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1. Independent researcher

Assumptions regarding the true target (TT), which is a computationally equivalent transformation of the Ground

Truth, are crucial for the formulation of diverse machine learning (ML) paradigms. In this article, drawing on a

systematic review of TT assumptions across current ML paradigms and insights from our previous work, we

explicitly posit the assumption that the TT does not objectively exist in the real world. We investigate the

implications of this non-existence assumption of TT and analyse how it may redefine our understanding of

designing ML paradigms. These implications and analyses lead us to propose the undefinable true target learning

(UTTL) framework as a pathway towards learning with democratic supervision (LDS). We establish the definition

of UTTL, illustrate its principles for revealing the undefinable TT, and discuss its practicability for LDS and its

uniqueness compared with existing similar learning settings. Based on these, we summarize example UTTL

principle-based solutions regarding existing works to show the practical value of UTTL in enabling LDS. In

summary, this article philosophically examines how shifts in assumptions regarding the existence of the TT give

rise to new perspectives and insights for ML-based predictive modelling, and correspondingly derives a new ML

paradigm termed UTTL for enabling LDS.

Corresponding author: Yongquan Yang, remy_yang@foxmail.com

1. Introduction

The True Target (TT) is a computationally equivalent transformation of the Ground Truth and serves as a

fundamental concept in the formulation and deployment of machine learning (ML). Assumptions regarding the TT

are therefore crucial, as they implicitly define what is being learned, how supervision is interpreted, and how models

are expected to approximate and generalize the underlying reality. (In this article, the term TT is used instead of

Ground Truth to facilitate practical discussion. The transformation from Ground Truth to a computational TT and its

reverse are both essential in practice. Semantically, the two are equivalent.)

Despite their central role, TT assumptions are often taken for granted in mainstream ML paradigms, where the

objective existence of a well-defined TT is treated as a default premise. However, growing evidence from noisy-label

learning and multiple-annotator settings suggests that, in many real-world tasks, the TT may be ambiguous,
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subjective, or even inherently undefinable  [1][2][3][4][5][6][7]. These observations expose a tension between the

traditional existence assumption of TT and the practical realities of data acquisition and annotation. This tension

motivates a deeper philosophical examination of TT assumptions and their implications for ML paradigm design.

Unsupervised learning [8][9][10], supervised learning (SL) [11][12][13], weakly supervised learning (WSL) [14][15][16][17], and

reinforcement learning (RL) [18][19][20][21] collectively constitute the four foundational paradigms of modern ML. We

systematically examine the TT assumptions embedded in the four major ML paradigms, which can be summarized as

follows:

In unsupervised learning, the concept of TT is generally inapplicable [8][9][10];

In SL, it is typically assumed that the TT objectively exists in the real world [11][12][13];

In WSL, the prevailing mainstream assumption remains that the TT objectively exists, even though it may be

partially missing, coarsely represented, or inaccurately observed in the available annotations  [1][3][4][5][6][7][14][15]

[16][17][22][23][24][25][26][27][28][29];

In two prevalent sub-paradigms of inaccurate supervision (a typical type of WSL), including learning from noisy

labels (LNL)  [6][7]  and learning from multiple annotators (LMA)  [1][2][3][4][5], there is an emerging skepticism

toward the clarity, definability, or uniqueness of an objective TT and this shift is particularly evident in LMA [30][31]

[32][33][34][35][36][37][38][39][40][41][42][43][44][45]; and

For RL, the TT assumptions largely align with those of unsupervised learning, SL, and WSL.

Further elaboration and comparative analysis of TT assumptions across current ML paradigms are provided in the

systematic review in Section 2.

While the mainstream TT assumption across current ML paradigms is that the TT objectively exists in the real world,

the two prevalent sub-paradigms of LNL and LMA in inaccurate supervision are more likely to raise questions about

the appropriateness of this existence assumption. A clear emerging trend in both LNL and LMA is that a substantial

body of work increasingly challenges the clarity, definability, and uniqueness of TT [1][2][3][4][5][6][7][30][31][32][33][34][35]

[36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54]. Although the scepticism expressed in these studies

typically manifests as the acknowledgment that the TT may not exist, few works explicitly reject the objective

existence of the TT, regardless of its clarity, definability, or uniqueness. With respect to the objective existence of a TT,

we argue that claiming/acknowledging the TT may not exist does not amount to a direct rejection of its objective

existence. A true rejection requires the stronger claim/acknowledgement that the TT does not objectively exist in the

real world.

Accordingly, we adopt a more radical stance by explicitly positing the assumption that the TT does not, rather than

may not, objectively exist in the real world, thereby directly rejecting the objective existence of TT. Here, the phrase “a

more radical stance” indicates a possible line of reasoning: even if a TT physically exists (e.g., in conventional SL

settings), one can still deliberately assume that it does not objectively exist in the real world. In this case, the non-
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existence assumption of TT can be understood as a situation, in which a practitioner lacks any prior specification or

understanding of what the TT is while exploring ML-based predictive modelling. Adopting such a stance of the non-

existence assumption of TT may open up new perspectives and insights. For example, from the first principles, it

reframes the question of how the ML-based predictive modelling should proceed when the practitioner initially has

no knowledge of the TT.

From first principles, we conduct comparison of shifts between the non-existence and existence assumptions of TT.

We elucidate the implications of the non-existence assumption of TT and analyse how it may redefine our

understanding of designing ML paradigms. Under the traditional existence assumption of TT, data prepared solely by

domain experts dominate the supervision, leaving ML experts with limited influence and excluding the non-experts

(a situation we regard as undemocratic supervision). In contrast, under the non-existence assumption of TT, experts

(domain experts and ML experts) and non-experts can equally and collaboratively contribute to data preparation,

forming a more balanced and participatory (democratic) supervision. The existence assumption can thus be viewed as

a special case of the non-existence assumption. The non-existence perspective offers a broader conceptual space and

more flexibility for developing ML paradigms for predictive modelling. These suggest that new data preparation

strategies grounded in expert democracy and new learning paradigms with democratic supervision should be both

explored. Together, the two explorations lead to an expanded scope towards learning with democratic supervision

(LDS). The term ‘democratic supervision’ was previously discussed in education  [55][56][57][58]  or professional

development [59]. Here, we introduce this term into ML, under the non-existence assumption of TT, for the purpose of

ML-based predictive modelling. More details are provided in Section 3.

The explicitly posited non-existence assumption of TT originates from our previous works on uncovering inherently

ambiguous TT through ML in the medical field [30][31][32][60]. While carrying out these studies, we gradually realized

that assuming the objective existence of TT was fundamentally inadequate for tasks characterized by the intrinsic

indefinability of TT. A more appropriate assumption, we found, is that TT does not objectively exist in the real world.

These works thus served as the conceptual foundation that eventually led us to recognize the central importance of

the assumption concerning the existence of TT. Furthermore, insights obtained from our systematic review of TT

assumptions across current ML paradigms, together with the implications and analyses derived from the non-

existence assumption of TT, confirm both the novelty and necessity of this assumption.

Table 1 summarizes how shifts in assumptions concerning the existence of the TT give rise to different perspectives

and insights for supervision democracy and learning concepts regarding ML-based predictive modelling. From a

philosophical standpoint, the explicitly posited non-existence assumption of the TT is fundamentally distinct from

both the default existence assumption and the sceptical may-not-exist assumption. Under the non-existence

assumption, experts (domain and ML experts) and non-experts are placed on an equal and collaborative footing in

principle, thereby supporting democratic supervision. In contrast, both the existence assumption and the may-not-

exist assumption maintain a hierarchical supervision structure in which domain experts dominate, ML experts play a
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supporting role, and non-experts are excluded, resulting in undemocratic supervision. Most importantly, under the

non-existence assumption of the TT, the resulting perspectives and insights imply that the conventional learning

concepts of SL and WSL can be subsumed and expanded into the broader framework of LDS.

Abbreviation of

TT assumption

Interpretation

regarding

existence of TT

Implied perspectives and insights
Supervision

democracy

Learning

concept

Existence

assumption of

TT

TT objectively

exists in the real

world

Domain experts lead the supervision process, while

ML experts play a supporting role;

Non-experts are excluded

Undemocratic

supervision

SL with perfect

supervision;

WSL with

imperfect

supervision

May-not-exist

assumption of

TT

TT may not

objectively exist in

the real world

Non-existence

assumption of

TT

TT does not

objectively exist in

the real world

Even if a TT physically exists (e.g., in conventional

SL settings), one can still deliberately adopt this

assumption; Experts (domain and ML experts) and

non-experts can equally and collaboratively lead the

supervision process;

Democratic

supervision
LDS

Table 1. Shifts in assumptions on TT existence and their implied different perspectives and insights for supervision

democracy and learning concepts

Further, grounded in the explicitly posited non-existence assumption of TT and its implications, we propose

undefinable true target learning (UTTL), which exemplifies a pathway towards LDS. We establish the definition of

UTTL, illustrate its principles for revealing the undefinable TT, and discuss its practicability for LDS and its

uniqueness compared with existing similar learning settings. Based on these, we also summarize example UTTL

principle-based solutions regarding existing works to show the practical value of UTTL in realizing LDS. More details

are provided in Sections 4 and 5.

To the best of our knowledge, this article is the first to explicitly posit the philosophical assumption that the TT does

not objectively exist in the real world and to correspondingly propose a new ML paradigm termed UTTL as a pathway

towards LDS. The primary contributions of this article are twofold: (1) it philosophically examines how shifts in the

assumptions regarding the existence of the TT give rise to new perspectives and insights for ML-based predictive

modelling; and (2) it proposes a new ML paradigm termed UTTL for enabling LDS, grounded in the explicitly posited

non-existence assumption of TT and its implications. The detailed contributions are summarized as follows:
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Presenting a systematic review of TT assumptions cross current ML paradigms;

Explicitly positing the non-existence assumption of TT, investigating its implications, and analysing how it may

redefine our understanding of designing ML paradigms;

Proposing the UTTL framework to exemplify a pathway towards LDS;

Summarizing example UTTL principle-based solutions regarding existing works to show the practical value of

UTTL in realizing LDS;

The remainder of this article is organized as follows. Section 2 provides a systematic review of the fundamental TT

assumptions underlying current ML paradigms. Section 3 compares the non-existence and existence assumptions of

TT and elucidates the implications of assuming that the TT does not objectively exist in the real world, particularly for

LDS. Sections 4 and 5 introduce the UTTL framework and summarize example practical solutions derived from UTTL

principles, respectively. Finally, Section 6 discusses the whole article.

2. Systematic Review of Fundamental TT Assumptions Underlying Current

ML Paradigms

In this section, we firstly categorize current ML paradigms and discuss their relations. Then, regarding the

categorization of ML paradigms, we comprehensively review the fundamental TT assumptions under respective ML

paradigms and related prevalent mainstream subtype paradigms. Finally, summarize the mainstream TT

assumptions and trends underlying current ML paradigms.

2.1. Categorization of current ML paradigms and their relations

Depending on the availability of supervision information, the paradigms in current ML research can be broadly

classified into unsupervised learning and learning with supervision. Unsupervised learning operates on data

prepared without the use of TT (Ground Truth) labels [8][9][10]. Learning with supervision can be further divided into

supervised learning (SL) and weakly supervised learning (WSL), regarding the perfection or imperfection of the TT

labels in the training data.

SL is founded on data with complete, exact, and accurate (i.e., perfect) TT labels [11][12][13], whereas WSL is based on

data containing incomplete, inexact, or inaccurate (i.e., imperfect) TT labels  [14][15][16][17]. Both SL and WSL can be

further subdivided into narrower categories. For instance, SL can be categorized into precisely supervised learning,

moderately supervised learning, and hybrid forms that combine both  [13], reflecting different computational

transformations of the TT derived from Ground Truth labels. WSL encompasses learning with incomplete

supervision, inexact supervision, inaccurate supervision, and their cross-scenario  [16], corresponding to distinct

forms of imperfection in the provided Ground Truth labels.

qeios.com doi.org/10.32388/KBK3P8.5 5

https://www.qeios.com/
https://doi.org/10.32388/KBK3P8.5


Another popular type of ML paradigm is reinforcement learning (RL)  [18][19][20][21]. RL is a learning framework in

which an intelligent agent interacts with an environment and autonomously learns an optimal behaviour policy based

on reward signals. Rather than relying on explicit supervision, RL learns through trial and error and feedback to

maximize long-term returns.

Unsupervised learning, SL, WSL, and RL together constitute the four fundamental paradigms of modern ML. They

form a series in terms of how learning signals are obtained and how strongly supervision is imposed. Unsupervised

learning derives knowledge solely from the intrinsic structure and distribution of data, without relying on external

TT labels. SL depends on complete, exact and accurate TT labels to directly learn the mapping between inputs and

outputs. WSL bridges the gap between the two by leveraging incomplete, inexact, or noisy supervision to approximate

the true supervision signal. RL, in contrast, learns through interaction with the environment, optimizing behavior

based on reward feedback rather than explicit supervision. Details for the categorization of current ML paradigms are

summarized in Table 2.

These four paradigms are complementary rather than isolated. Unsupervised learning supports SL and WSL

paradigms by providing structural priors, robust representations, and auxiliary pseudo-supervision derived from

unlabelled data  [61][62][63][64][65]. SL offers WSL with pretrained models, reliable loss functions, and well-established

optimization strategies that serve as priors or initialization for learning from imperfect supervision  [7][16][49]. RL

integrates unsupervised learning, SL, and WSL for decision-making and policy optimization in dynamic

environments, forming a coherent and interdependent learning  [19][20][66][67][68][69]. The relations of the four

paradigms are shown in Fig. 1.
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ML Paradigm Data Basis and Remarks

Unsupervised learning Data without the use of TT (Ground Truth) labels [8][9][10]

Learning with

supervision

Perfect supervision:

supervised learning

(SL)

Precisely

supervised

learning

Data with complete, exact, and accurate (i.e., perfect) TT labels [11]

[12][13]; Narrower categorizations reflecting different

computational transformations of the TT derived from Ground

Truth labels

Moderately

supervised

learning

Hybrid forms

that combine

both

Imperfect supervision:

weakly supervised

learning (WSL)

Incomplete

supervision

Data containing incomplete, inexact, inaccurate, or their cross-

scenario (i.e., imperfect) TT labels [14][15][16][17]; Narrower

categorizations corresponding to distinct forms of TT

imperfection in the provided Ground Truth labels.

Inexact

supervision

Inaccurate

supervision

Cross-scenario

Reinforcement learning
Learning through trial and error and feedback to maximize long-

term returns, without relying on explicit supervision [18][19][20][21]

Table 2. Categorization of ML paradigms
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Figure 1. Relations of unsupervised learning, SL, WSL and RL.

2.2. Unsupervised learning

In unsupervised learning, the concept of TT generally does not apply. The learning process does not rely on labelled

data or predefined target values. Instead, the goal is to uncover latent structures, patterns, or representations from the

data itself. Ground truth may only be introduced post hoc for evaluation purposes (e.g., when comparing discovered

clusters with known categories), but it is not inherent to the learning process [8][9][10].

2.3. Supervised learning

In supervised learning (SL), it is assumed that a true mapping exists between inputs   and their corresponding target

outputs  . The mapping is often referred to as the TT function  . Training data are viewed as observations of this

underlying function. The goal of learning is to approximate   as closely as possible. This situation implies that every

input has a well-defined and correct TT, even though in practice these labels may be imperfect due to annotation

errors, ambiguity, or measurement noise [11][12][13].

SL has been further categorized into narrower subtypes based on the complexity involved in transforming the

prepared Ground True labels into learnable true targets, including precisely supervised learning, moderately

supervised learning, and hybrid forms that combine both [13]. Although the formulations of the TT in these subtypes

may differ, they share a common underlying assumption that the TT in the prepared data is complete, exact, and

accurate. That is, the TT objectively exists in the real world.

x

y f(x)

f
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2.4. Weakly supervised learning

The classic classification of weakly supervised learning (WSL) is the categories proposed by Zhi-Hua Zhou in "A brief

introduction to weakly supervised learning" [16]: incomplete supervision, inexact supervision, inaccurate supervision,

and their cross-scenario. In this subsection, we summarize how the labels in these cases are "weak" and what

mainstream assumptions are made about the TT, primarily based on recent highly cited survey works [1][3][4][5][6][7]

[14][15][16][17][22][23][24][25][26][27][28][29].

2.4.1. Incomplete supervision

Incomplete supervision refers to learning scenarios in which only a subset of training instances is labelled, while the

remaining instances remain unlabelled  [16][17]. Typical forms of incomplete supervision include: semi-supervised

learning  [22][23]  , where only a subset of training samples are labelled and the remaining are unlabelled; positive-

unlabelled learning  [24][25], where only positive examples are labelled while all others remain unlabelled and

potentially contain both positive and negative instances; and active learning  [26][27], where the learner iteratively

selects a small subset of unlabelled samples to be labelled by an oracle in order to minimize labelling cost while

maximizing learning efficiency.

Under this paradigm, several assumptions about the TT are stated. For example, Zhou  [16]  pointed out that the TT

labels are assumed to exist for all samples, even if not all are annotated. Similarly, Ren et al [17] treated labelled data as

TT and considers unlabelled data as merely missing annotations. Zhang et al  [15]  further discussed cases where

annotated data may contain noise, yet still relies on the assumption that true labels exist for all samples, with only

partial observation in the incomplete supervision setting.

2.4.2. Inexact supervision

Inexact supervision refers to learning settings where labels are available but are coarse-grained or imprecise [16][17].

Typical examples include: image segmentation tasks, in which only image-level labels are provided rather than pixel-

or object-level annotations  [28][29]; multi-instance learning (MIL) scenarios, where only bag-level labels are given

without specifying which individual instances are responsible for the label  [70][71][72]; or situations in which class

categories are defined at an insufficient level of granularity.

Under this paradigm, several assumptions about the TT are reflected. Zhou [16] defined inexact supervision as cases in

which “only coarse-grained label information is available,” assuming the existence of unobserved fine-grained TT.

Similarly, Yue et al.  [14]  described remote sensing tasks where only image-level annotations are available, implicitly

assuming the existence of pixel-level TT. In the literature on MIL, it is generally assumed that certain instances

within each bag genuinely possess the class property, even though only the overall bag label is provided  [16]. Thus,

again implies the existence of fine-grained TT that remains unobserved.
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2.4.3. Inaccurate supervision

Inaccurate supervision refers to learning scenarios in which the provided labels are not always correct and may

deviate from the TT due to labeling noise, human errors, or systematic biases  [16][17]. Typical forms of inaccurate

supervision include: learning from noisy labels [6][7], where some of the provided labels are incorrect due to human or

systematic annotation errors; and learning from multiple annotators (crowdsourcing)  [1][2][3][4][5], where labels are

collected from a group of annotators with varying expertise and reliability, leading to inconsistent or biased

annotations.

Under this paradigm, several assumptions about the TT are presented. Zhou  [16]  noted that, under inaccurate

supervision, “the given labels are not always the ground truth” ， which reflects the existence of TT. Zhang et

al. [15] posited that a small portion of labels may be noisy but assumed that the TT exists and can be recovered with

the aid of unlabeled data and structured noise models. Similarly, Ren et al.  [17]  treated inaccurate supervision as a

setting where the provided labels may be erroneous, yet the TT labels are still regarded as existing and serve as the

conceptual reference point for model learning.

2.4.4. Cross-scenario expansion

The three types of weak supervision can simultaneously appear in cross-scenario settings. For example, Zhang et

al.  [15]  proposed a unified framework for addressing learning challenges where data are only partially labelled or

contain annotation errors. Yue et al.  [14]  jointly discussed how the three forms of weak supervision (incomplete,

inexact, and inaccurate) can facilitate optical remote sensing image understanding tasks such as classification,

segmentation, change detection, and object detection. The former reflects the assumption that the TT exists but that

some labels are missing or incorrect. The latter assumes that TT exists at all sample, pixel, or object levels, and that in

practice, some annotations are missing, some are coarse-grained, and some are erroneous.

2.4.5. Mainstream TT assumption observed in WSL

The TT assumptions underlying the three primary forms of weak supervision, along with their cross-scenario

extensions, are summarized in Table 3. Collectively, these summaries reveal a prevailing mainstream TT assumption

in WSL: that the TT objectively exists in the real world, even though it may be partially missing, coarsely represented,

or inaccurately observed in the available annotations.
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WSL Category Representative tasks / paradigms TT Assumptions

Incomplete

supervision

Semi-supervised learning [22][23]

Each sample possesses a unique TT label, although some samples

remain unlabelled [15][16][17]
Positive-unlabelled learning [24][25]

Active learning [26][27]

Inexact

supervision

Image-level supervised semantic

segmentation [28][29]

Finer-grained (e.g., instance-level or pixel-level) TT labels exist, but the

available annotations are aggregated or masked into coarse-grained

labels [14][16]
Multi-instance learning [1][3][4][5]

Inaccurate

supervision

Learning with noisy labels [6][7]

Each sample has a unique TT label, but the observed label may deviate

from it due to noise or annotation errors [15][16][17]
Learning from multiple annotators

(crowdsourcing) [1][3][4][5]

Cross-scenario
Learning with multiple types of

weak labels [14][15]

TT label exists universally, but its observations in data are incomplete,

coarse-grained, or corrupted [14][15]

Table 3. Taxonomy of WSL and its summarized TT assumptions

2.5. Two prevalent paradigms of inaccurate supervision

Inaccurate supervision is particularly challenging to the assumption that the TT objectively exists in the real world,

since the available labels are either corrupted by noise or generated by multiple, potentially inconsistent annotators.

Learning from noisy labels (LNL)  [6][7]  and learning from multiple annotators (LMA)  [1][2][3][4][5]  represent two

prevalent paradigms of inaccurate supervision in WSL. Both cases can potentially raise questions about the

appropriateness of the TT existence assumption. Therefore, in this subsection, we conduct a relatively comprehensive

survey of the TT assumptions underlying these two forms of inaccurate supervision. This survey helps to reveal

potential alternative assumptions that may deviate from the mainstream premise under WSL that the TT objectively

exists in the real world.

2.5.1. Learning from noisy labels

In the early literature on LNL, researchers generally assumed that the TT objectively exists. For instance, Angluin and

Laird [54] directly modelled the observed labels as outcomes of independent noise flips applied to true labels. In this

case, the annotator (or teacher) independently flips each label with a certain probability (the random classification

noise model). Natarajan et al. [6] introduced an unbiased loss estimator based on noise-rate correction. The validity of

correction relies on a noise model assuming the existence of a single true label and class-conditional flip. That is,
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observed labels are corrupted by class-conditional random noise (where the flip probability depends on the class), and

the noise rate is either known or estimable. Patrini et al. [53] further proposed forward and backward loss correction

using an estimated noise transition matrix. Both their theoretical analysis and empirical studies are built upon the

assumption that a true label distribution exists but is distorted by class-dependent noise, which can be represented by

a transition matrix.

In subsequent works, researchers began to adopt more implicit assumptions about the existence of TT. Reed et

al.  [48]  posited the existence of a “true signal” learnable by the model. The corrected noisy labels through self-

consistency between model predictions and observed labels (i.e., soft labels or bootstrapping). Han et al. [49] assumed

that a subset of “clean samples” exists and that deep networks first fit these clean samples due to the memorization

effect. They proposed a co-teaching method to train two networks that mutually select small-loss samples to focus on

clean data. Song et al. [7] provided a systematic taxonomy of noise-robust learning approaches (e.g., loss correction,

sample selection, robust loss). They analysed which methods explicitly rely on true labels or noise matrices and which

can operate under weaker assumptions.

More recently, a number of studies have begun to explicitly question the clarity, definability and uniqueness of TT

under noisy-label settings. Frénay and Verleysen  [45]  summarized and categorized various noise models—such as

random class-dependent noise, class-conditional noise, and instance and class-dependent noise models. They

pointed out that, for subjective tasks, objective ground truths may be ambiguous. Plank [44] and Yang et al. [30][31][32]

[33][34]  further challenged the notion of a well-defined ground truth. These works suggested that label uncertainty

may be an inherent property of certain tasks. Zhang et al.  [43]  took a different approach by aligning instances with

their noisy labels rather than correcting them. They treated the noisy labels as the targets to be aligned with.

Conceptually, such approaches weaken the traditional assumption that a single, objective ground truth must exist.

2.5.2. Learning from multiple annotators

In the early literature on LMA, researchers typically assumed the existence of a consensual or latent TT. For instance,

Dawid and Skene [51] modelled each instance’s true label as a hidden latent variable. In this case, the observed noisy

annotations were generated through individual annotators’ confusion matrices (i.e., error rates). Their Expectation–

Maximization (EM) framework jointly estimated the annotators’ reliability parameters and the latent true labels.

Raykar et al.  [2]  explicitly treated the “true label” as a latent variable. They proposed a model that simultaneously

learns both a classifier and annotator reliability (accuracy/bias). Their objective was to recover a single hidden truth in

the absence of any gold standard. Whitehill et al. [52] also assumed a single “correct answer” and proposed an ability-

weighted label aggregation model. In this case, annotators’ votes were weighted according to their inferred

competence to approximate the true label. Welinder et al.  [50]  further extended this framework by incorporating

image features and multi-dimensional annotator ability/bias factors, but the core assumption remained the

estimation of a single latent ground truth per instance. Sheng et al.  [73]  investigated whether and how repeated
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labelling improves annotation quality. This case is still under the premise that aggregation strategies (e.g., majority

voting) aim to approximate an underlying ground truth.

Subsequent studies introduced the notion of variable truth. Yan et al.  [47]  argued that annotator expertise might

depend on the instance itself (expertise conditional on instance). They emphasized that although a single ground

truth is still commonly estimated, annotator reliability may vary across samples. This led to the view of a “single truth

with instance–annotator interaction noise.” Nguyen et al. [46] extended latent-truth modelling to sequential labelling

tasks. They introduced more structured latent variables (e.g., token-level true labels) that capture dependencies

among labels within sequences.

More recent works have begun to explicitly question the clarity, definability, and uniqueness of TT in multiple-

annotator settings. For example, Mokhberian et al., Li et al., and Ibrahim et al. [37][38][39] discussed the ambiguity of

TT. They advocated modelling instance-dependent annotation noise or learning annotator-specific embeddings to

preserve opinion diversity. Yang et al., Wang et al., and Zhang et al. [30][31][32][33][34][35][36] questioned the definability

of TT. They argued that when experts disagree, models should not blindly construct a gold standard but instead learn

representations aligned with annotator consensus or preserve probabilistic and multi-perspective label structures.

Snow et al., Subramanian et al., and Srinivasan and Chander [40][41][42] challenged the uniqueness of TT. They noted

that for inherently subjective or ambiguous tasks, a single gold label may not be appropriate. They emphasized that in

subjective domains, such as affect recognition, aesthetics, readability, or perceived relevance, the “single truth”

assumption may fail. They also underlined that modelling label distributions, multiple viewpoints, or population

subgroups is more appropriate than forcing consensus as a proxy for truth.

2.5.3. Emerging trend of TT assumption observed in inaccurate supervision

Regarding representative timeline works, the TT assumptions underlying the two prevalent paradigms LNL and LMA

within inaccurate supervision are summarized in Table 4. As observed from Table 4, both paradigms exhibit a clear

evolutionary trajectory: early studies typically assumed the arbitrary existence of TT; intermediate works gradually

relaxed this assumption; and recent research has increasingly questioned the clarity, definability, and uniqueness of

TT. This progression indicates an emerging trend in which researchers are beginning to challenge the very existence

of TT itself. Notably, this shift appears to be more radical in the LMA paradigm.
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Prevalent Paradigm of

Inaccurate Supervision
Representative Timeline Works TT Assumptions

Learning from noisy labels

(LNL)

Early-stage studies: foundational works [6][53][54] Assuming that the TT objectively exists.

Intermediate developments: expansion and

methodological refinement [7][48][49]

Adopting more implicit assumptions about

the existence of TT

Recent advances: emerging trends and paradigm

shifts [30][31][32][33][34][43][44][45]

Questioning the clarity, definability or

uniqueness of TT under noisy-label settings

Learning from multiple

annotators (LMA)

Early-stage studies: foundational works [2][50][51]

[52]

Assuming the existence of a consensual or

latent TT

Intermediate developments: expansion and

methodological refinement [46][47]
Introducing the notion of variable truth

Recent advances: emerging trends and paradigm

shifts [30][31][32][33][34][35][36][37][38][39][40][41][42]

Questioning the clarity, definability, or

uniqueness of TT in multiple-annotator

settings

Table 4. Taxonomy of WSL and corresponding TT assumptions

2.6. Reinforcement learning

In reinforcement learning (RL), the reward signal serves as the core driving force. The efficient implementation of RL

often relies on the representations, priors, and auxiliary signals provided by unsupervised learning, SL, and WSL.

Specifically, unsupervised learning contributes to effective exploration and state representation through

representation learning and intrinsic motivation mechanisms. It is helpful especially when external rewards are

sparse, thereby improving generalization and sample efficiency [67][68]. SL can provide policy priors or reward models

through expert demonstrations or human feedback, substantially accelerating policy optimization [19][69]. In addition,

weakly supervised learning supports reward modelling and policy evaluation in cases where reward signals are sparse

or noisy. It helps to construct approximate supervision signals derived from human preferences, partial annotations,

or proxy feedback  [20][66]. Together, these learning paradigms reinforce the learnability and stability of the RL

framework at different levels. Therefore, the assumptions regarding the TT are not specifically discussed for the RL

paradigm in this section, as they can be referred to those already discussed for the other ML paradigms.
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2.7. Summary

The assumptions of TT across current ML paradigms can be summarized as follows (as shown in Table 5). In

unsupervised learning, the concept of TT is generally inapplicable. In SL, it is typically assumed that the TT

objectively exists in the real world. In WSL, the prevailing mainstream assumption remains that the TT objectively

exists, even though it may be partially missing, coarsely represented, or inaccurately observed in the available

annotations. Notably, in two prevalent paradigms of inaccurate supervision (LNL and LMA), an emerging trend has

been the growing scepticism toward the clarity, definability, and uniqueness of TT, indicating the possibility that the

TT may not exist in the real world. This shift is particularly pronounced in LMA, where the assumption of an objective

TT is increasingly being challenged. For RL, the TT assumptions are largely aligned with those in unsupervised

learning, SL, and WSL.
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ML Paradigm TT assumptions

Unsupervised learning None: the concept of TT generally does not apply (Section 2.2)

Supervised learning

(SL)

Precisely

supervised

learning

The TT objectively exists in the real world (Section 2.3)
Moderately

supervised

learning

Hybrid forms that

combine both

Weakly supervised

learning (WSL)

Incomplete

supervision

A prevailing mainstream TT assumption is observed in WSL-related surveys: the

TT objectively exists in the real world, even though it may be partially missing,

coarsely represented, or inaccurately observed in the available annotations

(Section 2.4)

Inexact

supervision

Inaccurate

supervision

Cross-scenario

Two prevalent

paradigms in

inaccurate

supervision

Learning from

noisy labels (LNL)
Emerging trend of TT assumption is observed in more recent works in LNL and

LMA: researchers are beginning to question the clarity, definability, and

uniqueness of TT in both noisy-label and multiple-annotator settings; and the

shift in LMA appears to be more radical (Section 2.5)

Learning from

multiple

annotators (LMA)

Reinforcement learning Not specifically discussed, can be referred to the above assumptions (Section 2.6)

Table 5. Summarization of TT assumptions in current ML paradigms.

While the mainstream TT assumption across current ML paradigms is that the TT objectively exists in the real world,

the observed scepticism regarding the existence of an objective TT in current ML paradigms is limited to the

possibility that it may not exist. In this article, regardless of the level of clarity, definability, or uniqueness of TT, we

take a more radical stance by explicitly positing that TT does not objectively exist in the real world.
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3. Implications of the Assumption that TT Does Not Exist in the Real World

In this section, from first principles, we conduct comparison between the non-existence and existence assumptions

of TT to reveal the implications of the assumption that TT does not exist in the real world towards learning with

democratic supervision (LDS).

3.1. Comparison between the Non-Existence and Existence Assumptions of TT

Let us first consider the existence assumption of TT, where TT is assumed to objectively exist in the real world. Under

this assumption, the typical processes of designing ML paradigms proceed as follows:

1. Data preparation: domain experts prepare datasets under expert supervision, as TT is presumed to exist and

experts are regarded as professional and trustworthy identifiers of it;

2. Paradigm design: based on such supervised data, ML experts develop appropriate paradigms to transform the

data into predictive models;

3. Paradigm establishment: depending on the degree of supervision perfection, paradigms such as SL with perfect

supervision and WSL with imperfect supervision are typically adopted.

Now, let us consider the non-existence assumption of TT, where TT is assumed not to objectively exist in the real

world. A natural question arises: how would one design an ML paradigm for predictive modelling under the non-

existence assumption of the TT, even if the TT physically exists? Addressing this question requires resolving several

fundamental issues, including: (i) how supervision data should be prepared for learning a predictive model intended

to approximate or uncover a currently non-objective TT; (ii) whether individuals beyond domain experts can

legitimately participate in the data preparation process when the TT does not objectively exist; (iii) if so, how and

under what conditions their contributions should be incorporated; and (iv) how learning should be conducted using

data prepared under the non-existence assumption of the TT. Thus, based on these perspectives and insights, the

processes of designing ML paradigms under the non-existence assumption of TT can change as follows:

1. Collaborative data conceptualization: experts (domain experts and ML experts) and non-experts can be placed

on an equal footing to jointly rethink how data should be conceptualized and prepared for capturing the

properties of the underlying reality, as TT does not objectively exist and domain experts are no longer the sole

authority for identifying it;

2. Democratic data preparation: data are constructed through democratic supervision, with both experts (domain

and ML experts) and non-experts equally participating in the supervision process;

3. Paradigm rethinking: given this data prepared under democratic supervision, it becomes necessary to

reconsider what forms of ML paradigms can be designed to effectively learn from such data to reveal the

underlying reality;

The comparison between the non-existence and existence assumptions of TT is summarized in Fig. 2.
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Under the existence assumption of TT, the data prepared under domain-expert supervision plays a decisive role, as

the ML paradigms subsequently designed by ML experts to transform the underlying reality into predictive models

are largely determined by the perfection of the expert-prepared data. This situation reflects a structural imbalance:

ML experts seldom participate in data preparation. We regard this as undemocratic, since the experiential knowledge

of ML experts, particularly their understanding of what kinds of data effectively capture the underlying reality for

model learning, is often neglected. Moreover, the non-experts are completely excluded in the supervision process.

Under the non-existence assumption of TT, the prepared data still retains its decisive role. However, the crucial

difference is that it embodies democratic supervision, where both domain experts and ML experts collaboratively

(democratically) contribute their insights to more effectively capture and represent the underlying reality. Moreover,

even if a TT physically exists, we can still proceed the ML-based predictive modelling following the processes under

the non-existence assumption of TT. This case indicates that non-experts can also be included in the supervision

process.

Figure 2. Summarization for comparison between the non-existence and existence assumptions of TT

Thus, as shown in Fig. 2, when the non-existence assumption of TT is gradually tightened, it naturally degenerates

into the existence assumption; conversely, when the existence assumption is gradually relaxed, it evolves toward the

non-existence assumption. In this sense, the existence assumption can be viewed as a special case of the non-

existence assumption. This offers a broader conceptual space and more flexibility for inventing ML paradigms that

aim to transform the underlying reality into predictive models by LDS.
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3.2. Suggesting new data preparation strategies regarding democratic supervision

The non-existence assumption of TT suggests that new data preparation strategies should be explored regarding

democratic supervision, to which both domain and ML experts or even non-experts can collaboratively contribute.

Under the existence assumption of TT, the labelling rules are mostly designed by the domain expert annotators,

neglecting ML experts’ insights and completely excluding non-experts. In this situation, performing the data

preparation will be intense, as the labelling rules should be strictly followed to effectively capture the underlying

reality. However, under the non-existence assumption of TT, the labelling rules can be relaxed to that each one of the

domain and ML expert annotators is focusing on capture a single or a few properties for describing the underlying

reality. In this situation, performing the data will be relaxed, as the labelling rules should be democratically discussed,

in which we are able to even consider employing non-experts to help capturing the underlying reality. Thus, new data

preparation strategies are needed regarding expert democracy.

3.3. Suggesting new learning paradigm regarding data prepared under democratic supervision

The non-existence assumption of TT also suggests that new learning paradigms should be explored regarding the

data prepared with democratic supervision. Under the existence assumption of TT, the learning paradigms are mostly

designed to predict the TT from the data prepared by domain expert annotators. In this situation, usually a clearly

single TT is expected to be predicted by learning from the domain expert prepared data, which possibly contain

incomplete, inexact or inaccurate supervision information. However, under the non-existence assumption of TT, the

learning paradigms can be relaxed to that the predictive model learnt from the data prepared with democratic

supervision does not necessarily output a clear TT but a prediction that possess the observed key properties of the

underlying reality. Thus, new learning paradigms are needed regarding data prepared with expert democracy.

3.4. Expanding research scope towards LDS

Together, the suggested necessities for new data preparation strategies regarding democratic supervision and new

learning paradigms regarding data prepared with democratic supervision eventually enlarge the research scope of the

conventional learning with perfect or imperfect supervision, as the existence assumption of TT is a special case of the

non-existence assumption of TT. Thus, the non-existence assumption of TT expands the research scope towards LDS.

3.5. Summary

In summary, the existence assumption of TT can be viewed as a special case of the non-existence assumption of TT,

which implies that new data preparation strategies should be explored regarding democratic supervision and new

learning paradigms should be explored regarding the data prepared with democratic supervision. Together, these two

new requirements under the non-existence assumption of TT imply an expanded research scope of current learning

with perfect or imperfect supervision towards LDS.
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It should be noted that, within the UTTL framework, democratic supervision is limited to experts (i.e., domain

experts and ML experts), and non-expert participants are intentionally excluded to maintain a simplified democratic

supervision setting.

4. Undefinable True Target Learning

Grounded in the assumption that TT does not exist in the real world and its implications, this section introduces the

conceptual framework of undefinable true target learning (UTTL). UTTL reinterprets data preparation and model

learning processes under the premise that the TT does not objectively exist in the real world. It serves as a

representative paradigm within the broader research scope of learning with democratic supervision (LDS). In the

following subsections, we formally define UTTL, reveal its principles for uncovering undefinable TT, and discuss its

practicability for LDS and its uniqueness compared with the LMA setting. In UTTL, the democratic supervision is

limited to expert (i.e., domain expert and ML expert) democracy, excluding the non-experts to simplify the

democratic supervision setting.

4.1. Definition for methodology of UTTL

Let us consider a situation where the TT of a domain learning task is inherently undefinable. In practice, this poses a

fundamental challenge: how should we prepare data and design learning paradigms for predictive modelling when

the TT cannot be objectively defined? We present the UTTL paradigm for alleviating this challenge. Grounded in the

implications of the non-existence assumption of TT, which calls for new data preparation strategies based on expert

democracy and new learning paradigms built upon such data, the UTTL paradigm is decomposed into two key

components: 1) data preparation with expert democracy, and 2) learning from data prepared under expert democracy.

4.1.1. Predefined input and output

The input of the UTTL paradigm is the entities/events collected from the domain, denoted as  . The output of the

UTTL paradigms is the revealed TT, denoted as  , corresponding to  . The revealed   is expected to cover a variety of

properties of the undefinable TT associated with   in the domain.

4.1.2. Data preparation with expert democracy

Domain experts (DE) can label the    with their expertise in identifying the undefinable TT to capture some of its

properties ( ). This DE labelling process can be formally defined as

ML experts (MLE) can do some complementary works to refine the   corresponding to the   with their expertise in

predictive modelling to produce a refined representation ( ) for identifying the undefinable TT. This MLE

refinement can be formally defined as

d

t̃ d t̃

d

d

t∗
DE

= DE_Label (d;   ) .t∗
DE θDE_Label (1)

t∗
DE d

t∗
MLE

qeios.com doi.org/10.32388/KBK3P8.5 20

https://www.qeios.com/
https://doi.org/10.32388/KBK3P8.5


As the TT is inherently undefinable, both   and   can probably contain severe inaccuracy in capturing it. To

address this,   and   can be fused in to a unified TT presentation by reasonable operations to more effectively

capture the properties of the undefinable TT. As the domain expert and ML expert equally contribute to the unified

TT representation, it is prepared with expert democracy (PwED). We define that the resulted unified TT

representation ( ) contains multiple inaccurate targets ( ), each of which partially represent certain properties

of the undefinable TT. Thus, this fusing of expert democracy can be formally defined as

Together, the prepared   and   constitute an expert-democratic observation of the underlying domain reality.

Here,   denotes the hyperparameter for implementing Formulas (1)-(3) respectively.

4.1.3. Learning from data prepared under expert democracy

Regarding common ML, the learning from the data prepared with expert democracy (  and  ) can be described

as: 1) constructing a function ( ), which can map the   into corresponding predicted TT ( ); and 2) defining a

loss function ( ), which estimates the error between   and the  , for optimizing the    to minimize the

value of  . As    contains multiple inaccurate targets  , this learning process is a multiple inaccurate

target learning procedure, which is formally defined as

Here,   denotes the function space of  .

4.1.4. Methodological formation

Referring to the predefined input and output, Formulas (1)-(3) for data preparation (DP), and Formula (4) for learning

procedure, the methodological formation for UTTL is formally denoted as

= MLE_Refine (d, ; )t∗
MLE t∗

DE θMLE_Refine (2)

t∗
DE t∗

MLE

t∗
DE t∗

MLE

t∗
PwED t∗

= PwED_Fuse ( , ; ) = { , ⋯ , } .t∗
PwED t∗

DE t∗
MLE θPwED_Fuse t∗

1 t∗
v (3)

d t∗
PwED

θ−

d t∗
PwED

f d t = f(d)

l t = f(d) t∗
PwED f

l t∗
PwED { , ⋯ , }t∗

1 t∗
v

= arg  l(t = f(d), = { , ⋯ , }).f
~

min
f∈F 

t∗
PwED t∗

1 t∗
v (4)

F f
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4.2. Principles of UTTL for revealing undefinable TT

Denoting   as the set of properties of an entity for representing the undefinable TT, this subsection elucidates

the underlying principles of UTTL for uncovering the undefinable TT. Here, we do not impose constraints on the

specific form of  , which may take semantic, numerical, or other forms or a combination thereof in

characterizing the properties of an entity. Based on the definition of UTTL (Formula (5)), we derive and discuss the

following theorems under feasible assumptions.

Theorem 1. Let the mapping is consistent with Formula (1): . If empirical knowledge set provided by domain

expert for identifying the undefinable TT is encoded as a hyperparameter and produces with

regard to , then the set of properties of is included in the set of properties of the undefinable target TT, denoted as

.

Theorem 2. Let the mapping is consistent with Formula (2): . If AI ​​expert uses their predictive modelling expertise

under the domain expert’s empirical knowledge set to assign and obtains refined

with regard to and , then is consistent with , denoted as .

Theorem 3. Let the mapping is consistent with Formula (3): . If reasonable operations are encoded as a

hyperparameter and produces with regard to and , then the

resulted unified TT representation ( ) is more consistent with , denoted as , than any individual

representation.

Theorem 4. If the data is prepared under expert democracy, that is, given the input set of data instances and the

corresponding target set (the multiple inaccurate true targets of expert democracy fusion) , then

according to the conventional practice in machine learning, a mapping function (assumption space ) can be constructed

such that maps the input to the predicted true target: , and the optimal function is obtained by minimizing the

inconsistency between the prediction and the target set (a certain loss function ), denoted as

.

To prove Theorems 1-4, we introduce some natural hypotheses shown as Tables 6 and 7. These hypotheses should be

verified in practical solution implementation of UTTL. More details about the introduced natural hypotheses and

proofs based on them for theorems are provided in Supplementary 1.

prop(⋅)

prop(⋅)

L t= L(θ) K

θDE_Label = L ( )t∗
DE θDE_Label

d t∗
DE

prop ( ) ⊆ K ⊆ prop(TT )t∗
DE

R t= R(θ)

K θAIE_Refine

= R ( )t∗
AIE

θAIE_Refine d t∗
DE prop ( )t∗

AIE
K prop( ) ≃ Kt∗

AIE

F t= F (θ)

θPwED_Fuse = F ( ) = { , ⋯ , }t∗
PwED θPwED_Fuse t∗

1 t∗
v t∗

DE t∗
AIE

t∗
PwED K prop( ) ≅Kt∗

PwED

d

= { , ⋯ , }t∗
PwED t∗

1 t∗
v

f F

f d t = f(d)

l

= arg  l(f(d), )f
~

minf∈F  t∗
PwED
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Assumption No. and

Abbrev.
Detailed description

Assumption (i)

(Domain expert

correctness)

The domain expert’s empirical knowledge   is correct and 

Assumption (ii)

(Annotation fidelity)

The annotation/generation process faithfully converts domain expert facts into certain instance

attributes, that is 

Assumption (iii)

(Conciseness and evidence

compatibility)

New properties introduced or amplified by the AI ​​expert during the refinement process (denoted as

the set  ) do not create semantic or logical conflicts with  , that is,   is satisfiable

Assumption (iv)

(Locality/partial

representation)

Each partial inaccurate target   describes only a subset of the properties of TT, that is 

Assumption (v)

(Complementarity)

The multiple partial property sets   for fused representation are

complementary in terms of their coverage of  , that is 

Assumption (vi)

(Reasonable fusion does

not introduce systematic

inconsistencies)

The fusion process avoids retaining a large number of conflicting incorrect properties through

"reasonable operations" such as weighting, denoising, conflict detection, or logical intersection and

union

Assumption (vii)

(Spaces and measurability)

 (input space) and   (target/prediction space) are topological spaces (usually subsets of   and 

), every   is measurable, and the loss   is measurable in   for each fixed 

Assumption (viii)

(Nonnegativity and

continuity of loss)

 for all arguments, and for each fixed  , the map   is continuous

Assumption (ix)

(Compactness / closedness

of mapping function

space)

 is nonempty and is a compact subset of a topological vector space (or at least closed and bounded

in a finite-dimensional parameterisation). Concretely, if   with   then 

 assume is compact and   is continuous

Assumption (x) When the targets   arise from repeated sampling   drawn i.i.d. from a

distribution  , assume   is  -integrable for all 

K K   ⊆  prop(TT )

prop( )  ⊆  Kt∗
DE

A K K ∪ A

t∗
v

prop ( )   ⊆  prop(TT )t∗
v

{prop ( ) , … , prop ( )}t∗
1 t∗

v

K

prop ( ) ∩ K ≥ max ( prop ( ) ∩ K , prop ( ) ∩ K )∣∣ t∗
PwED

∣∣ ∣∣ t∗
DE

∣∣ ∣∣ t∗
AIE

∣∣

D T Rm

Rk f ∈ F l(d, )t∗
PwED d t∗

PwED

l(d, ) ≥ 0t∗
PwED t∗

PwED
d ↦ l(d, )t∗

PwED

F

F = { : θ ∈ Θ}fθ Θ ⊂ Rp

Θ d ↦ (d)fθ

t∗
PwED {( , )}di t∗

i,PwED

n

i=1

P l(f(x), )t∗
PwED P f ∈ F
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Assumption No. and

Abbrev.
Detailed description

(i.i.d. sampling and

integrability)

Table 6. Introduced natural hypotheses for proving Theorems 1-4

Theorem Associated assumptions

Theorem 1 Assumptions (i) and (ii)

Theorem 2 Assumptions (i) and (iii)

Theorem 3 Assumptions (i), (iv), (v) and (vi)

Theorem 4 Assumptions (vii), (viii), (ix) and (x)

Table 7. Hypotheses respectively associated with Theorems 1-4

4.3. Representative paradigm towards LDS

The methodological definition of UTTL (Formula (5)) and its principles for revealing undefinable TT (Theorems 1-4)

indicate that UTTL practically serves as a representative paradigm of LDS. The two core components of UTTL, data

preparation with expert democracy and learning from data prepared under expert democracy, jointly embody the

democratization of the supervision process. The data preparation component of UTTL integrates the perspectives of

both domain and ML experts for identifying an underlying TT. The learning procedure of UTTL develops solutions

that learn from collaboratively constructed supervision (multiple inaccurate true targets of expert democracy fusion)

rather than a single authoritative truth. UTTL transforms supervision from an authority-driven process into a

participatory and negotiated one, thereby exemplifying the essence of LDS.

4.4. Uniqueness of UTTL

The UTTL setting is unique compared with the LMA setting, although the learning procedures of two settings are

identically based on multiple inaccurate TT representation set. The primary difference between the two is that the

UTTL setting is established under the assumption that the TT does not objectively exist in the real world while the

LMA setting is largely grounded in the assumption that the TT objectively exists in the real world. From the

implications of the non-existence assumption of TT, LMA under WSL is a special case under LDS regarding this

assumption.
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5. UTTL Principle-Based Practical Solutions for LDS

Regarding the definition of UTTL (Formula (5)) and its principles (Theorems 1-4) for revealing undefinable TT, in this

section, we summarize UTTL principle-based practical solutions for LDS. Under the frame work of UTTL, the

summarized solutions, which are based on AI application works in specific domain  [30][31][32][60][74]  as well as

representative works of learning from multiple annotators [4][5], detail the implementations for data preparation with

expert democracy and learning from data prepared under expert democracy. As the hypotheses introduced for the

proofs of Theorems 1-4 are natural, they can be typically satisfied in practice. Even if some of these hypotheses are

not fully met, the conclusions of Theorems 1-4 would merely be weakened rather than invalidated. Therefore, in this

section, we do not further specifically verify these natural hypotheses when we applying Theorems 1-4 for specific

implementations.

5.1. Implementation for data preparation with expert democracy

Based on existing works [4][5][30][31][32][60][74], regarding the definition of UTTL and Theorems 1-3, we summarize the

detailed implementation for data preparation with expert democracy in practice.

5.1.1. Domain expert labelling

The expertise of domain experts can be described as an accumulated knowledge ( ) containing various prior proofed

knowledge facts ( ) about the undefinable TT. The   is regarded as the currently most appropriate information for

approximating the undefinable TT, though it probably will be constantly changed with new accumulated domain

knowledge. Formally, the   is expressed as

Thus, regarding Theorem 1, Formula (1) for labelling the entities/events ( ) collected from the domain is implemented

by using the   as hyperparameter

5.1.2. ML expert refinement

One expertise of ML experts can be described as searching a reasoning path ( ) from the domain expert prepared

data   under the condition of   to draw ( ) a set of logical conclusions ( ) that are consistent with ( ) some

knowledge facts in  . The drawn    can be helpful to refine    for representing the underlying TT. Formally, this

expertise of ML experts is defined as

Here,   denotes the space of the reasoning path  .

K

k K

K

K = { , … ,   }      s. t.   K ⊆ prop(TT ).k1 km (6)

d

K
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Another expertise of ML experts can be described as building a program ( ) to generate new TT representation (

) from    and logical conclusions  . The properties of the generated    should be equal ( ) to    for

describing the underlying TT. This expertise of ML experts is formally defined as

Here,   denotes the space of the program  .

Thus, regarding Theorem 2, Formula (2) is implemented by using the   as hyperparameter

5.1.3. Fusion of expert democracy

Logical operations ( ) can be conducted on    and    to form a unified TT presentation ( ) to more

effectively capture the properties of the undefinable TT. The properties of the    are expected to be more

consistent with ( ) the knowledge facts in  .

Regarding Theorem 3, Formula (3) is implemented by using the   as hyperparameter

5.1.4. Detailed solution in practice

The result of domain expert labelling   from Formula (7) and its associated   form an initial data basis, denoted as 

. The data structures of    are diverse. As observed in existing works  [4][5][30][31][32][60][74], the

structures of   are primarily denoted as

Formula (12) indicates that each instance of    has a domain expert labelled  [30][31]. Formula (13) signifies that

diverse data samples    are labelled by domain experts and each data sample may capture partial

properties of the underlying TT in the domain [32]. Formula (14) notifies that each instance of   has multiple domain

expert labelled targets  [4][5][60][74]. Together, Formulas (12)-(14) form the practical

solutions for Formula (7).

p
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The result of Formula (8) is a found reasoning path   that can draw from   under the condition of   a set of logical

conclusions that are helpful to refine the domain expert labelled  . The process of   is denoted as

Referring to existing works [30][31][32], Formula (15) is solved based on abductive reasoning as follows:

1. Extract a list of groundings from    that can describe the logical facts contained in  . This grounding

extraction ( ) step is expressed as

2. Estimate the inconsistencies between the extracted groundings   and the prior knowledge accumulated in   by

logical reasoning. This logical reasoning ( ) step is expressed as

3. Revise the groundings in    via logical abduction to reduce the estimated inconsistencies in  . The revised

groundings ( ), which serve as the assumptions for generating the reduced inconsistencies in the logical

abduction, are the drawn statements/conclusions ( ) that can more accurately describe the underlying TT than

the   provided in  . Referring to Formula (13), this logical abduction ( ) step is expressed as 

Together, Formulas (15)-(18) form the practical solution for Formula (8).

The result of Formula (9) is a built program   that generates new TT representation   from   and logical

conclusions  . The process of   is expressed as

Referring to existing works  [30][31][32][74], Formula (19) is differently solved with regard to the structures of    as

follows:

1. When   is available, with regard to  , we can develop programs that extract a new TT from   that

can be complementary to   for representing the underlying TT [30][31].

2. When   is available, with regard to  , we can develop programs

that explore mutual enhancements between different data samples   and result new TT for better

representations of the underlying TT [32].

3. When   is available, with regard to  , we can develop programs that explore mutual

enhancements between multiple domain expert labelling    and result new TT for better

representations of the underlying TT [60][74].

Together, these solutions for Formula (19) form the practical solutions for Formula (9).

Referring to existing works  [30][31][32], for the implementation of Formula (11), logical operations like union and

intersection can be employed to fuse   and    into a unified TT presentation ( ). While union operations
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make the unified    representation more complete, intersection operations enable the unified 

 representation more accurate.

5.2. Implementation for learning from data prepared under expert democracy

Based on existing works  [30][31][32][60][75][76][77][78][79][80], regarding the definition of UTTL and Theorem 4, we

summarize the detailed implementation for learning from the data prepared with expert democracy in practice.

5.2.1. Multiple inaccurate target learning

Based on a constructed function  , the error between    and    can be estimated and a

predefined loss function  . As    contains multiple types of inaccurate true targets, the error between    and 

 can be estimated by the weighted sum of the errors between   and the respective  . We can design a loss

function within a multiple inaccurate target learning procedure, which is expressed as

Here,   is the weights for the multiple inaccurate TT set  .

By minimizing    with regard to  , a final optimized model    can be obtained for mapping    into the

revealed TT ( ), which should submit to the condition   by common

logical sense.

Thus, regarding Theorem 4, Formula (4) is implemented by a multiple inaccurate target learning procedure

5.2.2. Detailed implementation in practice

The mapping function    can be constructed via state-of-the-art deep learning methods  [80]  based on neural

networks. The loss function   can be defined using cross-entropy for classification and least squares for regression [77]

[78][79]. With regard to the deep learning based  , the minimization of    is solved via stochastic gradient

descent variants [75][76].

Specifically, when cross-entropy loss is used for classification or least square loss is used for regression, the loss

constructed by    can be theoretically expressed as  ,

where   is a constant term [30][31][32]. This indicates that the multiple inaccurate target learning procedure is able to

force the mapping model    reasonably to achieve logically rational predictions for undefinable targets by learning

from the weighted summarization of multiple types of inaccurate targets.
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5.3. Summary for implementing UTTL solutions

Regarding the definition of UTTL and its principles for revealing undefinable TT, we leverage detailed

implementations of some existing works  [4][5][30][31][32][60][74]  to detail the example implementations for data

preparation with expert democracy and learning from data prepared under expert democracy under the framework

of UTTL. Based on these implementations (Formula (6)-(21)), the example implementation of UTTL principle-based

practical solutions (UTTL(S)) for LDS is abstractly summarized as

Based on Formula (6)-(22), the example implementation of UTTL(S) in practice can be visually interpreted as Fig. 3.
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Figure 3. Visual interpretation of Formula (22) for summarizing the example implementation of UTTL(S) in practice.

The implementation settings for a given task (classification or regression) can be described as follows:

1. Collect the input   (a set of instances or entities) within the given task-specific domain.

2. Data preparation (DP):

Domain experts use their accumulated knowledge to identify the underlying TT associated to  , resulting a

corresponding set of domain-expert targets  . The resulted    have three formations represented by

d

d

t∗
DE t∗

DE
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Formulas (12)-(14);

ML experts use their expertise, such as logical reasoning and program building, to refine domain-expert

targets  , resulting a correspondingly refined set of ML-expert targets  ;

The domain-expert targets    and ML-expert targets    are fused by such as logical operations,

resulting a corresponding set of expert-democracy targets   that are expected to better describing the

underlying TT associated with the input  .

3. Learning process (LP): Implementing the learning process based on the prepared data    requires

specifically designed learning algorithm for   and loss function for  . For example, deep learning models can be

employed to instantiate the mapping function  , while cross-entropy loss and mean squared error can be

adopted to define the loss function   for classification and regression tasks, respectively. By minimizing the loss

value of   with respect the parameters of  , we get an optimized  .

3. Output the optimized   that can map the input   into the predicted TT  .

5.4. Example UTTL(S) implementations in real world applications

Regarding the summary for implementing UTTL(S), more detailed discussions on example UTTL(S) implementations

in real world applications, including helicobacter pylori segmentation  [30][31], tumour segmentation for breast

cancer [32] and learning from multiple annotators in practice [60][74], are provided in Supplementary 2.

6. Discussion

While the prevailing assumption across current ML paradigms is that the TT objectively exists in the real world, an

emerging trend in both LNL and LMA under inaccurate supervision is the growing challenge to the clarity,

definability, and uniqueness of the TT. Many of these works acknowledge that the TT may not exist. However, few

studies explicitly reject the objective existence of the TT. We argue that acknowledging the possibility that the TT

may not exist does not constitute a direct rejection of its objective existence; such a rejection requires the stronger

claim that the TT does not objectively exist in the real world.

Accordingly, we adopt a more radical stance by explicitly positing that the TT does not, rather than may not,

objectively exist in the real world, thereby directly rejecting its objective existence. This non-existence assumption of

the TT implies a deliberate line of reasoning: even if a TT physically exists (e.g., in conventional SL settings), one may

still intentionally assume that it does not objectively exist for the purpose of ML-based predictive modelling. The

implications and analyses of this non-existence assumption suggest that (1) new data preparation strategies

grounded in democratic supervision, together with corresponding learning paradigms based on data prepared with

democratic supervision, should be explored; and (2) such explorations naturally lead to an expanded conceptual and

methodological scope toward LDS.
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Our previous work on uncovering inherently ambiguous TT using ML in the medical domain led us to explicitly posit

the non-existence assumption of the TT. These studies progressively demonstrated that, for tasks in which the TT is

intrinsically indefinable, assuming an objectively existing TT is fundamentally inadequate. Instead, we argue that a

more appropriate assumption is that the TT does not objectively exist in the real world. The novelty and necessity of

this non-existence assumption are further supported by insights from our systematic review of TT assumptions

across current ML paradigms, as well as by the implications and analyses derived from adopting the non-existence

assumption of the TT.

Adopting the non-existence assumption of the TT opens up new perspectives and insights for ML-based predictive

modelling. Under this assumption, experts (both domain and ML experts) and non-experts are, in principle, placed on

an equal and collaborative footing, thereby enabling democratic supervision. Consequently, the conventional learning

concepts of SL and WSL under the existence and may-not-exist assumptions can be subsumed into, and generalized

by, the broader framework of learning with LDS.

Further, grounded in the explicitly posited non-existence assumption of the TT and its implications, we propose

UTTL as an exemplar pathway toward LDS. We formally define UTTL, articulate its underlying principles for

uncovering an inherently undefinable TT, and discuss both its practical feasibility for LDS and its conceptual

distinctiveness relative to existing similar learning settings. Building on this framework, we also summarize

representative UTTL principle–based solutions drawn from existing works to demonstrate the practical value of

UTTL in enabling LDS.

In conclusion, this article philosophically examines how shifts in assumptions regarding the existence of the TT give

rise to new perspectives and insights for ML-based predictive modelling, and correspondingly derives a new ML

paradigm termed UTTL for LDS.

The current formulation of UTTL for enabling LDS still exhibits several limitations. First, the LDS setting within

UTTL is presently confined to the democracy of domain and ML experts. A natural question arises: Can the LDS

setting under UTTL be scientifically extended beyond expert democracy, for example, to non-experts; and, if so, how

should such an extension be rigorously defined and realized? This is particularly important and meaningful as state-

of-the-art AI systems increasingly influence or replace human work outputs. The philosophy of LDS provides a way

for broader human participation in AI development, ensuring that such involvement is not restricted solely to experts.

Second, although the practical value of UTTL is partially demonstrated through example UTTL principle-based

solutions that have been implemented in real world applications, the applicability boundary of UTTL in broader

practical scenarios remains insufficiently understood. Addressing these limitations will require systematic future

investigations, including theoretical generalization, methodological expansion, and more empirical studies.
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