparation with expert democracy, and 2) learning from data prepared under expert democracy.

4.11. Predefined input and output

The input of the UTTL paradigm is the entities/events collected from the domain, denoted as d. The output of the
UTTL paradigms is the revealed T'T, denoted as ¢, corresponding to d. The revealed ¢ is expected to cover a variety of

properties of the undefinable T'T associated with d in the domain.

4.1.2. Data preparation with expert democracy

Domain experts (DE) can label the d with their expertise in identifying the undefinable TT to capture some of its

properties (t}) E ). This DE labelling process can be formally defined as
t*DE = DE_Label (d; QDEfLabel) ) (1)

ML experts (MLE) can do some complementary works to refine the ¢}, corresponding to the d with their expertise in
predictive modelling to produce a refined representation (t},;) for identifying the undefinable TT. This MLE

refinement can be formally defined as
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thp = MLE_Refine (d7 ) 9MLE,Refine) -

As the TT is inherently undefinable, both ¢}, and t¢},; ; can probably contain severe inaccuracy in capturing it. To
address this, t},; and t},; , can be fused in to a unified TT presentation by reasonable operations to more effectively
capture the properties of the undefinable TT. As the domain expert and ML expert equally contribute to the unified
TT representation, it is prepared with expert democracy (PWED). We define that the resulted unified TT

representation (¢},

gp) contains multiple inaccurate targets (t*), each of which partially represent certain properties

of the undefinable TT. Thus, this fusing of expert democracy can be formally defined as
thupp = PWED_Fuse (thp,t,,5,0707) = {t1,- -, 15} (3)
Together, the prepared d and t},, ;, constitute an expert-democratic observation of the underlying domain reality.

Here, 6~ denotes the hyperparameter for implementing Formulas (1)-(3) respectively.

4.13. Learning from data prepared under expert democracy

Regarding common ML, the learning from the data prepared with expert democracy (d and ¢,

wEgp) can be described

as: 1) constructing a function (), which can map the d into corresponding predicted TT (¢ = f(d)); and 2) defining a
loss function (1), which estimates the error between ¢t = f(d) and the ¢4, 5, for optimizing the f to minimize the
value of I. As t%, -, contains multiple inaccurate targets {t,---,ts}, this learning process is a multiple inaccurate

target learning procedure, which is formally defined as
f = axgmin Ut = F(@), thupp = {t1,7+,81). (4)

Here, F' denotes the function space of f.

4.14. Methodological formation

Referring to the predefined input and output, Formulas (1)-(3) for data preparation (DP), and Formula (4) for learning

procedure, the methodological formation for UTTL is formally denoted as

( Input:d
( Domain expert labelling:
thz = DE_Label(d; 6PELaver)
ML expert refinement:
DP:{ ti;z = MLE Refine(d, t;z; 6M"ERefine)

UTTL ¢ Fusion of expert democracy: . 5)
tpwep = PWED_Fuse(t}g, tag; OFWEPFuse)
L = (&, 65}

Multiple inaccurate target learning:
Lb: {f = argmin (¢ = f(d), tiyep = {85, ,63))
\ Output: t = f(d)
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4.2, Principles of UTTL for revealing undefinable TT

Denoting prop(-) as the set of properties of an entity for representing the undefinable T'T, this subsection elucidates
the underlying principles of UTTL for uncovering the undefinable TT. Here, we do not impose constraints on the
specific form of prop(-), which may take semantic, numerical, or other forms or a combination thereof in
characterizing the properties of an entity. Based on the definition of UTTL (Formula (5)), we derive and discuss the

following theorems under feasible assumptions.

Theorem 1. Let the mapping L is consistent with Formula (1): t= L(8). If empirical knowledge set K provided by domain
expert for identifying the undefinable TT is encoded as a hyperparameter §PF-La%! and produces t}, ;= £ (6PZ-La*!) with
regard to d, then the set of properties of t% is included in the set of properties of the undefinable target TT, denoted as
prop (tBE) C K C prop(TT).

Theorem 2. Let the mapping R is consistent with Formula (2): t= R(6). If Al expert uses their predictive modelling expertise

GAI E_Refine

under the domain expert’s empirical knowledge set K to assign and obtains refined

t4, 5= R (9ATE-Refine) with regard to d and t%, , then prop (t* ~ K.

" E) is consistent with K, denoted as prop(t

p)
Theorem 3. Let the mapping F is consistent with Formula (3): t= F(0). If reasonable operations are encoded as a
hyperparameter 7*FP-Fuse and produces t},, 5, = F (07FP-Fuse) = {t1,. .. 3} with regard to t},5 and t*,, then the

AIEY

resulted unified TT representation (%,

wED) 1S more consistent with K, denoted as prop(th,gp) = K, than any individual

representation.

Theorem 4. If the data is prepared under expert democracy, that is, given the input set d of data instances and the
corresponding target set (the multiple inaccurate true targets of expert democracy fusion) t}, zp = {t%,---,t5}, then
according to the conventional practice in machine learning, a mapping function f (assumption space F') can be constructed
such that f maps the input d to the predicted true target: t = f(d), and the optimal function is obtained by minimizing the

inconsistency between the prediction and the target set (a certain loss function 1), denoted as

f =argminger U(f(d),th,5p)-
To prove Theorems 1-4, we introduce some natural hypotheses shown as Tables 6 and 7. These hypotheses should be
verified in practical solution implementation of UTTL. More details about the introduced natural hypotheses and

proofs based on them for theorems are provided in Supplementary 1.
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Assumption No. and

Abbrev.

Detailed description

Assumption (i)

(Domain expert

correctness)

The domain expert’s empirical knowledge K is correctand K C prop(TT)

Assumption (ii)

(Annotation fidelity)

The annotation/generation process faithfully converts domain expert facts into certain instance

attributes, that is prop(t},;) € K

Assumption (iii)

(Conciseness and evidence

compatibility)

New properties introduced or amplified by the Al expert during the refinement process (denoted as

the set A) do not create semantic or logical conflicts with K, that is, K U A is satisfiable

Assumption (iv)

(Locality/partial

representation)

Each partial inaccurate target ¢} describes only a subset of the properties of T'T, that is

prop (t3) C prop(TT)

Assumption (v)

(Complementarity)

The multiple partial property sets {prop (t3),...,prop(t})} for fused representation are
complementary in terms of their coverage of K, that is

lprop (tp,ep) N K| = max (|prop (t55) N K|, [prop (t4;,) N K])

Assumption (vi)

(Reasonable fusion does
not introduce systematic

inconsistencies)

The fusion process avoids retaining a large number of conflicting incorrect properties through
"reasonable operations” such as weighting, denoising, conflict detection, or logical intersection and

union

Assumption (vii)

(Spaces and measurability)

D (input space) and T (target/prediction space) are topological spaces (usually subsets of R™ and

is measurable in { for each fixed ¢*

RF), every f ¢ Fis measurable, and the loss J( PwED

d7 t}’wED )

Assumption (viii)

(Nonnegativity and

continuity of loss)

U(d, t3,zp) > 0 for allarguments, and for each fixed ¢*, .., themapd — I(d, t%, .. ) is continuous

Assumption (ix)

(Compactness / closedness
of mapping function

space)

F is nonempty and is a compact subset of a topological vector space (or at least closed and bounded
in a finite-dimensional parameterisation). Concretely, if F' = {f, : 6 € ©} with © C RP then

© assume is compact and d — fy(d) is continuous

Assumption (x)

geios.com

n
When the targets t}, .. arise from repeated sampling { (di, 2 by ED) } drawn iid. froma
” 1

1=

distribution P, assume I( f(x),t%, zp) is P-integrable for all f € F'
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Assumption No. and
Detailed description

Abbrev.

(ii.d. sampling and

integrability)

Table 6. Introduced natural hypotheses for proving Theorems 1-4

Theorem Associated assumptions
Theorem 1 Assumptions (i) and (ii)
Theorem 2 Assumptions (i) and (iii)
Theorem 3 Assumptions (i), (iv), (v) and (vi)
Theorem 4 Assumptions (vii), (viii), (ix) and (x)

Table 7. Hypotheses respectively associated with Theorems 1-4

4.3, Representative paradigm towards LDS

The methodological definition of UTTL (Formula (5)) and its principles for revealing undefinable TT (Theorems 1-4)
indicate that UTTL practically serves as a representative paradigm of LDS. The two core components of UTTL, data
preparation with expert democracy and learning from data prepared under expert democracy, jointly embody the
democratization of the supervision process. The data preparation component of UTTL integrates the perspectives of
both domain and ML experts for identifying an underlying TT. The learning procedure of UTTL develops solutions
that learn from collaboratively constructed supervision (multiple inaccurate true targets of expert democracy fusion)
rather than a single authoritative truth. UTTL transforms supervision from an authority-driven process into a

participatory and negotiated one, thereby exemplifying the essence of LDS.

44, Uniqueness of UTTL

The UTTL setting is unique compared with the LMA setting, although the learning procedures of two settings are
identically based on multiple inaccurate TT representation set. The primary difference between the two is that the
UTTL setting is established under the assumption that the TT does not objectively exist in the real world while the
LMA setting is largely grounded in the assumption that the TT objectively exists in the real world. From the
implications of the non-existence assumption of TT, LMA under WSL is a special case under LDS regarding this

assumption.
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5. UTTL Principle-Based Practical Solutions for LDS

Regarding the definition of UTTL (Formula (5)) and its principles (Theorems 1-4) for revealing undefinable TT, in this
section, we summarize UTTL principle-based practical solutions for LDS. Under the frame work of UTTL, the
summarized solutions, which are based on AI application works in specific domain [BOBLI32I60I74] 35 el as
representative works of learning from multiple annotators [ﬂlﬂ, detail the implementations for data preparation with
expert democracy and learning from data prepared under expert democracy. As the hypotheses introduced for the
proofs of Theorems 1-4 are natural, they can be typically satisfied in practice. Even if some of these hypotheses are
not fully met, the conclusions of Theorems 1-4 would merely be weakened rather than invalidated. Therefore, in this
section, we do not further specifically verify these natural hypotheses when we applying Theorems 1-4 for specific

implementations.

5.1. Implementation for data preparation with expert democracy

Based on existing works ZBIB0BIE2601[74] regarding the definition of UTTL and Theorems 1-3, we summarize the

detailed implementation for data preparation with expert democracy in practice.

5.1.1. Domain expert labelling

The expertise of domain experts can be described as an accumulated knowledge (K') containing various prior proofed
knowledge facts (k) about the undefinable TT. The K is regarded as the currently most appropriate information for
approximating the undefinable TT, though it probably will be constantly changed with new accumulated domain

knowledge. Formally, the K is expressed as
K={k,..., kn} s.t. K Cprop(TT). (6)

Thus, regarding Theorem 1, Formula (1) for labelling the entities/events (d) collected from the domain is implemented

by using the K as hyperparameter
tp = DE_Label (d; 772 =' K') = K (d) s.t. prop(tpp) € K C prop(TT). (7
5.1.2. ML expert refinement

One expertise of ML experts can be described as searching a reasoning path () from the domain expert prepared
data {d, th E} under the condition of K to draw (— ) a set of logical conclusions (c) that are consistent with (~) some
knowledge facts in K. The drawn c can be helpful to refine ¢}, for representing the underlying TT. Formally, this

expertise of ML experts is defined as

7 = searching r :< {d,tjp} |K >— c s.t. c~K. (8)
reR

Here, R denotes the space of the reasoning path r.

geios.com doi.org/10.32388/KBK3P8.5 25


https://www.qeios.com/
https://doi.org/10.32388/KBK3P8.5

Another expertise of ML experts can be described as building a program (p) to generate new TT representation (
ti.p) from {d,t};} and logical conclusions c. The properties of the generated t},, ,; should be equal (=) to ¢ for

describing the underlying TT. This expertise of ML experts is formally defined as
= buli,lg)ingp : ({d, tDE} ) =>1t . s.t. prop (tMLE ) =c 9)
Here, P denotes the space of the program p.
Thus, regarding Theorem 2, Formula (2) is implemented by using the {r|K,p} as hyperparameter
ti.p = MLE_Refine (d, t}; 0 7-Reline = '3 | K 5'})
=p({dtyp},c=7 <{dtyz} |IK>) st prop(ti,,) ~K. (10)
5.1.3. Fusion of expert democracy

Logical operations (LO) can be conducted on t},; and t%,, to form a unified TT presentation (t},, ) to more

AIE

effectively capture the properties of the undefinable TT. The properties of the t}, ., are expected to be more

consistent with (=) the knowledge facts in K.

Regarding Theorem 3, Formula (3) is implemented by using the LO as hyperparameter
tpopp = PWED_Fuse (tpg, i,z 07701 =' LO')
=LO (typ,tire) = {t5,- - ts}  s.t. prop(thuep ) = K. (11)
5.14. Detailed solution in practice

The result of domain expert labelling ¢}, from Formula (7) and its associated d form an initial data basis, denoted as

H = {d,t}p}. The data structures of H are diverse. As observed in existing works WIREOEIE60Z] | the

structures of H are primarily denoted as
H= {d,tij} = {(dlv IDE) m nDE)} (12)

- (d
H={H = {d,tipg} e H = {diti pp } |
(= {(@tiae) s o (G Ge) b B = { (b tiypm) s (s tinp) L (19
#={a{tiop - oo} }

(e time}) s (o {friom s Fome)) ) s

Formula (12) indicates that each instance of d has a domain expert labelled ¢}, 39131, Formula (13) signifies that
diverse data samples H = {Hy,..., H}} are labelled by domain experts and each data sample may capture partial
properties of the underlying TT in the domain [32], Formula (14) notifies that each instance of d has multiple domain
expert labelled targets t},, = {t’{, pEs < stmp E} [BIBI60I74], Together, Formulas (12)-(14) form the practical

solutions for Formula (7).
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The result of Formula (8) is a found reasoning path 7 that can draw from H under the condition of K a set of logical

conclusions that are helpful to refine the domain expert labelled ¢}, . The process of 7 is denoted as
C:f(HaK):{clv"'vcw}' (15)

Referring to existing works BUBUB2] Formula (15) is solved based on abductive reasoning as follows:

1. Extract a list of groundings from H that can describe the logical facts contained in t} ;. This grounding

extraction (E) step is expressed as

g=E(H)={g1,---,9s}- (16)

2. Estimate the inconsistencies between the extracted groundings g and the prior knowledge accumulated in K by
logical reasoning. This logical reasoning (R) step is expressed as

ic = R(g,K) = {ic1,---,icy}. (17)

3. Revise the groundings in g via logical abduction to reduce the estimated inconsistencies in ic. The revised

groundings (rg), which serve as the assumptions for generating the reduced inconsistencies in the logical

abduction, are the drawn statements/conclusions (c) that can more accurately describe the underlying TT than

the t},; provided in H. Referring to Formula (13), this logical abduction (A) step is expressed as

C=Tg= A(icvg) = {rglv' te 7Tgw} = {Clv T 7CU)} . (18)
Together, Formulas (15)-(18) form the practical solution for Formula (8).

The result of Formula (9) is a built program p that generates new TT representation t},; » from {d, t},; } and logical

conclusions c. The process of p is expressed as
tp = p(H,c). (19)

Referring to existing works BB Eormula (19) is differently solved with regard to the structures of H as

follows:

1.When H = {d, 5 E} is available, with regard to ¢, we can develop programs that extract a new TT from H that
can be complementary to t}, for representing the underlying TT EUTENY

2.When H = {Hl = {dl, tiDE} yeoy Hiy = {dk, t pE }} is available, with regard to ¢, we can develop programs
that explore mutual enhancements between different data samples {H3, ..., H;} and result new TT for better
representations of the underlying TT 22,

3.When H = {d, {ti pEr- 1 tp E} } is available, with regard to ¢, we can develop programs that explore mutual
enhancements between multiple domain expert labelling {t’i pEr- 1 tp E} and result new TT for better

representations of the underlying TT [601[74]

Together, these solutions for Formula (19) form the practical solutions for Formula (9).

Referring to existing works [30I31132] for the implementation of Formula (11), logical operations like union and

intersection can be employed to fuse t},; and t* . into a unified TT presentation (¢}, 5 ). While union operations
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make the unified ¢}, 5, representation more complete, intersection operations enable the unified

. .
%, gp fepresentation more accurate.

5.2. Implementation for learning from data prepared under expert democracy

Based on existing works B9EHGE2I60TEIT6ITTIZEIT] 80) regarding the definition of UTTL and Theorem 4, we

summarize the detailed implementation for learning from the data prepared with expert democracy in practice.

5.2.1. Multiple inaccurate target learning

Based on a constructed function f, the error between t = f(d) and t%,5p = {t},---,t5} can be estimated and a
predefined loss function [. As t}, », contains multiple types of inaccurate true targets, the error between ¢ and
{t1,---,t5} can be estimated by the weighted sum of the errors between ¢ and the respective ¢;. We can design a loss

function within a multiple inaccurate target learning procedure, which is expressed as

L(t,thump) Zal s.t. iai =1 (20)
i=1

Here, a is the weights for the multiple inaccurate TT set {¢%,---,t5}.

By minimizing I (t,t}wED) with regard to £, a final optimized model f can be obtained for mapping d into the

revealed TT (£ = £ (d)), which should submit to the condition prop ( =f(d )) ~ prop (tp,pp) = K by common

logical sense.

Thus, regarding Theorem 4, Formula (4) is implemented by a multiple inaccurate target learning procedure

f= arg%i}l [l (t,touen) Za 4 (f(d),t; :|
Zai =1 and prop (E = f(d)) ~ prop (t}wED) ~K. (21)
i=1

5.2.2. Detailed implementation in practice

The mapping function f can be constructed via state-of-the-art deep learning methods [80] pased on neural
networks. The loss function [ can be defined using cross-entropy for classification and least squares for regression i}

[78179), with regard to the deep learning based £, the minimization of [ ( is solved via stochastic gradient

by thuen)
descent variants 721761,

Specifically, when cross-entropy loss is used for classification or least square loss is used for regression, the loss
constructed by I (t,th,zp) = Y1, il (t,;) can be theoretically expressed as [ (t,t},5p) =1 (¢, Y1, ait}) + ¢,
where ¢ is a constant term BYBUB21 This indicates that the multiple inaccurate target learning procedure is able to
force the mapping model f reasonably to achieve logically rational predictions for undefinable targets by learning

from the weighted summarization of multiple types of inaccurate targets.
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5.3. Summary for implementing UTTL solutions

Regarding the definition of UTTL and its principles for revealing undefinable TT, we leverage detailed

implementations of some existing works (AIN30B(32](60174] o detail the example implementations for data
preparation with expert democracy and learning from data prepared under expert democracy under the framework
of UTTL. Based on these implementations (Formula (6)-(21)), the example implementation of UTTL principle-based

practical solutions (UTTL(S)) for LDS is abstractly summarized as

( Input:d
tpg = K(d), prop(tpg) € K < prop(TT)
DP:{ty e = P({d, tpe} c =7 < {d, tpg}lK >), prop(tye) =K
tpwep = LO(tpg, tap) = {t1, -+, to}, prop(tpwep) = K
o f= arg?neigz [1(t tpwep) = Xi= a:l(f (@), £)],

5., @ = 1and prop (E = f(@)) ~ prop(twsp) = K
\ Output: & = f(d), prop() = prop(tp,ep) = K S prop(TT)

UTTL(S) (22)

Based on Formula (6)-(22), the example implementation of UTTL(S) in practice can be visually interpreted as Fig. 3.
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tar = PUd, tpplc =7 < {d, tpp}|K >) tpwep = LO(tpg, tyyp) = {t1, -, 13}
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v Output: £ = f(d)
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Data preparation with expert democracy:

Learning from data prepared under expert democracy:

Figure 3. Visual interpretation of Formula (22) for summarizing the example implementation of UTTL(S) in practice.

The implementation settings for a given task (classification or regression) can be described as follows:

1. Collect the input d (a set of instances or entities) within the given task-specific domain.
2. Data preparation (DP):
= Domain experts use their accumulated knowledge to identify the underlying TT associated to d, resulting a

corresponding set of domain-expert targets ¢},,. The resulted t},, have three formations represented by
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Formulas (12)-(14);

= ML experts use their expertise, such as logical reasoning and program building, to refine domain-expert
targets t},;, resulting a correspondingly refined set of ML-expert targets ¢}, »;

= The domain-expert targets t}, and ML-expert targets t},;» are fused by such as logical operations,

resulting a corresponding set of expert-democracy targets t},

»gp that are expected to better describing the

underlying TT associated with the input d.

3. Learning process (LP): Implementing the learning process based on the prepared data {d, t}wED} requires
specifically designed learning algorithm for f and loss function for I. For example, deep learning models can be
employed to instantiate the mapping function f, while cross-entropy loss and mean squared error can be
adopted to define the loss function [ for classification and regression tasks, respectively. By minimizing the loss

value of [ with respect the parameters of f, we get an optimized f .

3. Output the optimized f that can map the input d into the predicted TT ¢.

54. Example UTTL(S) implementations in real world applications

Regarding the summary for implementing UTTL(S), more detailed discussions on example UTTL(S) implementations
in real world applications, including helicobacter pylori segmentation ‘='=% , tumour segmentation for breast

](74]

cancer 321 and learning from multiple annotators in practice (60[74) 5re provided in Supplementary 2.

6. Discussion

While the prevailing assumption across current ML paradigms is that the TT objectively exists in the real world, an
emerging trend in both LNL and LMA under inaccurate supervision is the growing challenge to the clarity,
definability, and uniqueness of the TT. Many of these works acknowledge that the TT may not exist. However, few
studies explicitly reject the objective existence of the TT. We argue that acknowledging the possibility that the TT
may not exist does not constitute a direct rejection of its objective existence; such a rejection requires the stronger

claim that the TT does not objectively exist in the real world.

Accordingly, we adopt a more radical stance by explicitly positing that the TT does not, rather than may not,
objectively exist in the real world, thereby directly rejecting its objective existence. This non-existence assumption of
the TT implies a deliberate line of reasoning: even if a TT physically exists (e.g., in conventional SL settings), one may
still intentionally assume that it does not objectively exist for the purpose of ML-based predictive modelling. The
implications and analyses of this non-existence assumption suggest that (1) new data preparation strategies
grounded in democratic supervision, together with corresponding learning paradigms based on data prepared with
democratic supervision, should be explored; and (2) such explorations naturally lead to an expanded conceptual and

methodological scope toward LDS.
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Our previous work on uncovering inherently ambiguous TT using ML in the medical domain led us to explicitly posit
the non-existence assumption of the TT. These studies progressively demonstrated that, for tasks in which the TT is
intrinsically indefinable, assuming an objectively existing TT is fundamentally inadequate. Instead, we argue that a
more appropriate assumption is that the TT does not objectively exist in the real world. The novelty and necessity of
this non-existence assumption are further supported by insights from our systematic review of TT assumptions
across current ML paradigms, as well as by the implications and analyses derived from adopting the non-existence

assumption of the TT.

Adopting the non-existence assumption of the TT opens up new perspectives and insights for ML-based predictive
modelling. Under this assumption, experts (both domain and ML experts) and non-experts are, in principle, placed on
an equal and collaborative footing, thereby enabling democratic supervision. Consequently, the conventional learning
concepts of SL and WSL under the existence and may-not-exist assumptions can be subsumed into, and generalized

by, the broader framework of learning with LDS.

Further, grounded in the explicitly posited non-existence assumption of the TT and its implications, we propose
UTTL as an exemplar pathway toward LDS. We formally define UTTL, articulate its underlying principles for
uncovering an inherently undefinable TT, and discuss both its practical feasibility for LDS and its conceptual
distinctiveness relative to existing similar learning settings. Building on this framework, we also summarize
representative UTTL principle—based solutions drawn from existing works to demonstrate the practical value of

UTTL in enabling LDS.

In conclusion, this article philosophically examines how shifts in assumptions regarding the existence of the TT give
rise to new perspectives and insights for ML-based predictive modelling, and correspondingly derives a new ML

paradigm termed UTTL for LDS.

The current formulation of UTTL for enabling LDS still exhibits several limitations. First, the LDS setting within
UTTL is presently confined to the democracy of domain and ML experts. A natural question arises: Can the LDS
setting under UTTL be scientifically extended beyond expert democracy, for example, to non-experts; and, if so, how
should such an extension be rigorously defined and realized? This is particularly important and meaningful as state-
of-the-art Al systems increasingly influence or replace human work outputs. The philosophy of LDS provides a way
for broader human participation in AI development, ensuring that such involvement is not restricted solely to experts.
Second, although the practical value of UTTL is partially demonstrated through example UTTL principle-based
solutions that have been implemented in real world applications, the applicability boundary of UTTL in broader
practical scenarios remains insufficiently understood. Addressing these limitations will require systematic future

investigations, including theoretical generalization, methodological expansion, and more empirical studies.
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