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In this article, we discuss the use of Generative Artificial Intelligence (GenAI) to improve the efficiency and

performance of access to wireless points located in various spaces and specific places, which allows interaction

with wireless mesh networks and enables the use of mobile devices to access all types of information in

internal environments. Furthermore, we propose the use of generative neural networks, which are one of the

pillars of GenAI, since they use a methodology from the perspective of Machine Learning that allows analysis

of a large amount of data and detection of certain types of patterns that help in the better placement of access

points for improved reception and connectivity. Images (heat maps), access point locations, positioning points,

and bandwidth are analyzed, allowing new information to be created. On the other hand, to understand and

model the general architecture of the wireless Ad-Hoc network, we use two processes that are part of neural

networks, such as Multilayer Perceptron (MLP), and the Radial Basis Function (RBF), which is a function of

predictors or independent variables or input variables that allows the prediction error in the output variables

of the wireless network architecture to be reduced. Using these two processes does help reduce blind spots in

those internal places where the wireless signal does not reach, resulting in a signal drop. Improving internal

scenarios with wireless Ad-Hoc networks is what is required for better functioning and performance of the

network infrastructure.

Corresponding author: Antonio Cortés Castillo, antonio.cortes@up.ac.pa

1. Introduction

The past few years have seen an evolution in wireless communication networks, which has allowed the number of

nodes in wireless networks to grow exponentially. Concurrently, with the rise and assimilation of the Internet of

Things (IoT) and the integration of new technologies such as Cloud Computing, Edge Computing, and Software

Defined Networks  [1], it has been possible to integrate a variety of services and applications into wireless

networks, which means that Internet Service Providers (ISPs) have to improve their network infrastructures to

provide greater bandwidth in the shortest possible time because of the huge real-time data usage.

Likewise, with this large number of access points or active nodes, in which you have a variety of mobile users

moving in all directions in small and specific spaces, accessing all types of valuable and diversified information,

security [2] when accessing these nodes is of very high relevance because collisions at the frequency level between

these nodes can sometimes occur, which weakens the bandwidth and access to data, generating blind or dead

spots where the wireless signal does not reach and therefore allows unwanted intruders to access the wireless

network, generating some type of fraud or infecting the network with a worm, trojan, rumors…etc.

Given this situation that arises with access to data in wireless networks, we have given ourselves the task of using

GAI. This is an area within artificial intelligence that allows, from existing data that is generated through a series

of metrics in wireless network infrastructures, the generation of new original data and analysis of these data that

help to improve performance and security in wireless networks.

In this research article, we set ourselves the following objectives:

Analyze how wireless Ad-Hoc network infrastructures improve their performance, become more efficient, and

produce better benefits for users using Generative Artificial Intelligence employing a Machine Learning

approach, taking Generative Neural Networks as a reference.

Collect those predictors to later parameterize them, such as signal levels, signal-to-noise ratio, signal-to-

interference ratio, number of access points, noise levels, frequency band coverage, network coverage, PHY

mode of the 802.11 protocols (a, b, g, n, ac, ax), which allow the neural network to be modeled from the

processes called Multilayer Perceptron (MLP) and the Radial Basis Function (RBF).

Create a model of the framework for the wireless Ad-Hoc network from Machine Learning, taking into

consideration the independent or input variables, which will be represented through Generative Neural

Networks visualized through MLP and RBF processes, respectively.

In this same direction, the significance of normalizing and metricizing the independent variables must be

emphasized, since it helps to create a model with predictive and residual value from the entry of these covariates
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or number of units. At the same time, in Fig. 1, we can have several hidden layers, and for each of these layers,

several units in these hidden layers help the performance of the model by activating various functions, for

example, the hyperbolic tangent, among others.

Fig. 1. Model with prediction value.

Indistinctly, regardless of the model that we use for the wireless network infrastructure, applying GAI and

utilizing the two algorithms suggested in the neural network, MLP and RBF, respectively, should allow us, from

the normalized independent variables, to select predictive values that enable the designed wireless network

infrastructure to improve.

In turn, highly innovative generative machine artificial intelligence (GenAI) models, powered by Machine

Learning and neural networks, can enable the digital transformation of organizations, thereby increasing

productivity, efficiency, and problem-solving capabilities. Then, based on these predicted values, original content

is generated to address complex challenges, allowing GenAI to revolutionize not just how organizations operate,

but how innovation is structured.

However, if we take into consideration the increased use of Machine Learning and GenAI-level applications with

large data volumes and computational complexity, this allows unprecedented demands on wireless

infrastructures, requiring reliable, high-bandwidth, low-latency data, significantly higher structured cabling

densities, and advanced cooling methods.

So far, wireless network infrastructure is preparing for artificial intelligence, and users need powerful and

innovative network infrastructure solutions to help with the design, implementation, and scalability of back-end,

front-end, and ambient network architecture storage for complex high-performance computing (HPC).

We also resort to the accelerator models of GenAI and Machine Learning, which consist of training (where a new

aspect is learned) and inference (applying what is learned to new data). Typically, these neural and Machine

Learning networks mimic the architecture and functions of the human brain to learn and generate new original

knowledge by considering the analysis of patterns, nuances, and the general and variable characteristics of a

massive and complex data set. Likewise, large language models (LLM), such as ChatGPT and Google Bard, are

clear examples of these GenAI models, which are trained on large amounts of data to understand and generate

plausible linguistic responses.

Ultimately, general-purpose CPUs that perform I/O and control operations sequentially cannot effectively extract

large volumes of data in parallel from multiple sources and processes quickly enough, so Deep Accelerated

Learning and GenAI use parallel processing-based graphics processing units (GPUs) to execute thousands of high-

performance calculations.

After the Introduction section, this report consists of part 2; thereafter, related works; section 3, related to

Materials and Methods; section 4, also proposed and related to the Experimentation phase; in section 5,

Discussion, the results obtained from the data experimentation are analyzed, and conclusions and suggestions for

further research are included in section 6.

2. Related Work

In [3], having signaled from several cells implies having frequency interference between different channels, which

causes calls made through one of these channels to be distorted. Therefore, the authors propose to eliminate this
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noise in the channel and use a multilayer perceptron network trained with Wilcoxon learning, which will help

stabilize the inputs and outputs produced in the system through the wireless network system.

On the other hand, in  [4], the authors use the multi-layer perceptron network applied to Wireless Sensory

Networks to analyze security in this type of network. This is used to analyze the CSMA protocol located at the

physical level, specifically at the MAC layer, to analyze the various denial of service attacks launched by unethical

hackers. Likewise, in [5], the authors propose using a model based on multilayer perceptron-type networks to be

trained from a set of data in such a way that it helps them optimize network congestion and use of the bandwidth.

The network type they use is wireless mesh backbone networks.

Therefore, in  [6], the authors use artificial neural networks by making use of the Multilayer Perceptron for the

detection and classification of a diversity of attacks on wireless Ad-Hoc networks. In turn, in  [7], the authors

propose that there are malicious nodes that can destroy data in Mobile Ad-Hoc networks, and that to predict how

much damage these viruses, malware, fake news, rumors, exploits can cause, the networks use neural networks,

specifically the Multilayer Perceptron, to identify which of these perceptrons are the most harmful and can cause

the most damage to the network. In this same direction, in  [8], possible predictions are outlined using the

Multilayer Perceptron to improve mobility in wireless networks, since the processes of connection and

reconnection to the various access points, whether internal or external, of a certain space decrease network

performance.

Similarly, in  [9], the authors use multilayer distributed perceptron (MLPC) to detect various types of distributed

denial of service (DDoS) attacks in modern vehicular communication systems. They use Apache Spark-level

simulation processes to create the MLPC and Amazon Web Services (AWS) to train and determine the attack time

at the distributed neural network level. However, in [10], the authors use a Multilayer Perceptron neural network

with 4 hidden layers with 20 hidden units to detect dead links between nodes in complex networks.

3. Materials and Methods

We outline our methodology in this section for Generative Artificial Intelligence using Machine Learning in

wireless Ad-Hoc networks. Selecting and classifying metrics or parameters are essentially two main tasks. In Fig.

2, the data collection task, training phase, and validation phase make up the order in which we propose to

implement our system.

Fig. 2. Our proposed architecture

To validate our proposed architecture, we use experimental data, and this data is tested through simulation, in

which active and offline access points are considered by creating data repositories of Ad-Hoc wireless networks

that store a series of metrics. The set of processed metrics is introduced into the feature selection method. The

metric selection method, contained in the learning of neural networks (NN), results in a list of important metrics

that are classified according to the level of importance. To validate this shortened list of metrics, we use Machine

Learning, represented using Multilayer Perceptron (MLP) neural networks and the Radial Basis Function (RBF).

3.1. Experimental data

The Ad-Hoc wireless network data set not only contains discrete type values but also numerical type values and

character strings, which allow generating scalar and nominal type measurements. At the same time, the

processing of experimental data must be carried out in advance. Therefore, two main stages are presented for the

processing of experimental data, where first we must carefully select the metrics to transform them into

attributes and subsequently assign them a numerical value, and second, the normalization stage of these
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experimental data. It is worth mentioning that some variables, such as security, are considered as a string of

characters, while others, such as BSSID, down_speed, up_load_speed, wireless_transmit_rate, among others, are

considered to have numeric values. Once all the attribute values are converted to integer values, each of the

attributes is linearly normalized between zero and one. Equation (1) displays the normalization formula.

Where:

Ni = normalization value.

Xi = corresponds to the attribute's value.

min(x) = minimal attribute value.

max(x) = maximum attribute value.

3.2. Setting metrics

Metric learning, which includes metric extraction and selection  [11], involves the capacity to simulate data flow

patterns between various access points using unprocessed data from additional measures, known as "metric

learning." To illustrate the relationship between detection performance and data traffic model quality, it is crucial

to provide metrics to facilitate learning [12].

Metric selection and extraction are distinct processes. When new, non-redundant metrics are extracted from an

area containing existing, raw metrics, the process is known as metric extraction  [13]. In most cases, there are

differences between the newly generated metrics and the metrics that have not yet been processed. However,

choosing many metrics from the unprocessed metrics space is what metric selection entails. Consequently,

without any modification, the generated metrics are only chosen from the original values.

In the same way, fewer new metrics produced from the original measurements are the goals of both metric

extraction and selection. The metric selection in this article is done directly using neural networks (NN), while the

metric extraction is done implicitly using the statistical analysis tool SPSS 25. We use NN to improve the

bandwidth and load balance that is generated from the access points, in such a way that the areas, zones, or dead

spots where there is no wireless signal reception can be reduced. With NN, we can select some metrics based on

the heuristic weights of NN learning, which are crucial for learning from the neural network. We trained our NN

using thirteen to fourteen variables, with two hidden layers and hyperbolic tangent and sigmoid functions. It is

important to note that the more hidden layers there are, and for each of these layers, the number of units,

covariates, or independent variables increases, the slower the model to be executed becomes when executed, and

even the results to be obtained take longer than the usual estimate. The neural network model is depicted in

Figure 3, which allows assessing the variation between the current value of a metric and its expected value, with

each corresponding middle layer being represented by bias 1 and bias 2, respectively.

Fig. 3. Neural network (NN) model

Ni = (1)
xi − min(x)

max(x) − min(x)′
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In this same direction, the input layer in our proposed model will be determined by the metrics that are identified

in closed scenarios at the level of wireless communications. Obviously, each of these metrics will be assigned a

weight that allows the cluster of middle layers and the conglomerate number for each layer to be determined. The

above will generate an output that allows you to validate and optimize the best metric for the wireless link. The

weights of the start and end nodes, represented by αij as seen in Fig. 4, being extremely little or nonexistent, mean

that the input metrics, corresponding to Xj, are meaningless for further propagation.

Fig. 4. The start and end nodes' weights represented (αij)

Therefore, we only consider the weights in the middle layer; thus, one hidden layer is sufficient. For each unit,

covariant, or independent variable, we define its importance value, as expressed in equation (2).

In which:

β = represents the quantity of metrics in the middle level.

Vj = allows selecting the most relevant metrics, ordered according to the input metrics ordered descending. We

select some metrics that have a Vj value larger than a threshold value (µ).

3.3. Metric classification

Once the metrics for our model were selected (see Table 1), we used the Multilayer Perceptron algorithm and the

Radial Basic Functions. These two algorithms are part of Neural Networks, which in turn are part of supervised

learning, allowing evaluation of a certain number of independent variables from which one or several hidden

layers and one or several metrics are generated that allow validating the proposed model to manage better links at

the wireless communications level in a closed environment. As a classifier, we chose SPSS 25 since it contains a

neural network called Multilayer Perceptron (MLP) that allows the replacement of original metrics from a

supervised method with a step for the hierarchical extraction of features. Likewise, the MLP neural network is like

an NN, as shown in Fig. 5.

V j = |αij| (2)∑
i=1

β
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Fig. 5. MLP model

Compared to the NN model, the MLP neural network is characterized by several inputs, one or two levels of

hidden layers, two or four levels of the quantity of metrics in the middle layer, and a single output. The nodes in

the center, meanwhile, represent a set of novel metrics with high dimensions. This architecture allows data reuse

after complex calculations have been executed. Likewise, the MLP neural network strives to learn effectively from

a small amount of data to build deep networks by aggregating that data. However, at the middle layer, the results

of each training session can fall hierarchically. By using several new measurements at various depth levels, this

structure—known as MLP—can learn. The article's suggested MLP architecture is depicted in Fig. 6.

Fig. 6. Proposed MLP architecture

4. Experimentation

In this section, we show the different stages in detail that have been carried out at the experiment level and the

results obtained from them. We first explain our tests and data set preparation, followed by the experimental

results and analysis.
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4.1. Experimental Setup

We constructed a data document using IBM SPSS version 25, with a total of 13 variables, to demonstrate that our

proposed scheme can improve not only the bandwidth but also the data load balance between the interconnection

of different access points in an Ad-Hoc wireless network when using Generative Artificial Intelligence. Table 1

shows the summary of the metrics used for testing.

ID Metric name Type Width Decimal Label Columns Align Measure Role

1 down_load Numeric 3 0 Download_speed 14 Right Nominal Input

2 upload_speed Numeric 3 0 upload_speed 12 Right Nominal Input

3 wireless_transmit_rate Numeric 3 0 wireless_transmit_rate 16 Right Nominal Input

4 signal_level Numeric 2 0 signal_level 10 Right Nominal Input

5 signal_to_noise_radio Numeric 2 0 signal_to_noise_radio 17 Right Nominal Input

6 signal_to_interference_radio Numeric 2 0 signal_to_interference_radio 20 Right Nominal Input

7 noise_level Numeric 2 0 noise_level 10 Right Nominal Input

8 İssues_with_SNR Numeric 2 0 İssues_with_SNR 14 Right Nominal Input

9 low_signal_level Numeric 2 0 low_signal_level 13 Right Nominal Input

10 high_level_of_noise Numeric 2 0 high_level_of_noise 14 Right Nominal Input

11 overlapping_channels_SIR Numeric 2 0 overlapping_channels_SIR 19 Right Nominal Input

12 low_download_rate Numeric 2 0 low_download_rate 15 Right Nominal Input

13 low_upload_rate Numeric 2 0 low_upload_rate 13 Right Nominal Input

Table 1. Summary of metrics used in testing

Two experimental tests are described below:

1. Experimental test No. 1

In this first test, 13 variables with active access points and a double hidden layer neural network containing 4

hidden units are used.

There is the following network information, which is seen in the following Table 2.

Input

Layer
Hidden Layer(s) Output Layer

Covariates
Number of Hidden

Layers

Number of Units in

Hidden Layer 1ª

Number of Units in

Hidden Layer 2ª

Dependent

Variables

Number of

Units

13 2 4 4 1 1

Table 2. Network Information for Experimental test No. 1

It is important to highlight that at the level of the input layer, the rescaling method for standardized covariates or

min-max normalization is presented, and the one we use is the standardized one. At the hidden layer level, we

have the activation function, which is used as information of the network, and we use the hyperbolic tangent. On

the other hand, at the output layer level, we have the scale-dependent rescaling method, and in this case, we use

adjusted normalization. Similarly, at the level of the activation function, we use the hyperbolic tangent, and as the

error function, the sum of the squares is used.

In Fig.7, you can see how the neural network is constructed from the Multilayer Perceptron (MLP).
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Fig. 7. Neural network based on MLP for 2 hidden layers and 4 units for the 1st and 2nd hidden layers for

Experimental test No. 1

In Table 3, the estimation of the metrics is observed at the neural network level.
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Table 3. Metric estimation for Experimental test No. 1

In Table No. 3, we can observe the estimated values for the issues_with_SNR metric in hidden layer one and the

number of elements for each of the layers.

In Table No. 4, we can see the level of importance of the independent variables that is derived from the estimation

of the metrics.

Table 4. Level of importance of independent variables for Experimental test No. 1

We can observe, in Table 4, that the independent variable that prevails 100% is the one called issues_with_SNR

with an importance level of .164. It is followed by signal_to_noise_ratio in relevance level with 83.6% and an

importance level of .137, and in third place, the overlapping_channels_SIR metric with 73.2%, whose relevance level

is .120. With these values, we can deduce that the relationship between the signal-to-noise ratio and the overlap

between the various channels covered by the wireless spectrum considerably affects the performance at the level

of bandwidth and the load balance between the various access points that may be connected at a certain time.
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2. Experimental Test No. 2

In this second test, 13 variables with active access points and a double hidden layer neural network containing 8

hidden units are used.

There is the following network information, which is seen in the following Table 5.

Input

Layer
Hidden Layer(s) Output Layer

Covariates
Number of Hidden

Layers

Number of Units in

Hidden Layer 1ª

Number of Units in

Hidden Layer 2ª

Dependent

Variables

Number of

Units

13 2 8 8 1 1

Table 5. Network Information for Experimental Test No. 2

In this new network information, what changes with respect to experimental test No. 1 is the amount of the

number of units in the first and second hidden layers, since we go from 4 to 8 units in the number of hidden

layers, of which there are 2.

In Fig. 8, you can see how the neural network is constructed from the Multilayer Perceptron (MLP).
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Fig. 8. Neural network based on MLP for 2 hidden layers and 8 units for the 1st and 2nd hidden layers for

Experimental Test No. 2

To the extent that the number of hidden layers increases and with it the number of units for each of these layers,

as we can see in Fig. 8, the level of complexity of the Multilayer Perceptron becomes increasingly complex, which

helps obtain a more accurate and efficient predictive value.

In Table 6, the estimation of the metrics is observed at the neural network level.
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Table 6. Metric estimation for Experimental test No. 2

In Table No. 6, we can observe the estimated values for the signal_to_interference_ratio metric in hidden layer one

and the number of elements for each of the layers.

In Table No. 7, we can see the level of importance of the independent variables that is derived from the estimation

of the metrics.

Table 7. Importance level of the independent variables for Experimental test No. 2

In Table 7, we can observe that the level of importance, which has a normalized importance of 100.0%, falls on the

independent variable signal_to_interference_ratio, which effectively shows us that the overlap that may occur in

the waves emitted by the access points can affect performance in terms of bandwidth and the management of

large volumes of data in the wireless Ad-Hoc network. Another metric that indicates low performance in this type

of network is related to the metric called low_signal_level, which has an importance level of .138 and a normalized

importance of 86.8%, since this is due precisely to the collision at the level of waves that the access points may

present.

4.2. Dataset

The grouping of the independent variables rests in the data repository that we have called SSID-GWi-Fi-Hot

Access Points.sav, which has been built and designed under the standards of the SPSS statistical tool version 25 of
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IBM. Each of the covariates is assigned an identifier with its respective name, data type, field width, decimals, and

a label with which each of these independent variables is identified, a value field, the width field of the column,

the alignment of the field, type of measurement, and the role that the field will play in the measurement process,

which is normally an output.

4.3. Performance Evaluation

In the case of experimental test No. 1, the following results are obtained, which we can see in the following Fig. 9,

in which the independent variables are assessed based on the importance of normalization.

Fig. 9. Importance of Normalized for experimental test No. 1

In Fig. 9, we can see that from the 0.15 importance level, the metric or independent variable issues_with_SNR

obtains 100% of the normalized importance, which means that the events that occur in the Ad-Hoc wireless

network have an intrinsic relationship with the relationship present between the noise and the signal in the

wireless communication medium, in our case, the overlap that may occur in the waves emanating from each of

the access points.

On the other hand, in the case of experimental test No. 2, the following results are obtained, which we can observe

in Fig. 10, and where the covariates are assessed based on their level of importance and the normalized

importance.
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Fig. 10. Importance of Normalization for experimental test No. 2

Indeed, in Fig. 10, we can see how the metric signal_to_interference_ratio, with an importance level of 0.15, obtains

a normalization importance of 100%, which shows that the average signal interference can decrease the

performance of the signals in Ad-Hoc networks. Similarly, there are two other independent variables that are key

in this type of Ad-Hoc wireless network scenario, such as low_signal_level and high_level_of_noise, with

importance levels of .138 and .110, respectively, and which in turn represent a normalization importance of 86.8%

and 68.9%, consecutively, which shows that these metrics also affect this type of network.

5. Discussion

In the case of experimental test Nº 1, we used the following linear equation (3).

This linear function allows us to generate a predicted value regarding the dependent variable, bssid, which

contains a single unit that corresponds to the output layer, as we can see in Fig. 11.

Fig. 11. Predictive value regarding the dependent variable bssid (Experimental Test Nº1)

In Fig. 11, we can observe that in the regression line, there are a total of 4 values that are above the line, which

means that they are significant values that represent a regression model and that serve as a response to a set of

y = 0.59 + x (3)0.81∗
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data, which, in our case, is identified by the independent variables. This allows us to quantify the relationship

between one or more predictor variables and a response variable (bssid).

We also consider the residual values and their relation to the predictive values, as we can see in Fig. 12.

Fig. 12. Residual values with respect to the predictive values of a bssid response variable

In Fig. 12, there is the following linear equation (4).

At the same time, this linear function allows us to observe the relationship between the independent variables

and the dependent variables. In this case, in Fig. 12, we can see that there are only 2 values that are above the

regression line, which means a lower correlation between the observed values and a predicted value in the

regression analysis.

In this same direction, in experimental test No. 2, we have the following linear equation (5).

Fig. 13. Predictive value regarding the dependent variable bssid (Experimental Test Nº2)

In Fig. 13, we can see that there are only 3 optimal values above the regression line, which tells us about the level

between the independent variables and the response variable. Therefore, the regression model indicates the level

of granularity that may exist within your data set.

On the other hand, we also have the relationship between residual values and predictive values, as we see in Fig.

14.

y = 0.47 + x (4)0.16∗

y = 2.25 + x (5)0.35∗
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Fig. 14. Residual values with respect to the predictive values of a bssid response variable

In Fig. 14, we can see that the regression line is inclined in a decreasing manner, in which only 3 optimal values

are observed. Thus, it seems that the relationship of one or more independent variables with respect to the

dependent variable is low, or at least does not completely satisfy the response variable.

In Table 8, we make a comparison between the linear equations and the regression analysis, considering the data

obtained from experimental tests 1 and 2, respectively.

Linear equation
Regression analysis

(R2 Linear)
Percentage of regression analysis

Experimental test N0.1

Predicted Value vs. bssid y = 0.59 +0.81*x 0.937 93.7%

Residual vs. Predicted Value y = 0.47 + 0.16 *x 0.219 21.9%

Experimental test N0.2

Predicted Value vs. bssid y = 2.25 + 0.35*x 0.295 29.5%

Residual vs. Predicted Value y = 0.56 – 0.15*x 0.014 1.4%

Table 8. Linear equations vs. regression analysis between Experimental test N0.1 and N0.2, respectively

In Table 8, we can see that the percentage of the regression analysis obtained by experimental test No. 1 is 93.7%,

which is equivalent to 0.937 in linear regression. This is followed by the 29.5% of experimental test No. 2, with a

0.295. Likewise, experimental test No. 1 presents a better relationship of its independent variables with respect to

the response variable than the results presented in experimental test No. 2. Therefore, with 2 hidden layers and 4

elements for each layer, better results are obtained regarding the relationship of the covariates with the dependent

variable than without using 4 hidden layers and 8 elements for each of these layers.

6. Conclusion

Generative Artificial Intelligence (GenAI), within the context of Machine Learning and through its neural

networks such as the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF), allows us to carry out a

series of analyses based on a group of data, in our case known as independent variables and response variables.

The contribution of this work lies in selecting those variables or metrics that are captured through a simulator

suitable for scenarios that contain Ad-Hoc wireless access points in combination with Mesh networks and

converting them into measurable variables that allow improvement of this type of scenario starting from this set

of independent variables.

As mentioned previously, 2 experimental scenarios have been used, in which tests were carried out with MLP,

using 2 hidden layers and between 4 to 8 numbers of elements for each of these hidden layers, respectively. The
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results show that to the extent that we increase the number of hidden layers and the number of elements for each

of these hidden layers, the percentage of the Regression Analysis (linear R2) tends to decrease, which indicates

that this percentage of the relationship between these independent variables and the response variable does not

obtain the best optimal solution but simply a predictive or approximate value that allows providing a solution to

the problem presented by the Ad-Hoc wireless network scenarios, such as bandwidth, blind or dead spots, and the

data load balance that must be managed at a given time.

As we can see, there are a series of metrics or predictors that affect these scenarios of Ad-Hoc wireless networks,

among which it is worth mentioning the average interference in the signal, the average noise in the signal, the

channel overlap, the low signal level, a high noise level in the communication medium, among others.

As future work, it would be necessary to experiment with more levels of layers and numbers of elements per layer;

for example, 4 hidden layers and 16 elements for each hidden layer based on the metrics or variables that are

identified in Information-Centric Networks  [14]. Although for this type of experiment, more computational

equipment will be required to allow the results obtained to be satisfactorily managed.

Statements and Declarations

Data Availability

The dataset used in this study (SSID‑GWi‑Fi‑Hot Access Points.sav) is publicly available at

https://github.com/acortescastillo/SSID-GWi-Fi-Hot-Access-Points.sav-.git. Detailed variable definitions (name,

type, field width, labels, measurement roles, etc.) are provided within the repository.
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