
16 August 2023, Preprint v1 · CC-BY 4.0 PREPRINT

Research Article

Formal Veri�cation of a Change Control

Process in Project Management

Ramon Brena1, Alejandro Vazquez-Nava1, Juan A. Nolazco1, Jose I. Icaza1, James A. Fangmeyer1

1. Tec de Monterrey, Monterrey, Mexico

Compliance of processes in enterprises to internal policies and external regulations could be critical

because failing to follow them could result in great losses, but manual compliance auditing is dif�cult

and prone to errors and oversight. In this paper, we present a method for formally verifying the

properties of Integrated Change Control processes using temporal logic. We express the process in

terms of states, and then we formulate some of its key properties, such as prerequisites, reachability,

de�niteness, and cycles, using a temporal logic called Computation Tree Logic. The properties to

verify in the case study we present are taken from actual change control process auditing practice in a

large business in the food industry. We formally verify those properties using a model-checking tool.

We end up with a formally veri�ed Integrated Change Control process and more robust assurance of its

correctness than can be reached for its informal counterpart. To the best of our knowledge, this has

not been done before.

Corresponding authors: Ramon Brena, ramon.brena@tec.mx; Alejandro Vazquez-Nava,

a00767414@itesm.mx; Juan A. Nolazco, jnolazco@tec.mx; Jose I. Icaza, jicaza@tec.mx; James A.

Fangmeyer, james.fangmeyer@itesm.mx

1. Introduction

Project management (PM) is a widely studied area (Project Management Institute, 2017), mostly from the

point of view of methodological guidelines. In particular, in this paper we focus on the “Integrated Change

Control” process (ICC) described in the Project Management Institute (PMI) Project Management Body of

Knowledge (PMBOK). ICC is key for "controlling changes and recommending corrective or preventive

action in anticipation of possible problems" [PMI, 17] during the progress of a project. Depending on the

project area, the change control process should be tailored for complexity, contract requirements, and the

Qeios

qeios.com doi.org/10.32388/KD99XX 1

mailto:ramon.brena@tec.mx
mailto:a00767414@itesm.mx
mailto:jnolazco@tec.mx
mailto:jicaza@tec.mx
mailto:james.fangmeyer@itesm.mx
https://www.qeios.com/
https://doi.org/10.32388/KD99XX

context in which the project is controlled [PMI, 17]. Effective processes are supposed to have some

desirable properties, such as reachability, liveness, compliance with prerequisites, and so on; but whether

these properties are ensured by the work�ow is something that can be extremely dif�cult to prove for

large projects typical of big companies.

Methodology guides such as the PMBOK [PMI, 17] are generally composed of criteria and processes

explained in plain English. While this is perfectly good for most design purposes, there are some

scenarios in which we need a more precise –even mathematical– expression of the process such that we

can verify if its key properties are guaranteed. The costlier are errors and mistakes, the more interest

there is in achieving a high level of correctness assurance: “[erroneously] designed work�ow models can

result in failed work�ow processes, execution errors, and disgruntled customers and employees” [Bi, 04].

According to Awad [Awad, 08], compliance rules have different origins, and change through time, and

they include: a) Business processes, like the order of execution of activities, or the inclusion of certain

control or supervision activities; b) Policies that produce either a competitive advantage or to protect the

business from failures; c) Quality standards like ISO 9000; d) External mandatory regulations and laws,

like the 2002 Sarbanes-Oxley Act. As Awad states, the consequences of failing to follow the policies could

not only decrease quality or competitiveness, but also to lead to penalties and reputation loss.

To ensure the compliance to regulations mentioned above, experts perform manual audits of key

business process models. This involves carrying out process and procedure walkthroughs, as well as the

design of the corresponding check tests. This consumes considerable time and human effort, and even

worse, is not guaranteed to detect every mistake or unwanted condition, because in practice it is very

dif�cult to manually consider all the consequences of both the internal or external normativity and the

procedures.

One of the authors of this paper oversees Information Technology (IT) Governance, Risk and Compliance

in one of the largest alimentary industry in Mexico. He is responsible for supervising the technological IT

platform, applications, IT processes and information systems, to ensure that the IT area supports in an

effective way the business processes and corporate goals. His responsibilities about compliance with IT

policies and regulations, as well as the design of adequate check and control mechanisms so that risks

associated with IT processes are minimized, were one of the motivations to try a formal and automated

way of proving properties, with methods like the ones we present in this papers.

The goal of this work was to develop a methodology that could leverage formal veri�cation techniques to

check the design of change processes, and to pinpoint errors when they exist, and to give a guarantee

qeios.com doi.org/10.32388/KD99XX 2

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

when there is none. This, of course, would raise the level of certainty that IT processes comply with

regulations. The challenge for building such a methodology is that we must translate informal best

practices and criteria, such as the rules a human expert is currently analyzing, into formal and even

automated procedures and notation. Procedures must comply with certain properties such as: every

change should have an authorization prior to its processing, duplicate changes should be avoided,

identify changes that make the project inviable, changes should have successful tests and the acceptance

of the involved parties, and so on. The detailed properties to be checked will be presented in sections 3

and 4.

In the context of ICC, a process designer or auditor should be interested in validating that the process

under consideration has or does not have some key properties, and so it can be concluded con�dently

that the change control process is correctly designed. This was the motivation for using Formal Methods

(FM) [Groefsema, 13] to reach mathematical-level property assurance. The use of formal methods in

informal disciplines has the potential bene�t of establishing with certainty that a process has (or not) key

properties it is supposed to have, which translates in the correctness and integrity assurance. The use of

FM for correctness assurance could be seen a form of “mathematical auditing” of the proposed ICC

process. Obviously, a veri�ed formal assurance would give an additional authority to a proposed ICC

process. In the cases where the ICC process under study does not pass the mathematical validation, a

“formal debugging” phase must ensue to correct the defects, and this debugging process is indeed one of

the bene�ts of using formal methods for validation, as it allows a process designer to avoid the following

risks associated with a poorly designed change control process: not tracking changes, developing

changes (including unauthorized changes) impacting project plans (and project deliverables) with

unforeseen effects, lack of priorities in change management, processing duplicate changes, developing

changes that may turn the project unfeasible, etc.

We are interested in developing a mathematical formalization of both the ICC process and the properties

it is supposed to hold in order to verify that the former actually exhibit the latter. We do so by using a

temporal logic formalism, the “Computation Tree Logic” (CTL) [Bérard, 01] [Lamport, 83], and we run

experiments using a model-based implementation of CTL named NuSMV [Cimatti, 00]. While other

papers have previously used CTL and model checking for business process veri�cation [Groefsema, 13],

our proposal is speci�c for ICC processes.

In short, the contribution of this paper is a method for formally analyzing a change control process by

applying temporal logic (in particular CTL) in a way that allows veri�cation of the process’s key

qeios.com doi.org/10.32388/KD99XX 3

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

properties. We do not make contributions regarding the elements that ought to be part of a change

control process.

The structure of the rest of the paper is as follows. In section 2 we present some background and related

work. In section 3 we present the methodology for applying CTL to ICC. In section 4 our veri�cation

experiments are presented, and in section 5 we present the conclusions.

2. Background

In this section, we present previous work which gives the context and prerequisites for the application of

our change process formal veri�cation method.

2.1. PMI and Integrated Change Control

The ICC process consists of reviewing change requests, approving change requests, and updating the

integrated plan for the project, the subsidiary plans, the product speci�cations, and the baselines of time,

cost, and project quality [PMI, 17].

Every change request must be approved or rejected by some authority belonging to the project

management team or an external organization [Kerzner, 05] [Stackpole, 09]. The approval of a change

may require revision of activity sequences, cost estimates, scheduled dates, or resource requirements, as

well as analysis of alternatives in response to the risks associated with the project. These changes can

prompt adjustments to the entire project management plan [Phillips, 11] [Schwalbe, 09] [Lewis, 05]

[Larson, 11]. We notice that the PMI PMBOK does not provide speci�c work�ows for ICC, thus it is

necessary to incorporate work�ows from other sources, like ITIL [Rance, 11] in order to develop speci�c

ICC work�ows. Figure 1 shows the processes that have information relationships as inputs and outputs to

PMI's ICC process.

2.2. Formal Methods and Speci�cations

System design (as in our ICC case) can generate or save big costs because errors propagate across stages

in a system, and if they are detected in the last stages, error correction could imply reworking all the way

from the error source. In software development this situation has been addressed by several studies

[Anderson, 98] [Kelly, 95].

qeios.com doi.org/10.32388/KD99XX 4

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 1. ICC process relationships with other processes of PM according to PMI

Indeed, we can learn valuable lessons on speci�cation and modeling from the case of software. One

approach for taming software errors is to rely on mathematical precision and tools, that is, the use of FM

[Almeida, 11] [Bjørner, 14] [Burstall, 69] [Clarke, 96] [Monin, 03]. Formal methods consist of a set of

techniques and tools based on mathematical modeling and formal logic used to specify and verify

requirements and designs for software and computer systems. They can predict the logical properties of

a system based on a mathematical model of the system using logic calculations, and can make it possible

to �nd out whether a certain description of a system is internally consistent, to verify if certain properties

are consequences of proposed requirements, and to check if the requirements have been interpreted

correctly in the system design. In this work, we are primarily involved in the formal modeling of the

Integrated Change Control process and the proof of this model’s properties. This excludes many other

applications of formal models, such as the re�nement of speci�cations, the generation of actual code, the

proof of correctness of an implementation, and many others.

A formal speci�cation is a “concise description of the behavior and properties of a system written in a

mathematically-based language, specifying what a system is supposed to do as abstractly as possible,

thereby eliminating distracting detail and providing a general description resistant to future system

modi�cations” [Kelly, 95]. Formal speci�cations are a translation of a non-mathematical description of

qeios.com doi.org/10.32388/KD99XX 5

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

the high-level behavior and properties of a system (diagrams, tables, natural language) into a formal

speci�cation language, which gives a concise and precise description [Kelly, 95]. Formal speci�cations

describe a system and its desired properties, which may include functional behavior, timing behavior,

performance characteristics, or internal structure [Clarke, 96]. The language used for the speci�cation

must have a well-de�ned semantics based on mathematics in order to support deductions.

2.3. Discrete Processes and Temporal Logic

Most processes in organizations fall in the category of discrete event systems [Cassandras, 09], in which

processes are characterized by a start event, a duration and a termination event. Of course, the start of a

process goes before the end. This is called a dependency. There are also more complex dependencies, like

for instance that one process goes altogether after another one, so the �nish time for the latter goes

before the start time for the former. Time dependencies have been studied in much detail in many forms

of temporal logic [Fisher, 11] [Lamport, 83] [Rozier, 10]. Temporal logic is related to Modal Logic [Chellas,

80] and is speci�cally used to describe the temporal ordering of events.

Discrete event systems have discrete states, and a sequence between these states. Understanding this

sequence is critical for process design and audit and can lead to critical questions. For instance, if we have

been in a state of the system, is it possible to fall in that state again? Are there states from which it is not

possible to exit? These execution properties are of great interest for process auditing purposes because

they could imply that a given process is or is not correct. Expressing states and sequences in a way that

helps us answer these questions is possible with a temporal logic called Computation Tree Logic (CTL).

2.4. CTL

We are going to consider one particular form of temporal logic which we found suited to change control

speci�cation, namely, Computation Tree Logic (CTL). CTL has been very well studied and there are

computer implementations of it that allow experiments and veri�cations. We will take advantage of these

implementations in this work. In CTL, each moment in time can be divided into several possible futures.

Essentially, “this logic sees the structure of time as a tree, rooted in the present time, with a series of

branching paths at each node of the tree” [Rozier, 10].

Regardless of the original form of the considered process, eventually it should be translated into a state

transition system [Harel, 98]. A state transition system can be visualized as a graph, called an automaton

qeios.com doi.org/10.32388/KD99XX 6

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

or Kripke structure (Figure 2) that represents the behavior of a system [Rozier, 10], by means of a

collection of states linked by arrows that represent the changes from one state to another.

The Kripke structure is a tuple M = (S, I, R, L), where S is a �nite set of states, I ⊆ S is a set of initial states,

and R ⊆ S S is the transition relation from one state to the next [Cimatti, 00]. Additionally, there is a

labeling function L that attaches properties to each state. The properties take logical values that can be

true or false.

CTL is a mathematical language for declaring properties about the Kripke structure [Fisher, 11]. The

declared properties refer not to the automaton itself, but to the possible executions (sequences of

transitions) that could happen in the automaton. CTL makes it possible to extract a static mathematical

entity from the dynamics of the automaton. In CTL, the computation tree is this static entity. Consider,

for instance, the automaton in Figure 2 [Rozier, 10], which includes p, q and r conditions attached to states

s0, s1 and s2. Taking s0 as the initial state, it is possible to transition to s1 or s2; this is represented in the

computation tree in Figure 3 [Cimatti, 00] as a tree with root s0, and branches to s1 and s2. As the

execution continues, there will be branches extending and eventually dividing. In many cases, branches

could have in�nite length.

Figure 2. Kripke structure (based on [Cimatti, 00])

qeios.com doi.org/10.32388/KD99XX 7

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

For the computation tree in �g 2b, we could consider the following property: “whenever the condition r is

established, it is never lost.” This property could be true or false (in this particular case it is false, as can

be shown by starting in s0, moving left to s1 and then left again to s0); of course this example is a simple

automaton that we can visually verify, but there could be much more complex automata and properties

(imagine you are dealing with an automaton with hundreds of conditions and states), so specialized

languages and methods have been proposed, one of which is CTL.

Figure 3. Computation tree (based on [Cimatti, 00])

The CTL language uses two combined special quanti�ers: the �rst one may take value A (property should

hold along All paths) or E (there Exists at least one path where it holds), while the second one may take

value F (at some particular point in the Future), G (Globally, standing from the present all the way to the

future), X (in the neXt state) or U (Until a condition is met). So, the combined possible quanti�ers are AG,

AF, AX, AU, EG, EF, EX, EU, and they could be nested in formulas.

For instance, the statement “whenever the property r is established, it is never lost” could be represented

by the CTL formula: AG (r ⇒ AG r). A counterexample, showing that this formula is false for the

considered Kripke structure, would take s1 as the present state, and go from s1 to s0, which contradicts the

property, because in s0 property r does not hold. Consult a CTL introduction for additional details [Fisher,

11].

The speci�c CTL “dialect” we are going to use is NuSMV [Cimatti, 00] (see below).

qeios.com doi.org/10.32388/KD99XX 8

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

3. Modeling and Veri�cation Method

In this section, we present our proposed formal veri�cation method for CCI processes in project

management. The method we propose is composed of the following 5 steps:

�. Start with a detailed change control process suited for a speci�c context.

�. Express the change control process as a state transition system, in the notation of a Kripke

structure.

�. Translate the Kripke structure to a program in the NuSMV language.

�. Express the key properties we are interested in validating as CTL formulas in the NuSMV language.

�. Test the properties in the NuSMV tool.

Now we explain how we apply each step, following the case study of the ICC process. The ICC process

considered is based on the integration of criteria from the PMI and other organizations, as mentioned

before.

3.1. Start with a detailed change control process

As commented before, the general ICC process from PMI does not consider the speci�c activities that are

involved in change management. In the case study, we consider activities proposed by the Construction

Industry Institute (CII) [Ibbs, 01]. By combining concepts about information �ows from the Integrated

Change Control process (according to PMI) [PMI, 17] and the subprocesses and control activities de�ned

by the CII, we can de�ne a process that contains suf�cient detail for simulation and analysis.

Figure 4 shows a �owchart fragment associated with the proposed Integrated Change Control process.

This �owchart shows analysis activities that apply to any change request. Figure 4 considers the

activities indicated by the process proposed by Ibbs [Ibbs, 01] and adds other activities inspired in ITIL

[Rance, 11]. The �rst activities are associated with identifying the need for a change, followed by those

that have to do with registering and analyzing the corresponding change request. If the change does not

have urgent priority, time is taken to check whether the information registered in the change request is

complete, if the request is duplicated, or if the change can be postponed. This process �nally shows the

treatment given to a change request that is detected as duplicated. The process must be detailed and

appropriate for the context. To begin understanding the process as a state transition system, states in the

process must be identi�ed. Black dots show key states in the detailed Integrated Change Control process.

qeios.com doi.org/10.32388/KD99XX 9

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 4. Flowchart for initial steps associated with the analysis of a change request

3.2. Express the change control process as a state transition system

Figure 5 shows the state transition system obtained from the �owchart shown in Figure 4. The

transformation from regular �owchart to the corresponding state transition system is treated by

[Bjørner, 70], as every �owchart can be represented in a state transition system [29]. The six black dots in

Figure 4 have become the six highlighted ovals in Figure 5.

qeios.com doi.org/10.32388/KD99XX 10

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 5. Partial state transition system obtained from �owchart in Figure 4.

A complete state transition system that models the ICC process is de�ned by exhaustively considering all

possible states and transitions. It consists of 20 states and 35 transitions, represented visually as a Kripke

structure (automaton) in Figure 6 and Figure 7. Figures 6 and 7 are constructed the same way as Figure 5,

but they include the entire state transition system. Figures 6 and 7 illustrate the states of the ICC process

and the state variables that trigger transitions from one state to another. The �gures ought to be

interpreted starting in Figure 6 at state #1: “Identi�edNeedForChange”. Figure 6 connects to Figure 7 via

state #7: “AuthorizedChange”. Altogether, Figures 6 and 7 are simply an exhaustive state transition system

of the ICC process.

The sub-sequence in Figure 8 shows one possible path of states and transitions for a particular change.

The change begins in state #1: “Identi�edNeedForChange”. Once a need for change has been identi�ed, the

change request is registered and analyzed by the Change Control Board (state #2:

“ChangeRegisteredAndAnalyzed”). In this particular scenario, the Board identi�es that the change is

possibly a duplicate change, and the change passes to state #3: “PossiblyDuplicateChange”. This state

represents activities that check if the request is indeed a duplicate. If the change is not con�rmed as a

duplicate it returns to state #2: “ChangeRegisteredAndAnalyzed”. If the change is con�rmed as a duplicate,

it is declared a duplicate and enters the terminal state #15: “ClosedChangeDueToDuplication”.

qeios.com doi.org/10.32388/KD99XX 11

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 6. State transition system for the ICC process (part 1)

Figure 7. State transition system for the ICC process (part 2)

qeios.com doi.org/10.32388/KD99XX 12

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 8. Example of state transitions. Sequence for duplicate change.

Figures 6 and 7are the state transition system visualized as a Kripke structure. Without altering the state

transition system of the ICC process, we can “unweave” it using CTL, and this will facilitate declaring its

desired properties in temporal logic.

In CTL there exists the idea of multiple possible futures. Multiple possible futures are the different

possible states realizable from a current state, which branch from the present time. For instance, suppose

the change process is at the present time in state #2 in Figure 8. From there, there are 7 different

transitions, all of which could be taken; so the next state from state #2 could be state #3, #4, #5, #6, #7 or

#12. These alternatives can be represented as branches from state #2 to these other states. Then, from

state #3 there are two different possibilities, either to go back to state #2 or go to state #15, so two

branches are going out from state #3, and so on. Figure 9 shows the computation tree that is obtained by

unfolding the sequence of state transitions associated with the case of the duplicate change in Figure 8.

The properties stated using the CTL language refer to the unfolded computation tree, rather than the

original Kripke structure. There is a labeling function that attaches properties to states. We have

introduced a collection of auxiliary variables that will be useful for dealing with the formulation of

properties.

A group of auxiliary variables refers to declarations concerning past states. Keeping track of past states is

fundamental in the practice of change control. For example: “Whenever a change is assigned (state #8),

previously it has been registered and analyzed (state # 2).” CTL by construction, however, solely permits

users to de�ne properties concerning present or future events. For example: “In all possible executions

from the present state, at some future point the property X will be true.” So auxiliary variables are

introduced to keep track of history. In this case the variable “RegisteredChangeRequest” keeps track of

passing through state #2. Other auxiliary variables remember global situations that we need to track, like

qeios.com doi.org/10.32388/KD99XX 13

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

for instance “PostponedChange” or “InvalidChange”. Table 1 shows the relationship between the state

variables and the values they have in each of the states of the ICC process.

3.3. Express the ICC state transition system in the computational platform

Moving the ICC process from a state transition system to a coded model requires declaring the states with

their variables and transitions. Table 1 shows the entire ICC process with states in the rows and state

variables in the columns.

Figure 9. Computation tree for duplicate change shown in Fig 5.

qeios.com doi.org/10.32388/KD99XX 14

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

The computational platform we used for implementing our CTL models is called NuSMV. NuSMV

[Cimatti, 00] is a model-checking tool for verifying CTL properties over automata. To do so, NuSMV

explores systematically and exhaustively all relevant execution paths in order to determine with certainty

if a property is true or false. Even if some paths in the execution tree are in�nite, model checking is

guaranteed to terminate. When a property is found not to hold, a counterexample is presented as

evidence. NuSMV provides ways for representing the Kripke structure using a programming language,

testing it interactively, and checking properties written in CTL and other temporal logic variants. Thus,

change control processes in project management can be formally modelled by starting with a

visualization such as a Kripke structure, creating a computation tree using CTL, and verifying the model

with a tool such as NuSMV.

We used a global state variable that represents the current state in the automaton as a way to make direct

references to states when validating model properties (see section 4). This variable is called “State” and

takes the value of each state of the model according to the following statement expressed in the

speci�cation language of NuSMV tool.

qeios.com doi.org/10.32388/KD99XX 15

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Table 1. States vs. state variables in the Integrated Change Control model

The declaration of the transitions shown in Figure 8 is done using an operator “next” as follows; the

initial state is speci�ed with the operator “init”:

qeios.com doi.org/10.32388/KD99XX 16

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

The statement above is only part of the automaton. It represents the sequences of transitions associated

with the case of a duplicate change. The declaration of the entire automaton should consider all possible

transitions from one state to all next states that are considered in the model. In order to obtain a complete

declaration, it is necessary to inspect each state and declare all its possible transitions. Thus the change

control process has been codi�ed in programming language.

We notice in the last line of the example code that expressions in NuSMV do not necessarily evaluate to a

unique value as a result. In general, the terms take a value in a non-deterministic way from a set of

possible values.

The values adopted by state variables in each state can be expressed in the NuSMV tool. From the

information about states and state variables presented in Table 1, it is easy to declare the updating rules

for state variables. A ‘1’ at the intersection of a state and state variable in Table 1 is coded as ‘TRUE’ in

NuSMV. So, for example, in the case of the variable “AuthorizationForProcessingChange”, the speci�cation

that governs its value based on the current state is declared as follows:

The NuSMV tool can randomly generate samples containing execution traces of submitted changes,

simulating many changes within the programmed model. These sample changes follow the programmed

qeios.com doi.org/10.32388/KD99XX 17

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

model as the written code allows. We simulated 120 changes to con�rm that the programmed change

control process model follows the behavior seen in the state transition system. One-hundred twenty

random changes were generated for the test, 112 of which reached one of the �nal states within the

maximum of 20 state transitions that we imposed; the other 8 changes would have required more than

20 state transitions to reach a �nal state and therefore were truncated. On manual inspection, in all cases,

the sequences of the state transitions behaved following the ICC process state transition system

(including the 8 cases that required more than 20 state transitions, until truncation).

Of course, a �nite number of runs does not give absolute surety of the correctness of the change control

process, and this is indeed one of the main reasons to carry formal proofs, rather than solely simulations,

in the �rst place. Nevertheless, we actually detected some �aws in the model by using this simulated

checking. When we simulated changes based on an earlier version of the ICC state transition model, we

identi�ed a case with an execution sequence of states including 6-7-12 (see Figure 10). Now, it makes no

sense that a pending change (state #6), receives authorization (state #7) and subsequently the

corresponding change request is rejected (state #12).

qeios.com doi.org/10.32388/KD99XX 18

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 10. Invalid transition from state #7 to state #12 - before model correction.

Not only did we �nd an error in the computer-programmed model, but we realized a de�ciency in the

state transition model: there was not transition from state #6: “PendingChange” to state #12:

“RejectedChangeRequest”. We determined that the model should be adjusted so that the pending change

(state #6) could receive additional information (and transitioning to state #2), or be authorized

(transitioning to state #7), or be rejected (transitioning state #12). So, we �xed the coded model by

eliminating the transition from state #7 to state #12, and we improved the state transition system by

adding the transition from state #6 to #12 associated to the activation of the variable “InvalidChange”,

which was then also re�ected in the computer model. This is shown in Figure 11.

In the following section, we are going to present the two last steps in our method: expressing key

properties in CTL using the NuSMV language and �nally validating those key properties or disproving

them.

qeios.com doi.org/10.32388/KD99XX 19

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 11. Model corrected by adding transition from state #6 to state #12 and removing transition from state

#7 to state #12.

4. Results: Speci�cation and experimental veri�cation of key

properties

After coding the change control process, we arrive at the point where we can declare the key properties

that the process must satisfy. In our experience, CTL temporal logic proved to be very adequate for

representing and testing the kind of properties that we wanted the process to have. In the NuSMV tool

[Cimatti, 00], properties are declared using the keyword “SPEC” followed by a CTL formula, as we will see

in the examples in this section.

4.1. Reachability properties

A property that is checked in many systems is the reachability of �nal states. This is important because if

a �nal state is not reachable from the initial or other states through transitions in the automaton, the

�nal state becomes irrelevant. In our model, we seek to validate that, from the initial state, we could

arrive to a state where improvements have been approved and the ticket is closed. Taking our model with

qeios.com doi.org/10.32388/KD99XX 20

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

the states listed in Table 1, one �nal state is state #20: “ClosedChangeReleasedWithProcessImprovements”.

We must ensure that it is indeed possible to get to state #20 from the initial state and possibly from other

states as well. The following speci�cation declares the possibility of getting to �nal state #20 from the

initial state:

That is, if we are currently in state #1, then there is a path that in the future leads to state #20. Indeed, this

property was successfully veri�ed in NuSMV. Needless to say, in our small model this could be veri�ed by

hand, but in a model with thousands of states the task is far from trivial.

4.2. Prerequisite properties

One set of properties that we are going to verify refers to prerequisites that are supposed to have been

ful�lled when we arrive at a certain point in the process. We are now trying to validate that, in all possible

con�gurations, every change assigned for implementation should previously be registered and

authorized. In terms of our states, this means that we want to be sure that whenever we arrive at state #8,

we have already been in states #1, #2 and #7, and possibly state #6 as well.

One dif�culty for specifying a property like this, as we have commented before, is that CTL can state

properties of present and future states in the system, not past states. We solved this problem by

introducing some “history markers,” logical variables that are set to true when the event we want to

remember happens. When a state we want to remember is reached, we set a corresponding variable to

true, for instance the variable “ItHasGoneThroughState2”. As the process evolves through the transitions,

we keep track of the corresponding changes in the history marker variables, using both “init” and “next”

operators in the NuSMV tool.

Take for instance the property: “All change requests should always be recorded and previously authorized

in order to be allocated for implementation.” To verify this property, we �rst translate it to the

corresponding states and history markers.

Taking state #8: “AssignedChange” as the current state, we can see this state is a future state from

prerequisite states such as #1, #2, #6 and #7. Thus, the possible state transitions to reach state #8, are the

qeios.com doi.org/10.32388/KD99XX 21

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

following: 1-2-7 and 1-2-6-7. The speci�cation requiring state #8 to have these possible prerequisites is

coded as follows, and has been proven true by the NuSMV tool.

4.3. De�nitiveness properties

Another set of properties establishes that negative resolutions are de�nitive, for instance in the case that

“Invalid change” has been decided. Whenever a request for an optional change turns the project

unfeasible, the Change Control Board should reject the change request and not assign it for processing. In

other words, an optional change request cannot be assigned if it turns the project unfeasible, and

therefore the change request should be rejected. We want to declare that after an optional change is

judged invalid because it turns the project unfeasible, there is no way in the process that the declaration

of “Invalid change” could be overturned.

This property can be expressed by means of the state variable “MandatoryChange” (if the state variable

“MandatoryChange” is false, then the change is optional) and the state variable “UnfeasibilityOfProject” (if

this variable is true, then the change turns the project unfeasible. In the combination of an optional

change and an unfeasible project the change request is considered invalid (the variable “InvalidChange” is

set true) and it is not possible to set true the other state variables “AuthorizationForProcessingChange” and

“AllocationOfResponsibilities_SchedulingActivities”. The coded speci�cation states that under these

circumstances, it is only possible to reach the state #12: “RejectedChangeRequest”, and impossible to

reach state #8: “AssignedChange”. Since these actions must always be carried out when the situation

described occurs, the CTL AG operator is used.

The speci�cation of this property is then stated as follows:

qeios.com doi.org/10.32388/KD99XX 22

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

An important remark about the expression of a property like this is that the “informal” formulation could

be ambiguous. “Negative resolutions are de�nitive” can be interpreted differently according to one’s

tolerance for negativity and level of authority. On the contrary, once the speci�cation formula is stated in

a formal model, its meaning is precise and completely unambiguous.

4.4. Mutual exclusion

Another interesting property is mutual exclusivity. Figure 12 shows three mutually exclusive paths that

can follow from state #11: “Veri�edChange”. Only one of the following three situations may occur

(mutually exclusive):

The Change Control Board accepts the change for release and updates subsidiary plans, the

comprehensive plan, or associate baselines (state #14 “ReleasedChange”).

The Change Control Board identi�es failures in release tests and the change moves to state #10:

“FailedTestsOfChange”.

The Change Control Board refuses to release the implementation of the change and decides to reject it

and close the case (state #13: “RejectedChangeImplementation”).

This property can be represented by two equivalent speci�cations expressed in CTL:

One solution uses the variables associated with the model states: the current state is

“State_11_Veri�edChange” and immediately the next state may be “State_14_ReleasedChange”,

“State_10_FailedTestsOfChange”, or “State_13_RejectedChangeImplementation”.

qeios.com doi.org/10.32388/KD99XX 23

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Figure 12. Example of mutually exclusive states and transitions.

The other solution uses the state variables associated with the possible paths that lead from the initial

state (State_1_Identi�edNeedForChange) to the current state (State_11_Veri�edChange).

In both cases, a mutually exclusive relationship exists between states immediately following the current

state (State_11_Veri�edChange); this is expressed using the AX operator, which gives the idea of a

mandatory situation.

This speci�cation is stated as follows; it has been proved true by the NuSMV tool:

qeios.com doi.org/10.32388/KD99XX 24

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

4.5. Cycles

Yet another set of properties refers to the case of cyclic sequences of state transitions. For instance, it

should be true for all situations where a test fails, that a correcting cycle leads to new tests and eventually

to approval. In the state model, we have the cycles involving states #9 and #10 as shown in Figure 13.

Figure 13. Example of property associated to cyclic paths

The example shows the case of transitions between state #9: “ImplementedChange” and state #10:

“FailedTestsOfChange”. When testing failures occur (TestFailures), a transition from state #9 to #10 is

qeios.com doi.org/10.32388/KD99XX 25

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

triggered, and once the adjustments for the change implementation are performed and no test failures

occur (!TestFailures), the change being processed returns to state #9. In this case, the variable

"TestFailures" changes from true to false inde�nitely. This can be graphically observed by unfolding the

cycle between state #9 and state #10 in a computation tree as shown in Figure 14.

Figure 14. Computation tree for a cyclic path (states #9 and #10)

The speci�cation of this property is then stated as follows:

This formula states that there is a way, after leaving state #9 for state #10, to go back to state #9 in the

following step. As a result of a NuSMV run, this property has been proven true.

qeios.com doi.org/10.32388/KD99XX 26

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

4.6. False properties and counterexamples

The NuSMV model checking tool is able to navigate the model in its entirety and check for compliance

with all of our desired speci�cations. During veri�cation of the model, the automated tool will indicate

whether each property is true, or it will generate a counterexample for each property that did not comply.

The following example will show how NuSMV generates counterexamples to show the violation of a

desired property, and how this allows the process to be corrected. It will be shown that counterexamples

identify root causes of these problems and therefore help process designers correct their processes.

Consider a process designer writing a speci�cation for the mutually exclusive paths that follow state #11:

“Veri�edChange”. State #11 is associated with a set of state variables. This set of variables is listed in row 11

of Table 1. Five variables are TRUE in state #11: “RegisteredChangeRequest”,

“AuthorizationForProcessingChange”, “AllocationOfResponsibilities_SchedulingActivities”,

“CompletedActivities”, and “SuccessfulTests”. The process designer writes a speci�cation using these

variables from state #11, such that when this pro�le of variables is satis�ed, one of three mutually

exclusive states must follow: state #13, #14, or #10.

Next the process designer adds the CTL operator AG to the beginning of the speci�cation. Using AG

requires that in every instance when the �ve speci�ed variables are satis�ed, the process must continue

to one of the three states #10, #13, or #14. When running the NuSMV tool with this new speci�cation, the

following results are obtained:

qeios.com doi.org/10.32388/KD99XX 27

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Adding the AG operator creates an error. The reason is that the same set of �ve true variables used to

identify state #11 is also associated with other states, but the outcome of state #11 is not an appropriate

outcome for these other states. Speci�cally, the counterexample shows the states #14 and #20. Reviewing

the state variables considered in the speci�cation, it is clear that each variable with value true in state #11

is also true in state #14. The speci�cation, as it is written above, confuses state #14 for state #11 and

requires that a change move from state #14 to either state #10, #13, or #14, but these are not viable

transitions from state #14, and therefore the NuSMV tool produces state #14 as a counterexample to the

above speci�cation. A similar error happens in state #20. To correct the speci�cation, we must be able to

distinguish state #11 from #14. A variable that makes the difference between states #11 and #14 has not

been considered. The variable “FinalAcceptanceOfChange” in state #11 has the value false, while in state

qeios.com doi.org/10.32388/KD99XX 28

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

#14 it has the value true. Hence, the speci�cation should be corrected by including the variable

“FinalAcceptanceOfChange” with value false as indicated in state #11. The speci�cation is corrected as

follows:

The corrected expression was successfully veri�ed by the NuSMV tool. With this example it has been

shown that when �nding counterexamples (which means that the coded model does not comply with the

desired properties), it is possible to identify the root causes of problems and to proceed to correct

erroneous speci�cations in the model. These erroneous speci�cations in the model may re�ect errors in

the change control process, and thereby the formal model veri�cation process can verify if a project

management change control process is well designed.

5. Discussion and conclusions

This paper presents a methodology for formally verifying properties of a change control process. Starting

from a process diagram, following the PMI’s ICC guidelines, we express it as a state transition diagram,

which is then encoded with CTL in the NuSMV formal modelling tool. Then, key properties of the ICC

process should be expressed with CTL in the NuSMV tool. When veri�ed with the NuSMV tool, the

properties were either declared correct with complete assurance or counterexamples were presented.

Thus, once proved, we can be con�dent that the programmed speci�cations hold the properties that the

process is desired to have, avoiding the risks of getting a process with errors or failures. We consider that

the results of automated tests done in NuSMV demonstrate a way to verify crucial properties in IT

processes, at least according to the experience of one of the authors at the IT normativity of�ce that he

holds.

The contribution of this paper is the proposal of a methodology that applies temporal logic, and more

speci�cally CTL and NuSMV to make a formal veri�cation of a change control process, represented as a

state automaton model. To the best of our knowledge, this has not been done before. Further, this model

was programmed in the NuSMV to automatically verify desirable properties of effective process, such as

reachability, liveness, compliance with prerequisites, among others.

qeios.com doi.org/10.32388/KD99XX 29

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

The process tested here is based on the framework of the Project Management Institute’s Project

Management Body of Knowledge [PMI, 17]. In the review of literature sources, no similar works were found

applying this technique to process change models based on the PMI or a related framework. We conclude

that formal modeling of change control processes makes it possible to prove if a change control process

has or does not have some desired properties. The Integrated Change Control model considered in this

paper is a simple one that expresses a change control process for projects according to the PMI’s PMBOK

concepts, and it is complemented by the activities considered by the Construction Industry Institute. This

is a limited model as it does not handle simultaneous changes or non-independent changes. Therefore,

the model would not be able to identify possible relationships or dependencies between simultaneous

changes. Another limitation is that the model does not include bounds on repetitive sequence cycles (e.g.

cycles between state #9: “ImplementedChange” and state #10: “FailedTestsOfChange”), so the model would

not be adequate for handling cases that exceed a reasonable number of cycle repetitions. Further, the

model proposed in this paper does not consider changes with varying levels of urgency.

5.1. Future Work

Improvements or additions to be considered in future work would tend to overcome the limitations

described above. Also, concerning the actual deployment of the presented method in actual businesses,

we think it is not just a matter of getting permission; indeed, the change control process modeled here

should be implemented in software, which is, of course, a major endeavor. As presented, this work is just

a proof-of-concept, and in order to be widely applicable, we would have to adapt the method to a wide

range of applications, as well as develop software for providing automated support for the method

application.

References

[Almeida, 11] Almeida, J.B., Frade, M.J., Pinto, J.S., de Sousa, S.M., Rigorous software development: an

introduction to program veri�cation, Springer, 2011.

[Anderson, 98] Anderson, S.O., Bloom�eld, R.E., Cleland, G.L.. Guidance on the use of Formal Methods

in the Development and Assurance of High Integrity Industrial Computer Systems. Parts I and II.

European Workshop on Industrial Computer Systems (EWICS), 1998.

[Awad, 08] Awad, A., Decker, G., & Weske, M.. Ef�cient Compliance Checking Using BPMN-Q and

Temporal Logic. In Business Process Management (Vol. 5240, pp. 326–341). Berlin, Heidelberg:

qeios.com doi.org/10.32388/KD99XX 30

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

Springer Berlin Heidelberg, 2008.

[Bérard, 01] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen P.,

Systems and Software Veri�cation: Model-Checking Techniques and Tools. Springer, 2001.

[Bi, 04] Bi, H. H. and Zhao, J. L., Applying propositional logic to work�ow veri�cation. Information

Technology and Management, 5:293–318, 2004.

[Bjørner, 06] Bjørner, D.: Software Engineering 2: Speci�cation of Systems and Languages (Texts in

Theoretical Computer Science. An EATCS Series) Springer, Berlin, 2006.

[Bjørner, 14] Bjørner, D., Havelund, K., 40 years of formal methods, in "FM 2014: Formal Methods", 42-

61, Springer, 2014.

[Bjørner, 70] Bjørner, D.: Flowchart-Machines. BIT 10(4) pp 415-442, 1970.

[Burstall, 69] Burstall, R., Landin, P., Programs and their Proofs: An Algebraic Approach. In Machine

Intelligence 4. Edinburgh University Press, 1969.

[Cassandras, 09] Cassandras, Ch.G., Lafortune, S., Introduction to Discrete Event Systems. Springer

Science & Business Media, 2009.

[Chellas, 80] Chellas, B., Modal Logic: An Introduction. Cambridge University Press, 1980.

[Cimatti, 00] Cimatti, A., Clarke, E., Giunchiglia, F., & Roveri, M., NuSMV: A new symbolic Model

Checker. International Journal on Software Tools for Technology Transfer 2(4), 410-425, Springer-

Verlag, 2000.

[Clarke, 96] Clarke, E.M., Wing, M.J., Formal methods: State of the art and future directions. ACM

Comput. Surv. 28(4), 626–643, 1996.

[Fisher, 11] Fisher, M., An Introduction to Practical Formal Methods Using Temporal Logic, John Wiley

& Sons, 2011.

[Groefsema, 13] Groefsema, H., & Bucur, D., A survey of formal business process veri�cation: From

soundness to variability. In Proceedings of the Third International Symposium on Business Modeling

and Software Design, pp. 198-203, 2013.

[Harel, 98] Harel, D., & Politi, M., Modeling reactive systems with statecharts: the STATEMATE

approach, McGraw-Hill, 1998.

[Ibbs, 01] Ibbs, W. C., Wong, C. K., & Kwak, Y. H.: Project Change Management System. Journal of

Management in Engineering, 159-165, 2001.

[Kelly, 95] Kelly, J.C., Lead, T., Kemp, K., & Fairmont, W.V., Formal Methods Speci�cation and

Veri�cation Guidebook for Software and Computer Systems, Vol 1. NASA report (NASA-GB-002-95),

1995.

qeios.com doi.org/10.32388/KD99XX 31

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

[Kerzner, 05] Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and

Controlling (9 edition). Wiley, 2005.

[Lamport, 83] Lamport, L., What good is temporal logic?, IFIP congress, 657-668, 1983.

[Larson, 11] Larson, E. W., & Gray, C., Project Management: The Managerial Process (Fifth edition). New

York, NY: McGraw-Hill/Irwin, 2011.

[Lewis, 05] Lewis, J., Project Planning, Scheduling & Control, 4E: A Hands-On Guide to Bringing

Projects in on Time and on Budget (4 edition). New York: McGraw-Hill, 2005.

[Monin, 03] Monin, J., Understanding Formal Methods, Springer, 2003.

[Phillips, 11] Phillips, J. J., Bothell, T. W., & Snead, G. L., The Project Management Scorecard (1 edition).

Amsterdam; Boston: Routledge, 2011.

[PMI, 17] PMI, A Guide to the Project Management Body of Knowledge (PMBOK Guide) - Sixth Edition.

Project Management Institute Inc., Pennsylvania, USA, 2017.

[Rance, 11] Rance, S., ITIL Service Transition 2011 Edition. London: The Stationery Of�ce, 2011.

[Rozier, 10] Rozier, K., Linear Temporal Logic Symbolic Model Checking. Computer Science Review

5(2), 163-203, Elsevier, 2010.

[Schwalbe, 09] Schwalbe, K., Information Technology Project Management (6 edition). Boston, MA:

Cengage Learning, 2009.

[Stackpole, 09] Stackpole, C. S., A Project Manager’s Book of Forms: A Companion to the PMBOK Guide

(1 edition). Hoboken, N.J.; Newtown Square, PA: Wiley, 2009.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/KD99XX 32

https://www.qeios.com/
https://doi.org/10.32388/KD99XX

