

Review of: "Determining Affinity of Social Network using Graph Semirings"

Massimo Ferri¹

1 University of Bologna

Potential competing interests: No potential competing interests to declare.

This paper introduces and studies a simple invariant for a graph G=(V, E): $\theta=1+2|E|/|V|$. The presence and meaning of each element in the formula is clearly explained. Most of the remainder is dedicated to an example on Facebook. Based on a reference, a user is classified in one or more of four types: G_1 (relationship builders), G_2 (town criers), G_3 (selfies), G_4 (window shoppers); a further set G_5 (others) is considered. Given a Facebook network G (a small example is given), the Authors build a graph G_4 with G_1 , G_5 as vertices, and an edge joining G_1 with G_1 if and only if the two classes the intersection graph G_1 is not empty. Moreover, each edge carries a weight given by θ_1 . A number called (it stability) is defined for a path in G_4 .

The Authors claim that stability can be used in the important Facebook feature of suggestions for new friends. To me, however, is not clear why it should be particularly important to establish friendships across the different classes; nor why stability might be a value in this choice.

I have some practical comments. I think that a figure depicting the single intersection graphs \$G_{i, j}\$ might be of great help to the reader. I also recommend always using the same term for the same concept: ``loop", although a common term in network theory, has a very special meaning in graph theory; elsewhere the Authors use the word `cycle" and I suggest to stick at it. Same thing for ``discrete graph", by which I assume that ``empty graph" (also used elsewhere in the paper) is meant.

In conclusion, I find the paper correct but weakly motivated.