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1. Introduction

At present, the description of the origin of large cosmological structures is based on two
main methods, based on the use of the sequential hydrodynamic approach (in which the
influence of gravitational fields of particles, of which the structures are composed, is taken
to be secondary), and the approach using the methods of nonequilibrium thermodynamics
and kinetic equations for systems of massive interacting particles. It is usually assumed that
the primary structure formation in the Universe is caused by deviations from the Friedmann
flow leading to the appearance of the topological features of the type of caustic surfaces, for
example, which are consequences of crossing of fronts of multicenter baryonic acoustic waves.
These two-dimensional manifolds form, at certain stages of their evolution, relatively long-lived
three-dimensional “web-like” formations. The classical models of Ya.B. Zel’dovich [1]–[3] related
to the ordered (in one or two directions) emergence of a set of density fluctuations can be referred
to the same technique. of density or velocity fluctuations in an initially homogeneous moving
system of particles (the theory of “pancakes” or “walls”). The approach using nonequilibrium
statistical mechanics, is considered by most authors as a basis for the formation of secondary
cosmological (meso)structures with smaller (compared to the “caustic” approach) dimensions,
and actually playing an essential role only for explaining the decay rate or pseudocollapse of
the instability developing in megastructures. It is obvious what is the fundamental difference
between the two above-described techniques: 1) the hydrodynamic approach assumes little
influence of the intrinsic gravity of the particles in the considered system compared to the
influence on the geometry of inhomogeneities (2-dimensional caustics) of the modified (by
introducing perturbations in the De Sitter epoch) Friedmann flow; 2) the kinetic-field approach
is assumed to be suitable for relatively fast non-equilibrium phenomena in an external quasi-
ordered medium (in which the wave fronts overturning and intersection of three-dimensional
matter flows channels for kinetic processes are formed).

Both approaches, to all appearances, do not have strictly defined limits of applicability, and
are suitable only with certain physical assumptions (in particular, the authors can emphasize
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here the following the assumption of coherence of velocity fluctuations in the selected directions
for the models of void walls, as well as the universality of the internal structure of the known
star superclusters). However, the generally accepted separation on scales of the hydrodynamic
and kinetic approach in the light of new approaches in modeling may be inappropriate at all.
It is usually assumed that the Friedmann flow rate exceeds the rate of structure ordering in the
astrophysical system associated with kinetic temperature processes. This assumption is due to
the very definition of temperature in statistical mechanics due to double, triple, ... collisions of
particles (the thermal equilibrium in this case in a rarefied set of particles is established very
slowly, and the geometry of the system is connected with it). the geometry of arising long-lived
subsystems is connected with it). If we assume that the thermalization in the system occurs due
to the interaction of the of particles with the self-consistent gravitational field of its particles and
the external field from neighboring systems (the temperature takes the status of “kinetic” [4]),
then the quasi-stationary states of the of the system (states of relative equilibrium) associated
with the emergence of ordered structures in the system can be reached in time intervals smaller
than in the case of formation of a web of caustics for the hydrodynamic equations without
taking into account gravitational fields and acoustic modes. At that, taking into account
the increasing antigravity forces between particles on sufficiently large distances, one should
expect a discrepancy between the results of kinetic modeling and the results of hydrodynamic
modeling due to the lack of conformality of structures of different cosmological scales: The
zones of dominating influence of ascending and descending branches of the modified Newton
gravitational potential form a topologically different multi-connected structure of matter in the
Universe (in particular, one can note dipole objects “’Shapley Attractor/Dipole Repeller” [5]
for the maximum currently observable scales).

In the present paper, the authors continue to develop the method of describing cosmological
structures on the basis of the integral form of the gravitational potential equation, which has
been previously considered in the papers [6]–[8]. The main idea of the proposed approach is
deterministic ordering of large structures, arising in the course of evolution of systems of massive
particles interacting by means of a self-consistent gravitational field. The description of quasi-
static processes occurring in the system near its state of relative equilibrium is possible using
the system of Vlasov-Poisson equations. However, in this case it is reasonable to consider not
the local version of the equation for the potential — the differential Poisson equation (in the
Liouville–Gelfand form, as the the particle distribution density is represented as a Maxwell
exponent) — but its global variant in the form of an integral equation of Hammerstein type.
For the latter, the corresponding boundary problem is posed based on the use of Gurzadyan’s
[9] theorem (this is due to the fact that the structure of the of solutions of the integral equation
is more illustrative, and their possible singularities can be expressed using known formalizable
representations). At it is necessary to investigate the properties of the spectrum of the nonlinear
integral operator and its relation with the spectrum of the Fredholm operator for the linear
potential.

2. Integral Hammerstein form of the Poisson–Liouville–Gelfand equation for
the system of massive particles

The starting point for obtaining hydrodynamic models with singularities–caustics and kinetic
models without taking into account the influence of gravity is the introduction of the “Friedmann
flow” characterized by a field of velocities whose values for each pair of points in space will be
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proportional to the distance between these points v = H∆r. The Friedmann flow in the above-
mentioned models was considered as some analog of an equilibrium state, which is perturbed
either by inhomogeneity in the initial data set, or random fluctuations of the density leads to the
formation of geometrical “small” inhomogeneity (adiabatically stable) of the spatial distribution
of particles of the system on the background of this flow (the “smallness” is caused by random
deviations, which a random deviations, which are assumed a priori to be essentially limited in
norm in comparison with the basis values of mean parameters).

The system of Vlasov–Poisson equations for describing of dynamics in a system of N
cosmological objects (with masses mi=1,...,N = m ≡ 1) may be represented as

∂F (x,v, t)

∂t
+ divx(vF ) + Ĝ(F ;F ) = 0, Ĝ(F ;F ) ≡ −

(
∇vF

)(
∇x(Φ[F (x)]

)
, (1)

∆(3)
x Φ[F (x)]

∣∣
t=t0

= AS3G

∫
F (x,v, t0) dv − c2Λ

2
, (2)

S3 ≡ meas S2 = 4π, Sd = {x ∈ Rd, |x = 1|},

where F (x,v, t) is the distribution function of gravitationally interacting particles, A is a
normalization factor for particle density, t0 is a fixed moment of time, G is a gravitational
constant System of objects/particles is considered in the finite domain of configurational space
Ω ⊆ R3 (diam Ω ≤ ∞), with a C2-smooth boundary ∂Ω.

Equation (2) is the nonlinear Poisson equation, with account the cosmological term. The
third term on the right side of the kinetic equation (1) may be represented as

Ĝ(F ;F ) = G(F )
∂F

∂v
, G(F ) = −∇xΦ[F (x)], (3)

Φ[F (x)] = AS3G

∫ ∫
K3(x− x′)F (x′,v′, t∗) dx

′dv′ +
Λc2

12
|x|2 + B̂3(x,x

′),

where: K3(x − x′) = −|x− x′|−1, B̂3(x,x
′) is an operator term that takes into account the

influence of boundary conditions. Classical Newtonian potential ΦN(r) = −Gm/r increases
monotonically on the interval r ∈ (0,+∞) (ΦN ∈ (−∞, 0)); a generalized (with cosmological
term) Newton gravity potential ΦGN(r) ≡ −Gm/r − 1

2
c2Λr2 has a maximum Φ

(max)
GN (rc) =

−1
2
G(3mc2/3)Λ1/3, rc =

(
Gm/(3Λc2)

)1/3 (it increases on the interval r ∈ (0; rc] and decreases
on the interval r ∈ (rc; ∞)).

We will consider the stationary case of dynamics: F = F (x,v). However, it should be pointed
out that further analysis will mainly concern the second equation of the system (1)–(2), which
is the Poisson equation relative to the potential, and no explicit time dependence is observed
in it. That is why, when varying the Hilbert–Einstein–Maxwell action (or Hilbert–Poisson–
Poisson) [6]–[8] maybe separate variation over fields (for a fixed particle distribution) and
variation over distribution functions (with fixed fields); thus, approach considered in this paper,
is applicable for adiabatic processes at a quasi-equilibrium (weakly varying) particle distribution
functions. In this case, we can use the energy substitution for unique variable of the distribution
function [10]: F (x,v) = f(ε) ∈ C1

+(R1), where ε = mv2/2 + Φ(x). Thus, the particle density
in the right side of the Poisson equation can be expressed in terms of the equilibrium solution
of Vlasov equations. This solution is identical in form of Maxwell–Boltzmann distributions
f = f0(ε) = AN exp(−ε/θ). However the physical meaning of the equilibrium solution of the
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Vlasov equation is essentially different from that of the Boltzmann equation. This solution must
meet the following requirements: 1) the maximal possible statistical independence, 2) isotropy
of velocity distribution, 3) stationarity of distribution in the form F (x,v) = ρ(x)

∏
i=1,2,3 f(v

2
i ).

The substitution expression into the Vlasov equation gives∑
i

(
vi
∂ ln(ρ)

∂xi

− ∂Φ

m∂xi

∂f(v2i )

f(v2i ) ∂vi

)
F = 0, (4)

and we get system of ODEs:

∂(ln ρ)/∂xi

−∂Φ/∂xi

=
∂ ln

(
f(v2i )

/
∂vi)

mvi
= −θ−1, (5)

where θ is a constant of separation of variables, it’s physical meaning is a kinetic temperature in
the system of interacting collisionless particles (in accordance of A.A. Vlasov definition [4],[11]–
[12], thermodynamic/collisional equilibrium is globally absent in this system).

Equation (2) for gravitational potential maybe written now as

∆Φ(x) = ANGS2
3

(∫
y∈[0,∞]

exp
(
− y2/(2θ)

)
y2 dy

)
· exp(−Φ/θ)− c2Λ

2
, (6)

A, θ, RΩ ∈ R1,

where: RΩ — radius of region Ω accepted in the form of a ball in configurational 3–space (it is
the simplest physical realized case).

So, the Poisson equation (2) takes the form of an inhomogeneous equation Liouville–Gelfand
(LG) [13] with local (generalized) temperature changing sign in depending on the value of
the derivative of the potential at a given point: as mentioned above, for two-particle problem
(in particular, for a formal pair in the form of a center coalescence of the main part of the
particles and the conditional “extremely distant” particle) can dominate the repulsive force due
to the presence of a quadratic term ∼ |x|2; while generalized the indefinite thermodynamics
of a system of gravitating particles becomes similar to that for the Onsager vortices in the
classical hydrodynamics [15], and the existence of solutions of the LG equation for large system
sizes provides the existence of solutions to the Vlasov equation (1). This can be shown using
the parametric Young’s inequality [14]. It was be shown by author [16], for the conditions
c2Λ ≷ 3πλ† (θ ≷ 0), system of Vlasov–Poisson equations has solutions of the type of distribution
functions that admit the energy substitution, and potential of gravitational field, which have
the property of convexity (in the general case, for an arbitrary RΩ ≤ ∞, in contrast to the case
of the attraction potential, for which there is a limitation RΩ <

(
C0θ

2/
(
λ†/S2

3

)2)1/4); we used
notation λ† ≡ ANGS2

3J (θ), J (θ) ≡
∫ vmax

0
exp

(
− v2/(2θ)

)
v2dv.

As already noted in [16], in the formulation of the Dirichlet problem for the Poisson equation
(2) (or (6)) with a constant right-hand side on the boundary of the Ω region according to McCrea
averaging gravitational field outside the compact subdomain Ω0 containing system of particles
(which is situated in the region Ω (measΩ0 ≪ measΩ)), we can assume the boundary condition
on the ∂Ω is given by in accordance with the Gurzadyan theorem [9].

The solution of Dirichlet problem may be obtained with the help of integral representation
of the equation for gravitational (double–layer) potential. Equation for the potential with
Maxwell–Boltzmann particle density, corresponding to internal Dirichlet problem in a bounded
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domain Ω (under boundary conditions corresponding to the Milne–McCrea model) has the
following form:

Φ(x) = λI

∫
Ω′
K(x,x′) exp

(
− Φ(x′)/θ

)
dx′ − c2Λ

12
x2 + C ′

0, (7)

G(x,x′) ≡ 4π
∞∑
ℓ=0

ℓ∑
m=−ℓ

Y ∗
ℓm(ϑ

′, φ′)Yℓm(ϑ, φ)

2ℓ+ 1

xℓ
<x

ℓ
>

R2ℓ+1
Ω

,

x< = min(|x|, |x′|), x> = max(|x|, |x′|),

K(|x− x′|) ≡ G(x,x′)− 1

|x− x′|
, C ′

0 = −GNm

RΩ

− c2ΛRΩ
2

12
, λI = λ†/S3.

In essence, the above is the explicit form of the equation for the potential introduced in
expression (3), where the Green’s function G(x,x′) for the inner boundary value problem in
the domain Ω (in this case, due to symmetry of the latter we have

∫
Ω′ G(x,x′)ρ(|x′|)dx′ →

C1 = const(∝ 1/RΩ)). Let’s introduce a new variable U(x) ≡ (Φ(x) − C ′
0 − C1)/θ + α|x|2,

α ≡ c2Λ/(12θ), the above equation can be written as the uniform Hammerstein integral
equation:

U(x) = λθĜ(U), Ĝ(U) ≡
∫
Ω′
K(|x− y|)Ψ

(
y, U(y)

)
dy, (8)

λθ ≡
λ†

θS3

exp
(
(−C0 − C1)/θ

)
,

K(|x− y|) = |x− y|−1, Ψ
(
y, U(y)

)
≡ − exp

(
− αy2 − U(y)

)
.

For θ > 0 we get λθ > 0, the mapping Ĝ(U) is compact (in L2(Ω)) nonlinear operator, since for
it the conditions of the Nemytskij–Vainberg theorem [17] are satisfied (

∫
Ω

∫
Ω
K2(|x−y|)dxdy =

KΩ < ∞, Ψ
(
y, U(y)

)
∈ C(Ω⊗R) and |Ψ

(
y, U(y)

)
| ≤ g(y)+CΨ · |U |, g ∈ L2(Ω), g(y), CΨ > 0).

Let consider mathematical expression Ψ† ≡
∫ U

0
Ψ
(
y, U

)
dU = exp(−αy2) · (exp(−U) − 1); it

is obviously, Ψ† ≤ τ1|U | + τ2 (x ∈ Ω), where τ1,2 > 0, τ1 < 1/λK, λK is a maximal eigenvalue
of integral equation kernel K. Then, in accordance with Theorem 2.8 [18], the Hammerstein
equation (6) has at least one solution U0(x). We will deal with the question of the uniqueness
of a solution or the presence of many solutions in the next paragraph.

3. Solutions of Hammerstein equation for potential and its cosmological sequences

We will assume for λ = (λθ)0 the equation (8) has nontrivial solution U = U0. Consider
the Fredholm’s determinant D(λ) [19] for integral kernel of linearized (in the vicinity O(U0) of
basic solution U0) Hammerstein equation K̃(x,y) ≡ K(|x − y|) · ∂Ψ

(
y, U0(y)

)
/∂U0(y). After

linearization (an application of Frechet derivative) we obtained linear Fredholm self-adjoint
compact operator with discrete spectrum (on real axis) [20]. If D

(
(λθ)0

)
̸= 0 (i. e. (λθ)0

isn’t characteristic value of kernel K̃(x,y)), then in the vicinity O
(
(λθ)0

)
the equation (8)

has unique analytic (by powers of
(
λθ − (λθ)0

)j, j = 1, 2, ...) solution U(x|λθ) [21], for which
limλθ→(λθ)0 U(x|λθ) = U0(x) (∀x ∈ Ω).

Let consider the solution of (8) in the vicinity O(U0)×O(λθ)0, for what introduce perturbed
characteristic value λθ = (λθ)0 + ξ and perturbed solution U = U0(x) + ζ(x). Following the
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methodology [22], we substitute these expressions in the equation (8) written in the following
form:

ζ(x) = (λθ)0

∫
Ω

(
ω1(y)ζ + ω2(y)ζ

2 + ...
)
dy

|x− y|
+ (9)

ξ

∫
Ω

(
ω0 + ω1(y)ζ + ω2(y)ζ

2 + ...
)
dy

|x− y|
,

and taking into account of Taylor expansion Ψ
(
x, U

)
=

∑
j=0,1,... ωj(x)ζ

j(x) (here ζ(x) =∑
k=1 ξ

kζk(x)),
ω0(x) = Ψ

(
x, U0

)
= − exp

(
− αx2 − U0(x)

)
, (10)

ω1(x) =
∂Ψ

(
x, U

)
1!∂U

∣∣∣∣
U=U0

= exp
(
− αx2 − U0(x)

)
, ...,

we obtain system of recurrent linear and multilinear equations for variables ζi(x):

ζ1(x) = (λθ)0

∫
Ω

|x− y|−1ω1(y)ζ1(y) dy + (λθ)0

∫
Ω

|x− y|−1ω0(y) dy, (11)

ζ2(x) = (λθ)0

∫
Ω

|x− y|−1ω1(y)ζ2(y) dy+ (12)∫
Ω

|x− y|−1
(
(λθ)0ω2(y)ζ

2
1 (y) + ω1(y)ζ1(y)

)
dy, ...

Since, by assumption, D(λ0) ̸= 0 then for linear non-uniform Fredholm IInd type equation
(11) there exists a resolvent R(x,y;λ0) and we can write

ζk(x) = (λθ)0

∫
Ω

R(x,y;λ0)Hk

(
ζ1(y), ζ1(y), ..., ζk−1(y)

)
dy+ (13)

Hk

(
ζ1(x), ζ1(x), ..., ζk−1(x)

)
(here operator–function Hk is a sum of all integrals including ζ1, ζ2, ... up to (k − 1)–th power:
ζk = (λθ)0

∫
|x− y|−1ζ1(y)dy +Hk(x)).

Thus, we can consistently and uniquely define all functions ζk. Consequently, we can formally
construct a power series for ζ(x) = ζ

(
ξi, ζi(x)

)
≡ ξiζi (summation over repeating indices), and

it only remains to prove the constructed series converges (for all values from some convergence
circle) of the deviation parameter ξ (this will completely establish the equivalence of the
expansion ζ

(
ξi, ζi(x)

)
and the function ζ(x)).

Based on the properties of the Lyapunov–Schmidt integral operator with a weakly polar
kernel (Lemma 8.1 in [23]), and explicit forms of ωk ∝ exp(−αx2−U)/k!, we can state |

∫
Ω
|x−

y|−1ωk(y)dy| < Z1(= const) (k = 0, 1, ..., ∀x ∈ Ω). Next, by definition, |R(x,y;λ0)| < Z2(=
const) (∀x,y ∈ Ω). Then, we can write majorant series for series ζ

(
ξi, ζi(x)

)
. Let introduce

algebraic equation ζ† = Z3

(
ξ + ξζ† + (ξ + (λθ)0) ·

(
(ζ†)2 + (ζ†)3 + ...

))
, Z3 ≡ Z1(1 + Z2|(λθ)0|).

We substitute ζ(x) = ξjκj|j=1,2,... into the last equation and then compare the coefficients at
different powers of deviation variable ξ:

κ1 = Z3, κ2 = Z3(κ1 + |(λθ)0| · κ2
1), (14)

κ3 = Z3

(
κ2 + κ2

1 + 2|(λθ)0| · κ1κ2 + |(λθ)0|κ3
1

)
, ...
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Consequently, |ζk(x)| < κk (x ∈ Ω), and convergence region of the series ζ = Z3

(
ξ + ξζ +

...
)

is equivalent of convergence region of the series ζ(x) = ξjζj(x)|j=1,2,.... For describing of
convergence region of ζ = ξiκi we ought to investigate the implicit function ζ = Z3

(
ξ+ ξζ+ ...

)
as function ζ = ζ̃(ξ):

ζ̃(ξ) = Z3ξ + (Z3ξ − 1)ζ† + Z3(ξ + |(λθ)0|) · ((ζ†)2 + (ζ†)3 + ...) = 0. (15)

By Implicit Function Theorem [24], since ∂ζ̃/∂ζ† = −1 for ξ = ζ† = 0, then there exists
convergence circle with positive radius for series ζ† = Z3(ξ+ξζ†+(ξ+ |(λθ)0|)((ζ†)2+(ζ†)3+ ...).
Consequently, there exists function ζ(x), and the function

U(x) = U0(x) + ζ(x) = U0(x) +
(
λθ − (λθ)0

)
ζ1(x) +

(
λθ − (λθ)0

)2
ζ2(x) + ..., (16)

which is a holomorphic solution of the Hammerstein equation (8) in the vicinity O
(
(λθ)0

)
(herewith lim(λθ)→(λθ)0 U = U0).

We recall some of the properties of linear compact operator L̂ϕ = λ
∫
Ω
K(|x − y|)ϕ(y)dy.

The kernel of this operator is symmetric, weak polar type; consequently, operator L̂ belongs
to Hilbert–Schmidt type operators. The existence of at least one characteristic function was
establed by O.D. Kellogg [25]. Moreover, there exists a sequence of characteristic numbers and
corresponding eigenfunctions of the investigated kernel of the linear integral operator (Theorem
146 of [26]). In accordance with [27] we can consider

λℓ,j = R2
Ω ·

(
φ
(ℓ+1/2)
j

)−2
, ℓ ≥ 0, j ≥ 1, (17)

where φ
(ℓ+1/2)
j are the roots of the transcendental equation

(2ℓ+ 1)Jℓ+1/2

(
φ
(ℓ+1/2)
j

)
+

φ
(ℓ+1/2)
j

2

(
Jℓ−1/2

(
φ
(ℓ+1/2)
j

)
− Jℓ+3/2

(
φ
(ℓ+1/2)
j

))
= 0, (18)

where Jν(...)|ν∈R refers to the Bessel function of fractional order. The eigenfunctions corresponding
to each eigenvalue λℓ,j can be represented, in spherical coordinates, in the form ϕℓ,j,m(r, θ, χ) =
Jℓ+1/2(

√
λℓ,jr)Y

m
ℓ (θ, χ) (|m| ≤ ℓ), Y m

ℓ (θ, χ) = Pm
ℓ

(
cos(θ)

)
cos(mχ). It should be noted, we

can consider Hammerstein equation (8) for an arbitrarily shaped region Ω, but for spherical
region we assume ℓ = m = 0 (Y 0

0 =
√

1/(4π)). The kernel K̃(x,y) = |x − y|−1ω1(y, U0(y))
of the Fredholm equation for potential belongs to Schmidt class, and can be transformed to
symmetrical form:

K̃(x,y) =
√

ω1(y)/ω1(x)|x− y|−1
√
ω1(y)ω1(x). (19)

In this case the resolvent for kernel K̃(x,y) is equal to
√
ω1(y)/ω1(x)R1(x,y;λ), where R1 is a

resolvent for symmetric kernel |x− y|−1
√

ω1(y)ω1(x). In fact, ω1(y) is a wight for Newtonian
kernel. We denote λ1 ≡ (λθ)0 = λ0,1(K̃) the characteristic number to which the eigenfunction
corresponds ϕ1 ∼ J1/2(

√
λ1r). For simplification of further calculations we will assume ω1 ≡ 1

(this can always be accomplished by multiplying of left-hand and right-hand sides of (9) by√
ω1 and redefining of

√
ω1ζ → ζ ′, ω0/

√
ω1 → ω′

0 etc.). We’ll be looking for solutions of (9) in
the form of a series ζ = ξiζi|i=1,2,.... After substituting the last series we obtain the system of
the recurrent integral equations:

ζ1(x) = λ1

∫
Ω

|x− y|−1ζ1(y)dy +

∫
Ω

|x− y|−1ω0dy, (20)
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ζ2(x) = λ1

∫
Ω

|x− y|−1ζ2(y)dy +

∫
Ω

|x− y|−1
(
λ1ω2ζ

2
2 (y) + ζ1(y)

)
dy, ...

According to the Fredholm alternative, the condition of existence of the solution of the first
equation of the system will be orthogonality of characteristic function ϕ1 and the second
term in the right-hand side of (18): Ĥ(ϕ1) ≡

∫
Ω
ω0(y)ϕ1(y)dy = 0. This case is physically

unrealizable (for ϕ1, ϕ2, ...), which can be checked directly; this fact means the absence (in the
neighborhood of the characteristic value λk, k ≥ 1) of the analytic solution of the nonlinear
equation for gravitational potential. Therefore we turn to the case Ĥ(ϕ1) ̸= 0. Then equation
(12) is unsolvable (condition of Fredholm theorem is absent), and consequently, the analytic
series ζ = ξiζi (for integer indices and powers) doesn’t exist. However, we can consider the
representation ζ(x) as a Puiseux series: ζ = ξk/2ζk|k=1,2,.... Let’s denote ξ1/2 ≡ ν, then equation
(9) takes the form

ζ(x) = ν2

∫
Ω

|x− y|−1
(
ω0 + ζ(y) + ω2ζ

2(y) + ...
)
dy+ (21)

λ1

∫
Ω

|x− y|−1
(
ζ(y) + ω2ζ

2(y) + ...
)
dy,

and above–mentioned Puiseux series takes form ζ = νkζk|k=1,2,.... Let’s substitute this series
into equation (21), we obtain an infinite system of equations:

ζ1(x) = λ1

∫
Ω

|x− y|−1ζ1(y) dy, (22)

ζ2(x) = λ1

∫
Ω

|x− y|−1ζ2(y) dy +

∫
Ω

|x− y|−1
(
λ1ω2ζ

2
1 (y) + ζ1(y)

)
dy, ..., (23)

ζn(x) = λ1

∫
Ω

|x− y|−1ζn(y) dy+ (24)∫
Ω

|x− y|−1
(
2λ1ω2ζ1(y)ζn−1(y) +Q(ζ1, ..., ζn−1)

)
dy, ....

From (20) we obtain ζ1(x) = E1 · ϕ1(x), E1 = const. The condition (by Fredholm alternative)
of existence of solution of equation (23) can be written as∫

Ω

∫
Ω

|x− y|−1
(
λ1ω2ζ

2
1 (y) + ω0

)
ϕ1(x)dxdy = 0, (25)

or, after integration by the variable x:
∫ (

λ1ω2ζ
2
1 (y) + ω0

)
ϕ1(y)dy = 0. If we substitute in this

formula the obtained above expression ζ1 = E1 · ϕ1, then for constant E1 we have an explicit
expression

E1 = ±

√
−

∫
Ω
ω0ϕ1(y)dy∫

Ω
λ1ω2ζ31 (y)dy

(26)

The equation (23) may be written as

ζ2(x) = P2(x) + E1ϕ1(x), P2(x) ≡
∑
j=2,...

ϕj(x)

λj − λ1

∫
Ω

(
λ1ω2ζ

2
1 (y) + ω0

)
ϕj(y)dy. (27)
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In general case n ≥ 3 we obtain:

ζ3(x) = P2(x) + E3ϕ1(x), (28)

P2(x) ≡
∑
j=2,...

ϕj

λj − λ1

∫
Ω

(
2λ1ω2ζ1(y)ζ2(y) +Q(ζ1, ζ2)

)
ϕj(y)dy,

ζn(x) = Pn(x) + Enϕ1(x), (29)

Pn(x) ≡
∑
j=2,...

ϕj

λj − λ1

∫
Ω

(
2λ1ω2ζ1(y)ζn−1(y) +Q(ζ1, ζ2, ..., ζn−1)

)
ϕj(y)dy,

En

E1

∫
Ω

ω0ϕ1(y)dy =

∫
Ω

(
2λ1ω2ζ1(y)Pn(y) +Q(ζ1, ζ2, ..., ζn+1)

)
ϕ1(y)dy.

Here Pn(x) can be associated with A. Ruston pseudoresolvent [28]. Consequently, we can write
the series ζ = ξk/2ζk|k=1,2,..., this series formally satisfies to the equation (9); we ought to
demonstrate the convergence of this series in the neighborhood O(ξ). Let introduce: 1) constant
X0, defined by condition |E1ϕ1(x)| = |ζ1(x)| < X0 (∀x ∈ Ω); 2) function S(z) = (|λ1| +
ν2)Mz2/(1−z/ρ‡)+ν2(ω

(m)
0 +z), where |ω0| < ω

(m)
0 , ρ‡ ∈ (0, ρ‡max), ρ‡max is a convergence radius

of the series ω2(x) + ω3(x)z + ω4(x)z
2 + ..., |ω2(x)| < M. We substitute in the definition S(z)

the decomposition z = νX0+ ν2(X1+Y1)+ ν3(X1+Y1)+ ... and formally obtain series S(z) =
ν2S2 + ν3S3 + .... The value Sn(z) is a majorant function for expression 2λ1ω2ζ1(x)ζn−1(x) +
Q(ζ1, ζ2, ..., ζn) for condition: Xn +Yn is a majorant function for ζn+1(x), n = 1, 2, ...

We denote: 1) (1/E1)
∫
Ω
ω0ϕ1(x)dx = N(= const); 2) Yn = Sn+1ρ

‡
max, 3) (N+2|λ1|MX0a

2)Xn =
Sn+1a

2 (a > |ϕ1(x)|). Consequently, |Pn(x)| < Yn, En+1 < Xn. Let introduce functions
X ≡ ν2X1+ν3X2+..., Y ≡ ν2Y1+ν3Y2+..., then above given definition of variables X1, ...,Xn, ...
and Y1, ...,Yn, ... is equivalent to solving of the system of equations:

Y = ρ‡max

(
(|λ1|+ ν2)

M(νX0 + X+Y)2

1− (νX0 + X+Y)/ρ‡
+ ν2(ω

(m)
0 + νX0 +Y+ X)

)
, (30)

(|N|+ 2|λ1|MX0a
2)νX = a2

(
(ν2 + |λ1|)

M(νX0 + X+Y)2

1− (νX0 + X+Y)/ρ‡
+ (31)

+ν2
(
ρ‡max + νX0 + X+Y

)
− ν2(ρ‡max +M|λ1|X2

0)

)
.

Let’s replace the variables: X = νX†, Y = νY†. Then the system (30)–(31) takes the form

Θ1 = Y† − νY†X0 +Y† + X†

ρ‡
− ρ‡max

(
(ν2 + |λ1|)Mν(X0 +Y† + X†)+ (32)

+ν
(
ρ‡max + ν(X0 +Y† + X†)

)(
1− ν

X0 +Y† + X†

ρ‡
))

= 0,

Θ2 = (|N|+ 2|λ1|X0Ma2)X† − (|N|+ 2|λ1|X0Ma2)X†ν
X0 +Y† + X†

ρ‡
− (33)

−(|λ1|+ ν2)M(X0 +Y† + X†)2a2−

9



−
(
ν(X0 +Y† + X†)−M|λ1|X2

0

)(
1− ν

X0 +Y† + X†

ρ‡
)
= 0.

The Jacobi determinant of the last system of equations:

∆ = D(Θ1,Θ2)/D(X†,Y†) = −|N| < 0, X† = Y† = ν = 0.

Consequently, series defined variables X and Y, are converge in the vicinity of the point ν = 0.
The series νX0+ν2(X1+Y1)+ν3(X2+Y2)+ ... has convergence circle (with center in the point
ν = 0). This fact write to us the Puiseux series ζ = ξk/2ζk|k=1,2,... converges in the vicinity of
the point ξ = 0.

We can conclude that Hammerstein equation for gravitational potential in the vicinity
O(λ1) ∋ λ (where λ1 is one of the characteristic values of linear Fredholm equation for Newton
potential) have two nonholomorphic solutions of the form

U(x) = U0(x) + (λθ − (λθ)0)
1/2ζ1(x) + (λθ − (λθ)0)ζ2(x) + (λθ − (λθ)0)

3/2ζ3(x) + ... (34)

Now we return to the equation (8) and assumption:
(
(λθ)0, U0

)
is a characteristic value and

eigenvalue of Hammerstein operator Ĝ(U). But in accordance with the Schauder principle (see
Theorems 2.20–2.23 in [18]) this operator has a continuum of eigenfunctions: if 1/(λθ)0 ∈ σ(Ĝ),
then

(
1/(λθ)0 − ϵ∗; 1/(λθ)0 + ϵ∗

)
≡ Cσ(λθ)0(Ĝ) ⊆ σ(Ĝ). Thus, any point 1/λ̃θ of pseudo-

continuous spectrum Cσλθ
can replace in the previous calculations the characteristic value

(λθ)0; this value corresponds to the element Ũ0 of Ker
(̂
I− λ̃θĜ

)
.

In physical terms the expression (34) can written as

Φ(x) = (C‡
1 + c2Λ/12)|x|2 + U0(x)

∑
i

(
ANGJ (θ) exp(C‡

1/θ)− (λθ)0
)i/2

, (35)

where U0(x) is a solution of the Hammerstein equation for the potential (existing due to the
properties of the corresponding integral operator), λ1(= λθ)0) is the characteristic value of
kernel ω1/|x−y| (for Fredholm equation) in the vicinity of the point λθ ∈ ((λθ)0− ϵ, (λθ)0+ ϵ).
If sgn

( ∫
Ω
ω0ϕ1(y)dy

)
̸= sgn

( ∫
Ω
λ1ω2ϕ

3
1(y)dy

)
, then for λ > λ1 there exist two solutions, and

for λ < λ1 there aren’t solutions. For sgn
( ∫

Ω
ω0ϕ1(y)dy

)
= sgn

( ∫
Ω
λ1ω2ϕ

3
1(y)dy

)
, then for

λ < λ1 there exist two solutions, and for λ > λ1 there aren’t solutions.
Thus, it has been shown that the solution of the system of Vlasov-Poisson equations, in

the case of using the energy substitution into the stationary Vlasov equation and choosing
the quasi-Maxwell distribution (depending on the kinetic temperature) as a basis solution of
the kinetic equation, leads to the nonlinear Hammerstein integral equation for the potential
(including antigravity due to the presence of the cosmological term). The Hammerstein equation
is in essence is an equation for the self-consistent field in the system of many massive particles
on cosmological scales. using methods of nonlinear functional analysis, it can be shown that
(depending on the properties of the Fredholm equation, which is a linearized version of the
gravitational potential equation) there are two possibilities of continuation of the solution of the
initial Hammerstein equation from the known solution - analytical and algebraic. The analytical
method leads to a smooth unambiguous dependence of the constructed extended solution-
potential on the parameters (kinetic temperature, cosmological term): in a conditionally equilib-
rium state of the background of the Milne-McCree problem, the gravitational potential does not
introduce into the cosmological dynamics any fundamental additions to the Newtonian potential
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(at positive kinetic temperature, at transition to non-equilibrium temperature, at transition to
the non-equal temperature, in the transition to non-equilibrium states with negative temperature
(due to the dominance of the antigravity effect in the system at large distances) the situation
may change due to a radical change in the properties of the kernel of the Fredholm equation,
which will lead to the disappearance of analyticity of the continuation on the parameters of
the basic solution and creation of diplet structures of large scales. The second possibility is the
emergence in the system near the basic solution of the region of nonholomorphic continuation of
solutions on parameters. The existence of a pair of branches of solutions is caused (see formula
(26)) by the occurrence of partial pseudopotentials in the post-linear version of the equation.
of different signs. This leads to the simultaneous realization in the cosmological system with
self-consistent field of two types of ordering — a significant increase of the of matter density
and its decrease (at one-dimensional motion of matter in the channel there appear strata-walls
with high value of gravitational potential, and voids — practically empty spaces between walls).
Oscillations of eigenfunctions even in the simplest case of spherical symmetry of the Green’s
function can form analogs of interference patterns, which leads to the production of structure
formation in a homogeneous medium far from the line connecting the massive objects. Since the
eigenfunctions of the linearized version of the equation for the potential are proportional to the
Bessel function (with a rapidly decreasing weight function), the loss of periodicity of solutions in
physical space becomes obvious. Since for nonlinear integral operators it is possible to establish
the the continuum character of the spectrum, one can observe the effect of secondary solutions
(on the hyperplane of parameters near the basic solution of the equation) coexisting with the
initial ones, which leads to the construction of the second type of periodicity - translation of the
solution isotropically along all directions. Thus, the composition of solutions with a potential
of two types in the presence of additional translational transgression due to the structure of
the spectrum, give as a result a distribution of field and matter in space similar to the cosmic
web. The change of the kinetic temperature at the zero-point transition leads again to dipole
structures at large distances.

4. Conclusion

It can be argued that taking into account the modified law gravitational interaction of
Newton–Gurzadyan allows you to make not only a qualitative, but also a quantitative assessment
dimensions of cosmological structures, which is associated with the two-stream Hubble model
and size matching facts related to formal inflection points the modified law of gravity and the
observed sizes of voids.
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