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Is the Observational Dark Energy

Universe Completely a Coincidence?
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In this article, we propose a new cosmological model called ‘fractal cosmology’ based on two

postulates that gives a ‘not really’ answer to the question in the title: At any epoch of the universe, for

an arbitrary local observer living well below the scale of Hubble horizon, the observational universe

centered on this observer appears to be accelerated expanding. The anthropic principle is unnecessary

for our current observation of an accelerated expanding universe. We will argue how such a story is

qualitatively compatible with the CMB and low-redshift observations on the expansion history.

Moreover, fractal cosmology implies four characteristic signals that could substantially distinguish it

from the standard  CDM cosmology and a family of models alike: 1) Unlike the prediction in  CDM, in

fractal cosmology, the local Hubble rate will be positively correlated with regional matter

overdensities. 2) In a conventional expansion history data analysis of modern cosmology, effectively,

dynamical dark energy will show phantom behavior. 3) Over-aged high-redshift astronomical

objects/events will generally exist, where ‘over-aged’ speci�cally means that the astronomically (local

physics) derived event age is longer than the  CDM predicted universe age at the event redshift. 4)

Astronomical events with a characteristic time, for example the supernovae light curves, are subject to

a growing characteristic time scattering (variance) with their redshifts, even after being modulated by

the ( ) factor expected in standard cosmology; On the contrary, in for example  CDM, no known

effect would lead to such a redshift-dependent trend of the characteristic time variance of the same

type of events. Each of those four signals has either inconclusively shown some hints in recent

observation, or is feasible to be tested with current and near-future available data.
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I. Introduction

When asked why we happen to be living in an epoch of the universe where the negative pressure dark

energy is taking the majority,   of the cosmic �uid, the answer is usually the anthropic principle[1],

i.e. a civilized observer needs to be born in an environment where the dense structure of the universe is

diluted by dark energy. However, many �nd this explanation not satisfying enough, for its arbitrariness

and lack of testable further implications. In this article, I will provide an alternative solution to this

question, which appears to be less human-centric, and point to observational implications that can be

tested in the near future.

The article is organized as follows. In section 2, we will reexplain the Einstein equation as a conservation

law of the 4D spacetime substance volume, which naturally incorporates a positive metric term. In

section 3, we try to connect the obtained positive metric term to the observational ‘dark energy’, or to be

more speci�c, the accelerated expansion reality of our universe. In section 4, we will compare the ‘fractal

cosmology’ picture proposed in this article with other theoretical candidates of beyond standard

cosmology, and point out four intriguing implications of the fractal cosmology that can be tested against

current and near-future astrophysical/cosmological observations.

We will use    signature in this article. Differential manifold notations mainly follow[2], and

Raychaudhuri’s equation derivaiton and results are taken from[3].

II. Einstein equation with positive metric term

In the original Einstein’s equation   was an extra term added with no good explanation within classical

general relativity and thus has no prediction on its value. Here, we will try to give an alternative

interpretation of the Einstein equation that naturally suggests the presence of such a negative pressure

term and always positive energy.

An overview of the story is as follows: we will show how Einstein equation can be explained as a

differential version of the 4D spacetime substance volume conservation law. Such a conservation law is

applied to the �ow along a vector �eld  , where    is a 4D submanifold in the

spacetime, i.e. a spacetime/cosmological patch. The variations (of the volume and vector �elds) is de�ned

in terms of the pullbacks of the diffeomorphism given by the �ow of  .

∼ 70%

(− + ++)

Λ

F ∈ X(P) P = (−ϵ, ϵ) × Σ

F

qeios.com doi.org/10.32388/KQFN4W.2 2

https://www.qeios.com/
https://doi.org/10.32388/KQFN4W.2


On the other hand, to de�ne the distance on a pseudo-Riemannian manifold with signature  ,

we need a metric  , which in Cartan’s coframe formalism can be expressed as 

, where   are 1-forms. Denoting the base vector �eld dual to the coframes as 

, we have them orthonormal with each other, and locally spanning  . However, they

could all be non-commutative with  , thus the Lie derivative   is non-vanishing in every direction.

The above rather mathematical description can be understood in the following physics interpretation: a

patch of the universe as a 4D spacetime (sub)manifold is like a �uid cylinder with the 3D space as the

cross-sectional area, 1D time duration as the thickness of the �uid cylinder, and the vector �eld    the

�ow velocity (we will see later what makes   a little bit more special, by choosing synchronous gauge).

Imagine that a bug, or a human, �owing in the �uid, or spacetime substance, is trying to construct a

metric so that it can measure the things happening around it. It is natural for the bug to take the �ow

direction as special and build a metric anchored to the �ow velocity, but in principle, it is a choice of the

bug itself. Besides, when �owing in the �uid without any reference outside the �ow, it is impossible for it

to know the true �ow velocity, thus to construct the exact ’right’ metric that has one of the coframes

commuting with the �ow vector �eld. See �gure 1 for a schematic illustration.

When enforcing the 4D volume conservation law for the variation along the vector �eld   �ow, where the

4D volume form is de�ned conventionally as  , such a conservation law puts constraints

on the metric. We will see that locally they take the form of the Einstein’s equation with a metric term,

and the coef�cient for the metric term is always positive, but could be a general scalar �eld instead of a

constant. Just like a �uid cylinder could be stretched or compressed along the direction of �ow, so could

the scale of time of a patch of the universe be stretched or compressed. This metric term coef�cient is an

outcome, thus re�ects how much a spacetime patch is stretched or compressed along its �ow.

In practical discussion of cosmological observations and data analysis, one usually works in a

hypothetically homogeneous FLRW background metric. Effectively, the operation here is to take a 3D

volume average over an equal-time hypersurface foliation for the Einstein’s equation obtained in the

previous step.

To begin with, we start from a 4D pseodo-Riemannian manifold  , and a vector �eld  . The

physical meaning of them are the spacetime manifold we are living in and the �ow of the substance of

the spacetime 1. Now we take a hypersurface  , which is compact, integral, well-behaved and

nowhere tangent to  , i.e.   for all  .
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The restriction of   on  ,   can specify a local coordinate chart that  . Denote the 4D manifold 

 constructed by vector �eld straightening that is diffeomorphic (smooth and invertible

mapped) to a submanifold   as a patch.

Figure 1. An illustration of time-like congruence. A 4D cylinder con�ned by red and blue

hyperfurfaces   away from each other has volume  , and the discussion in section 2 is

focused on how the evolution along a congruence vary this 4D volume  .

Now as a standard next step to do any physics involving distances and volumes on this spacetime patch,

we need a metric  . In general, it can be decomposed into a Cartan’s coframe

expression:  , with dual frame vector �elds   de�ned by  . In

the most general case,   and   could be all non-vanishing. However, we have the freedom to

choose synchronous gauge by requiring  , or even requiring  . Note that there is

nothing physical happening in this step, simply a gauge choice – by rotating the dual frame we are

guaranteed to �nd such a    among the four, and we just need to call the coframe dual to it as  .

Namely, the physical spacetime substance �ow direction determines the time coordinate of our metric,

but only the direction of it. There is no theory that can guarantee the point-to-point identi�cation

between the spacetime substance �ow vector �eld and the time-like frame of the metric.
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A volume form corresponding to the metric is  . Let us look into the variation of

the element volume of submanifold   along the �ow of  .

Lie derivative on volume form   has the property: 

where   is a 3-form, the volume form of the spacial hypersurface.

Now we gradually transfer from the differential manifold language to the languages more familiar to the

general relativistic physicists, so that we can use some of the well-established geometrical results and

facilitate physical interpretation towards the end. We will denote the Lie derivative   as variation  .

We take the 4D volume of an element of the spacetime substance as  , where    are element

volumes on   direction 1D submanifold and on 3D submanifold  .

Based on the Lie derivative property acting on volume forms in equation (1), and the notation introduced

above, we can write the variation of the 4D volume along the �ow of   as:

Suppose The 4D volume of the spacetime substance is conserved along its �ow: 

where   is the in/output of spacetime substance along the �ow to the element volume we are studying:

  is a current tensor of the spacetime substance, de�ned by equation (4), and    is the covariant

notation of the Cartan’s frame  . We hereby denote the other frames   as  .

It is well-known that the expansion    of the cross-sectional area of a �ow can be obtained by

Raychaudhuri’s equation. In our scenario, the variation of expansion gives us the variation of the cross-

sectional area of the spacetime substance �ow, i.e. the 3D hypersurface volume by  . We need to

�nd the similar for  .

Since the volume forms are de�ned from the frames   and  , following the same argument in Wald’s

9.2[3],    contains the information of the expansion in time and space directions. In the

textbook, it is assumed that the �ow is along the geodesics, because in the conventional discussion,

Einstein’s equation thus the metric is given before applying Raychaudhuri’s equation, unlike here the

metric is a �oating unknown tensor to be solved from the spacetime substance volume conservation rule.
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Namely, ‘geodesics’ is unknown with unknown metric here, so the spacetime substance �ow has to be

general enough for any time-like vector �eld.

Thus, even in the convenient synchronous gauge, in general we still need to decompose    into one

more term than in the textbook:

where   is the spacial metric, characterized by   for the time direction frame  .

Contracting the above equation with  , we get  . Further contraction gives us the result 

. This result implies that the connection   does not vanish on arbitrary vector �elds

in our setup. When requiring   to be small, it nicely shows up only as the next-to-the-leading order term

in the small value variation along the   �ow. In the physical sense, it represents to what extent a bug in

the �owing �uid described previously fails to calibrate its metric instantaneously to the �ow velocity to

cancel the stretching/compression of the scale along the �ow.

Because in our initial setup   is obtained by the vector �eld straightening, the foliation structure safely

available. We can thus further require the �ow direction    to be orthogonal to  , and this will put

constraints on the metric (and connections) through Frobenius’s theorem[3], that the antisymmetric

term   vanishes.

Recall that we chose the gauge  . Thus the variation along the spacetime substance �ow 

 is proportional to

Contracting equation (6, 9) with  , we can get the famous Raychaudhuri’s equation: 

Because   has antisymmetry, the last term goes to zero.

Contracting equation (6) with  , 

which cancels the   term in equation (9), thus 
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Equation (10) and (13) are proportional to   and   with the same factor  , and as the variation of the

expansion factor on the frame, they are related to the 3D spacial and 1D time-dimension volume

variations through   and  .

 is easy to see from equation (13). For  , the �rst term on the right-hand side of equation (10)

gives an exponentially diverging or decaying mode. Dropping the second-order terms, we get: 

Those dropped terms contribute partially to the ‘back-reaction’ term in Buchert’s gauge[4]. A

cosmological model, timescape cosmology, that diverged from Buchert’s discussion on the backreaction

term ressembles the fractal cosmology diverging from the 4D spacetime substance volume conservation

theorem in this article in many aspects, and we will discuss them in the section 4.

Substituting those variations of the volumes back to equation (3), we get: 

Note that   for the time-like frame vector. Although we have noticed that this normalization

varies along the   �ow, in a short period of time along the �ow, i.e. in the scenario of calculating the

variation  , we can still use the normalization of   as an approximation at the leading order.

Thus for arbitrary time-like frame vector  , the scalar equation (15) gives rise to the covariant tensor

equation: 

It looks like the Einstein equation that we are familiar with, but not exactly. We have made no statement

about the spacetime substance current tensor    by far, and it needs a little bit of dressing to be

connected to the energy-momentum tensor. As a derivation from the skew-symmetry property of

general volume forms, Bianchi’s identity holds for the Ricci curvature in equation (16) regardless of the

slight drifting of the metric    mentioned before. According to the Bianchi identity,    is not

conserved on  : 

 Rewriting the   in equation (16) into  , where 

αξaξbξb∇a

αξa∇a

= −αBabξ
aξb
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aξb α2 T abξaξb (15)
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∂
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δ −1 = gabξaξb
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= −T ab Rab α2gab (16)

T ab
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U
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= R − 2α α∇b ∇b
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 we get 

When  , this equation takes the exact form of the Einstein’s equation. Up to this point, we have

‘derived’ the Einstein’s equation, at least something taking its form, from only two postulates.

�. Our physics lives on a 4D pseudo-Riemannian manifold. The �ow of 4D spacetime substance can

be described by an arbitrary vector �eld living on this manifold.

�. The 4D spacetime substance volume is conserved along its �ow.

Metric, thus the corresponding volume’s de�nition has the basic features as in the differential manifold

context, to ensure the general assumptions of a well-behaved physics system, such as smoothness and

local Euclidean. Some of the conventional thoughts in vanilla general relativity, such as the absolutely

non-drifting metric and geodesics taken for granted before-hand, has to be loosened. Lastly, the

perturbative expansion in the above derivation assumes the variation of the volumes, shears, distortions,

and curvature are small quantities that can be Taylor expanded.

Now we try to interpret the physics out of the equation (20) whose derivation is highly just geometrical.

By comparing the equation (20) with the original Einstein’s equation, it seems that   takes the role of

an energy-momentum tensor. Taking the dual of  , it goes back to  . Recall, that

the current tensor   was originally introduced in this article in equation (4), to describe the in/output of

the spacetime substance to the element volume we are studying. Combining all those intriguing hints, we

can conclude a new perspetive on the concept of ‘matter’ that has been standing in the center of physics

research in the past thousands of years:

The concept ‘Matter’ in the physics world is the current of spacetime substance that we

subconsciously identify with the energy conservation. Our early infancy (3-5 months) cognitive

development of the ‘object permanence’[5] automated this process.

One important reason that we can make such a statement is that equation (16) to (20) only takes a rewrite

to separate some of the degrees of freedom, and the two equations are mathematically equivalent.

Moreover, the reason that such a cognitive strategy is developed so early and so widely among different

species (for example, cats[6]) is probably because equation (20) with vanishing   applies in almost every

earthly scenario, thus becoming a ubiquitous feature trained out from evolution of the neural systems.

− R + =Rab 1

2
gab α2

gab T
~ab

(20)

α = 0

T
~ab

T
~ab

= −T ab T
~ab 1

2
T
~
gab

T ab

δα
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To see why   is negligible in any earthly scenarios but could play a non-negligible cosmological role, we

can use the earlier introduced analogy of the spacetime substance �ow and a regular �uid �ow, for

example, the water �owing in a riverbed. The   term regulates the rescaling of the whole frame, thus the

metric, due to the �uid cylinder thickness stretching/compressing along the �ow. Under the volume

conservation law, such an effect is only signi�cant when the cross-sectional area variation is signi�cant.

In the �owing river case, that corresponds to �owing from a branch to a mainstream or the inverse. In

the �owing spacetime substance case, that corresponds to the scenario where the variation of the

expansion  , which on the �rst order is proportional to the Ricci curvature  , becomes signi�cant. The

natural physics environment on the earth is known to be extremely gravitationally weak, in contrast to

the strong (in natural units) gravity case that only becomes relevant in astronomical and cosmological

discussions.

Back to equation (20), the �rst interesting feature we can see is that the metric factor    is always

positive. In the notion here we stressed that    could be an arbitrary function of the 4D spacetime

coordinate, because up to this point, all our discussion happens on an element volume on a patch   on

the spacetime manifold  . We will discuss the space and phase space average, which is more relevant for

a practical observational universe scenario, in the next section. In any case, one can see the similarity and

difference between   term and the Einstein’s constant term  : the coef�cient for the former is

a scalar function, while the later is a constant; Thus, the former spoils the conservation of energy-

momentum tensor by  , while the later nicely respects the conservation of energy-

momentum tensor   – one of the reasons for it to be introduced by Einstein originally; Lastly,

the former coef�cient    is always positive, while the later    could be positive, zero, or negative,

corresponding to de Sitter, �at, and Anti de Sitter universe.

In the past decades, it has been almost certain that our observational universe is de Sitter, i.e. when

testing expansion history data in the framework of cosmological constant, we get a positive  . So the

automatic positivity of the metric term in equation (20) is quite encouraging. But the breakdown of

energy-momentum conservation is not so welcoming, although we brie�y discussed before how this rule

could originate from the cognitive adaption for the earth environment instead of a more fundamental

physics rule. In the theory framework in this article, the conservation of energy momentum tensor is

only a special case secondary result of equation (20) when    is approximately constant throughout the

physics system in the question, and a consequence of contracted Bianchi identity. Thus any physical

consequence of the breakdown of energy-momentum conservation is only expected to show up in

δα

α

θ Rab

(x)α2

α(x)

P

M

(x)α2 gab Λgab

= 2α α∇aT
~a

b ∇b

= 0∇aT
~a

b

(x)α2 Λ

Λ

α
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scenarios like the expansion history of the universe or a strong gravity environment such as near a black

hole horizon, where a non-negligible gradient of   presents on either extremely large-scale or strongly

curved spacetime patches. The violation of energy momentum conservation in those regimes is in

general irrelevant with, and thus does not ruin, the gravitational dynamics of Newtonian systems.

In an idealized case, let us imagine what will happen if a spacetime patch   is not ‘small’ but can �ow to

large  , even asymptotic in�nity, in   direction. When approximating   with a constant, the integral of

equation (13) tells us  , which goes to zero as  . Even taking   variation into account, as long

as it does not change sign, the trend of vanishing   with   would still apply. So it seems that after

long-enough time, the congruence of geodesics converges to the spacetime substance �ow, as we

expected. On the other hand, if we regard the integrated    as the lifetime of a patch of observational

universe, under the approximately constant assumption of  , equation (20) together with 

  suggests that  , just like what we have found out about our own observational

universe.

Indeed, if one has not noticed this, the widely cited values of cosmological constant  , Hubble constant,

universe lifetime, and many other ways of reformulating the �rst (zeroth) order expansion rate of the

universe, are all roughly the same degree of freedom extracted from redshifts and distances data. All the

attempts trying to jump out of this box to give an alternative quantitative description of the above

physics, for example, the calculation of   interpreting it as the vacuum energy in QFT, has been a failure.

The argument in this section is another bold and rare endeavor in the literature to reason why 

  might not be a coincidence. We will give a completely new, independent estimator of the

expansion rate, or approximately  , from the time-domain astronomical observation in section 4.

Before we conclude this section, it is worth noting the two postulates here are much motivated by the

thermodynamics explanation of the Einstein’s equation by Ted Jacobson[7]. Instead of looking into the

black hole case where one of the space dimensions is highly compressed, here the subjects are the less-

special, well-behaved 4D spacetime submanifolds, and the conservation of energy    in[7]  is

substituted by the conservation of 4D volume proposition  . The fundamental arguments are

quite the same, that the Einstein’s equation is describing how the spacetime distortion is driven by the

�ow of thermal energy/4D volume current tensor, under the constraint of energy/volume being a

conservation law.

α

P

τ ∂
∂τ

δt

δτ

α ∼ 1
τ

τ → 0 δt

δτ

α τ → ∞

τ

δt

δτ

α ∼ 1
τ

∼ |α| ∼Λ
−−√ 1

τ

Λ

Λ

Λ ∼ H0

Λ

dQ = TdS

dU + dQ = 0
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III. Cosmological effect

Now that we have Einstein’s equation with a positive metric term, we want to see if we can connect it

with the observational ‘dark energy’.

In the �eld of observational cosmology, dark energy has been a placeholder for the unexplained fact that

we measure an acceleratingly expanding universe around us. The astrophysical objects at distances far

enough to be in the ‘Hubble �ow’ run away from us with ‘increasing speed’. Such an accelerated

expansion reality is fairly homogeneous, and the negative pressure portion of the energy density of the

cosmic �uid has an equation of state very close to  [8][9][10]. Those are about the

uncontroversial part of what we know of the observational dark energy so far.

Dark energy has no observed perturbative effects so far, most of the time, it is only discussed on the

background level, in the Friedmann equations. We will focus on the background cosmology in this article.

Let us denote the average over the space as   and the expectation value over the full phase space as  .

The two Friedmann’s equations are the time and space components of the Einstein’s equation in a space-

averaged gauge: 

Assuming that our observable universe patch has evolved ‘long enough’ time, that the geodesics are

saturated to the averaged mainstream of the spacetime substance on the patch, the leading background

order    vanishes. This could be regarded as a default calibration of any small (much below Hubble-

scale) observer in the universe, that their frames have always been tuned to the spacetime substance �ow

on their cosmological (Hubble scale) patch.

Hence the metric term in equation (21)    is effectively  , where the variance of  , 

. Comparing equation (21) with the original Einstein’s equation with a cosmological

constant:

we see that  , but with a possibly spacetime-dependent coeffecient over extremely large

scales, thus breakdown of energy momentum conservation in the cases discussed before.

Now the mystery remaining to accommodate the theoretical story in the observational reality is the

incredibly stable scaling of   with the scale factor   and its homogeneity.

w ≡ ∼ −1
p

ρ

x̄ ⟨x⟩

⟨ − ⟨R⟩ + ⟨ ⟩ = ⟨R̄⟩ab
1

2
gab ᾱ2 gab T

~̄
⟩ab (21)

⟨ ⟩ᾱ

⟨ ⟩ᾱ2 gab ( )σ2 ᾱ gab α

( ) = ⟨ ⟩ − ⟨σ2 ᾱ ᾱ2 ᾱ⟩2

− R + Λ = ,Rab 1

2
gab gab T

~ab
(22)

( ) ∼ Λσ2 ᾱ gab gab

( )σ2 ᾱ a
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We give a guess on the zeroth-order scaling of the variance of spacetime substance �ow speed matching

the background order expansion history of the universe out of the physical dimension analysis. In natural

unit, we denote the dimension of energy, spacial distance, and time distance as  .

The physical dimension of the Einstein’s equation is  , so is the cosmological constant  , and

they are consistent with   from its de�nition as the time-derivative of a dimensionless geometric

property.

We know that the physical meaning of   is the stretching of time frame along the spacetime substance

�ow direction, and we discussed how this effect should be roughly the order of the spacetime curvature.

Thus, in a matter dominated universe, without resolving the details of the dynamics happening at

smaller scales, from physical dimension analysis we deduce that

The dimension of the above equation is  , where   should be some dimensionless universal constant

that does not care about the detailed spacetime substance dynamics happening on a patch, as we have

already operated the phase space average in the calculation of  .

A perfect candidate for    coef�cient is the fractal dimension of the Poission-like distribution of the

matter in our universe, which has a measured value of    as shown in[11]. It is dimensionless, local

dynamics-insensitive, and manifests how an isotropic physical quantity is equally partitioned in

equivalent physical dimensions.

Next, let us check if this guess made out of physical dimension analysis works quantitatively. In our local

universe we have the measured values on  ,    and  . It so happens that these

numbers nicely �t into equation (23) that  . 2.

Equation (23) seems �ne for low-redshift area   in the sense that it does not drastically disobey any

observational facts. But trouble shows up when we consider not just low redshift, but high redshift

expansion history. If equation (23) applies for the spacial averaged matter density regardless of the scale,

deep into high redshifts, then we will not get the expansion history con�rmed by the current data,

especially the CMB power spectrum.

The amendment here is to add constraints on the regime where the proportionality between average

matter density and   holds. The variance   only keeps track of the average matter density up to

a Hubble scale patch, because the physics beyond this scale are causally disconnected.

[ϵ] = 1, [d] = 1, [t] = 1

−2 [Λ] = −2

[α] = −1

α

( ) ≈σ
2 ᾱ dF ρ̄m (23)

−2 dF

σ(α)

dF

2.4

≈ 0.7ΩΛ ≈ 0.3Ωm ≈ 2.4dF

0.7 ≈ 2.4 × 0.3

z <∼ 1

( )σ2 ᾱ ( )σ2 ᾱ
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Assume that the distribution of    are uncorrelated beyond Hubble scale, then we can regard the

calculation of the variance of    in a large region consisting of several Hubble sized patches as carrying

out redraws on a same distribution, thus suffers a suppression by factor  . For example in �gure 2, on

a shell of   away from us, there are number of   causaly disconnected patches that

follow roughly the same distribution of    in their local Hubble volume 3. Hence the variance    is

suppressed by  .

Figure 2. All the currently observable galaxies around certain redshift, say  , reside on a

shell   away from us. The Hubble horizon   at that epoch (in our chronicle) is much

smaller than us, thus such a shell accommodates many Hubble patches.

In the regime of   where the above approximations applies, we have: 

α

ᾱ

1/N

χ(a) N = /Vshell VHubble

ᾱ ( )σ2 ᾱ

1/N

z ∼ 6

χ = 1/HλH

χ(a) >> 1/H(a)
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We can solve for the evolution of dark energy density by taking derivative of the integral equation (27) up

to  , corresponding to a = 0.2 thus redshift z = 4 in a universe with  . Denoting 

, from equation (27) we get

where  , and we used the relationships    and 

.

On the other hand, in the regime  , roughly  ,   in our Hubble volume is expected to

saturate as in equation (23). The intermediate regime    needs more dedicated modeling,

which we leave for future work.

Λ(a) ≡ ( ) ≈σ
2 ᾱ

(α)σ2

N

≈
(a)dF ρm

(χ(a))/ (a)Vshell VHubble

=
dF ρ

0
ma

−3

4π /(4π/3 )χ2λH λ3
H

=
dF ρ

0
ma

−3

3 /χ2 λ2
H

(24)

(25)

(26)

(27)

N = χ/ = 10λH = 0.7ΩΛ

X(a) =
(a)ΩΛ

ΩΛ

(a) = 2 − 3 − 2 (a) (a)X(a)X ′ 3–√
(a)X 3/2

a1/2

X(a)

a
E′ E−1 (28)

E(a) = H(a)/ =H0 (a) +ΩΛ Ωma−3− −−−−−−−−−−−
√ χ = d∫ 1

a
1

H(a)a′2 a′

= 1/HλH

χ(a) << λH z < 0.1 Λ(a)

0.1 < z < 4.0
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Figure 3. Dark energy density, or the variance of time-�ow   as a function of scale factor 

. In the regime where far-�eld approximation holds,  , dark energy density is

suppressed by   factor towards high redshift, as required by the CMB observation.

Figure 3 shows the density of dark energy evolution in the far �eld    by solving the ordinary

differential equation (28). Reassuringly, it is not scaling up as    with the matter density, instead

decreasing to a smaller platform, thus agreeing with the observation that the dark energy was

subdominant in the early universe. The decreasing rate varies with the initial guess of  , but the

trend stays stable with reasonable trial values that con�ne   between 0 and 1. In a sentence, it seems

regardless of the initial/boundary fraction of dark energy at far-�eld redshift  , a general case is that

the    suppression dominates thus diluting the metric term    out when we look out toward

smaller scale factor  .

( )σ2 ᾱ

a χ >> λH

1/N

z > 4

a−3

Λ( )ap

X( )ap

ap

1/N ( )σ2 ᾱ gab

a
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IV. Discussions

A. Fractal Cosmology and Comparison with Other Cosmological Models

One implication of the explanation of the negative pressure dominated universe using the variance of the

spacetime substance �ow is, that our ‘currently’ acceleratedly expanding universe is not special in space

and time of the universe. Anthropic principle is not needed in the picture implied by the theorems in

section 2, which we hereby name as ‘Fractal Cosmology’, because at any redshift, an observer living well

below the Hubble horizon scale would see an acceleratedly expanding universe around them. Inside a

smaller Hubble patch at higher redshift, resides another acceleratedly expanding universe, and when the

residents in that Hubble patch look outwards in a universe centered on themselves, they would see a

similar ‘history’ of the evolving universe as us. When we received signals from their cosmological patch,

we only took random snapshots on what have happened and what would happen on that patch of

spacetime with no chronicle. Regardless of all the exotic theorems in this article, one should think twice

on the statement of ‘we are reconstructing the history of our universe by tracing down to those high-

redshift objects’, because those objects that we are observing now are light-like connected to us in

spacetime, not time-like. That means none of those objects that we are observing today will evolve to the

current same-time hypersurface in any frame transformation. Apparently, an absolute chronicle of the

universe since ‘The Big Bang’ loses its meaning in this picture, when radially tracing far enough along

light-like curves every observer reaches their own ‘Big Bangs’, and the scale factor could play the role of

time coordinate for any local (below Hubble size) observer in the universe. Forward-time, or the �ow

direction of the spacetime substance, might be a concept as trivial as downward-direction of the

universe. When zooming out to large-enough scale, the universe manifests itself as a series of

inde�nitely unfolding self-similar structures at hierarchical scales, only pivoted at a local observer’s scale

when a chronicle story needs to be told.

The idea of such a fractal cosmology conceptually inherits some genes of the steady state theory of

cosmology, in that they both imply that the universe does not have a global beginning or ending, and

looks quite the same at any epoch. However, unlike the steady state theory, which stresses the

unchanging of the universe over time, the fractal cosmology stresses the self-similarity of the universe

over spacetime, which is a more radical application of the postulates of relativity. On the other hand, one

might have noticed that fractal cosmology echoes many aspects of the conformal cyclic cosmology (CCC)

[12][13], especially the smooth joint of the conformal in�nity of one patch and the Big Bang of another. The
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additional spice in fractal cosmology comparing to CCC is its suggestion of the cosmological patch-wise

dissynchronization, which leads to potentially more timely observational tests that will be discussed in

section 4.2.

The property of   tracking the value of background average matter density in equation (23) is

similar to the proposal in ever-present Lambda models[14][15]. However, like we have discussed, such a

positive correlation between these two physical quantities has to be valid only in a bound region or it will

heavily violate the expansion history suggested by real data at high redshift. We gave a possible

amendment to this problem in section 3.

Lastly, Timescape Cosmology[16] might be the cosmological model that shares the most common points

with fractal cosmology in the current literature. It explicitly introduced the concept of ‘volume-averaged

time’ and ‘lapse’, which is the multiplicative difference between the voids and walls area time frames. In

its current development, it seems that the observational tests of the model still focuses on its effects on

the expansion history, and a recent supernovae Hubble diagram data analysis did present a concrete

constraint on its major parameter void fraction[17]. In the last subsection 4.2.4 of this article, we will

discuss what kind of time-domain signals could provide another venue to probe the physics that differ

this type of cosmology from other candidates.

We also want to note that, the Buchert’s average gauge[4], the theoretical basis of the timescape

cosmology, resembles the patch average view in this article in many ways, and their backreaction term

might correspond to the dropped-off higher order geometrical variations in section 2.

B. Observational Tests

So far, most of the beyond standard cosmological models focus on their observational implications in the

background level expansion history and perturbations on the density �eld, for example large-scale

structure and CMB power spectrum. The danger of following such conventions in the analysis of beyond 

CDM cosmology is that, we are playing with too few degrees of freedom in the data with too wide

theoretical possibilities. Speci�cally, in recent discussions on the Hubble tension, most of the new models

are just translating the same set of degrees of freedom contained in the Hubble diagram into different

fancy-named theoretical parameters. A bigger problem is that, in the maze of transformation on the

same set of numbers, we could lose track of the real input and output information of a theory, and make

circular argument like the one recently spotted for the ‘Hubble cut-off’ in holographic dark energy

model[18].

( ) ∼ Λσ2 ᾱ

Λ
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So we will try to present a discussion on different, independent aspects in observations to scrutinize

what kind of signals could be implied by the fractal cosmology model proposed in this article. In general,

fractal cosmology unavoidably introduces variation in the Hubble parameter correlated with local

overdensity and redshift. Besides, the most characteristic observational implication of fractal cosmology

could be the dissynchronization of the observer-dependent cosmological time between different Hubble-

sized patches.

1. The Positive Correlation Between Hubble Rate Variation and the Matter Overdensity

It is expected in  CDM that the perturbation in Hubble rate is negatively correlated with the perturbation

of matter overdensity. It can be physically understood as a result of the standard gravitational theory, in

the way that the mass particles in a void would be sucked away from the void center by the relative

overdensity towards the outbound. As a result, the observational Hubble rate   measured from the

center of the void exceeds the overall average. There are multiple ways to semi-analytically derive such a

negative correlation relationship at linear perturbation level of the standard Einstein gravity (with or

without cosmological constant)[19], and such relationship has been validated by N-body simulation

experiments repetitively in literature[20].

Hence, it is important to stress an unusual implication of equation (23), that the metric term, thus the

main contributor to the accelerated expansion of the current universe, would be positively correlation

with the regional averaged matter density in fractal cosmology. It is obviously different from the

standard cosmology prediction described in the �rst paragraph.

Even though the negative correlation between Hubble perturbation and matter overdensity has been a

consensus among the cosmologists, especially the N-body simulation experts, the observation

con�rmation of this statement in our real universe has been a blank space in the past decades. It is by no

means an easy task to obtain trust-worthy measurements on the Hubble rate centered on a distant

location, not to mention to reconstruct the matter overdensity �eld at a required precision to test this

relationship. The Hubble rate centered on ourselves, the earth, has only came to the precision   not

so long ago.

Recently, a real data analysis on the Hubble rate variation and regional matter density variation has been

carried out for the �rst time in the literature, using the density �eld reconstruction from BOSS DR12 and

Supernovae Hubble rate measurement from Pantheon[21]. They have surprisingly found a positive

correlation between local Hubble rate and the reconstructed matter density �eld. While such a counter-

Λ

H =
⟨v⟩

⟨d⟩

∼ 10%
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intuitive result still awaits for cross-validation from independent groups analysis, the model proposed in

this article provides one of the possible theoretical explanations for such an unexpected phenomenon if

it proves more concrete in the future.

2. Redshift Evolution of the Dark Energy-like Term

Note that the conventional expansion history data analysis involving any tracer and the combination of

the reforms of their redshifts and distances is only directly probing the density-redshift dependence of a

cosmic �uid. Its constraint on the equation of state    of the �uid is obtained from the assumption of

energy-momentum conservation (Fluid Euler equation), which we have discussed why is fairly safely

loosened in the story presented in this article. Since the Friedmann equation conventionally used to

derive the prediction on the redshift-distance relationship is based on the   component of the Einstein’s

equation, we can directly borrow the discussion on the metric term thus its   component in section 3,

and deduce three features of the fractal cosmology when considering under the framework of dynamical

dark energy, which is the mainstream language in the �eld:

�. At low redshift, the metric term behaves much like the cosmological constant term.

�. When going to higher redshift, at some point, the analysis shown in �gure 3 suggests that the

phantom point ( ) will be crossed. Here by ‘phantom behavior’, we mean that the ‘dark

energy’ density will appear to be increasing with scale factor.

�. Combining the �rst two implications, when analyzing fractal cosmology in the w0wa cosmology

framework, negative   is likely preferred.

The above perspectives agree with the recent results from DESI[22].

3. High-redshift Astronomical Objects with a History Longer Than Our Universe Lifetime

An important implication of the fractal cosmology is that the lifetime of the observational universe

centered on a civilization living in a galaxy at, say  , could be longer than 1Gyr, which is the number

of the ‘universe lifetime’ at    calculated in our time frame assuming a  CDM cosmology. As

mentioned in section 4.1, in the perspective of fractal cosmology, the light signals that we receive

nowadays from high redshift objects are likely non-chronicle snapshots drawn from the whole history of

their Hubble bubble, namely their observatinoal universe around their Hubble scale. The history of such a

high redshift event could be longer than the universe lifetime calculated as in our time frame, because

w

tt

tt

= −1wde

wa

z = 6

z = 6 Λ
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those astronomical events governed by baryonic physics follow the proper time of their local atomic

clocks.

As a result, this effect gives longer accretion time for those high-redshift supermassive black holes,

whose overabundance and overweight have been a concerning confusion in recent high redshift

observations[23]. The discovery of many    supermassive black holes (SMBH) above redshift 

  forcing astrophysicists to look for exotic mechanisms to allow super-Eddington accretion of the

black holes, where Eddington limit is the accretion rate at which the radiation pressure force cancels the

gravity. Even with a relatively heavy black hole seed  , the Eddington limit accretion needs at

least    Gyr to form a SMBH  , and the universe lifetime at redshift 6 based on Big Bang

theory is just about enough. Many cosmological approaches to the problem rearrange the expansion

history of  CDM; However, in the picture proposed by this article, an observer-dependent origin thus the

lifetime of the universe could be an alternative cure.

Similar to the unexpected over development of the supermassive black holes, astrophysicists might �nd

some of the high redshift galaxies behave older than theory predictions. In recent and upcoming high-

redshift astrophysical surveys like JWST[24][25], those kinds of puzzling early-universe but highly-

evolved galaxies have already been found, with arguably inconclusive signi�cance. How galaxies have

formed their stars and quenched their star formation at the stage so early of the universe have already

triggered a wide discussion[26][27][28].

Although now still troubled by systematics and selection effects, those high-redshift galaxy and SMBH

properties, especially the charts on their ages as theoretically predicted by astronomical and baryonic

physics, will be crucial to test the implications pointed out in this article.

On the other hand, futuristic astronomical events could also be observed at high redshift as predicted by

fractal cosmology. In the high redshift observations, we could potentially uncover the past and future of

our own patch of the observational universe.

4. Astronomical Event Time Duration Variance Introduced by Dissynchronized Cosmological

Clocks

An important new physics that distinguishes the fractal cosmology from the standard cosmology is the

dissynchronization of the cosmological time between Hubble scale patches (Hubble bubbles). The

standard cosmology implicitly assumes a global time frame regardless of the scales or coordinates in

> 109M⊙

z > 6

∼ 100M⊙

∼ 0.8 ∼ 109M⊙

Λ
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spacetime. However, in the picture of fractal cosmology, we have discussed how a Hubble sized patch at

any position in the universe could harbor its own cosmological scale evolution history of the local

universe. Intuitively, we would expect that the �ow of time of the astronomical events happening on a

cosmological patch would be anchored to the cosmological time on that patch. Again, one can think of a

galaxy or a similar sized astronomical object in the spacetime substance bulk of a Hubble sized patch as a

leaf �owing in a river. Those smaller sized objects could have peculiar spacetime substance �ow, but on

the leading order they should follow its local Hubble patch spacetime substance �ow.

In practical observations, we are already equipped with the instruments that can study the objects at

high redshifts with  , i.e. objects deep into the Hubble �ow and on other Hubble patches. If the

dissynchronization between Hubble patches really exists, then it will be re�ected in the time-domain

signal of those high redshift astronomical events.

For example, let us consider the light curve of a supernova. Recently, time dilation has been observed in

the supernovae light curves[29]. In the standard cosmology where the cosmological clock is synchronized

throughout the whole universe, the time duration of the supernovae light curve is predicted to have a

time dilation of  , out of a similar argument for the redshifts in textbooks. For the up to 

  sample in DES paper mentioned above, it seems that this prediction is con�rmed by the

observations.

There are caveats when one draws parallels between the redshift of photons and the time dilation of a

macroscopic event. The former does not probe the local time frame, as the emission of photon as a

microscopic quanta is instantaneous. The redshift of a photon can be derived from the (spacial) scale

factor growth thus the stretching of the photon wavelength without any information needed on the local

time frame. On the other hand, beginning and end of a supernovae event are time-like separated events

and are sensitive to the dissynchroniazation of the local time frame for sure.

Let us start our discussion from the standard cosmology case.   holds exactly when the clock

of us, the observers, ticks at the same speed as the proper time of the source astronomical object. Taking

into account the random �uctuation of the time duration of supernovae light curves due to different

environments and other unknown astronomical reasons, measurements on the supernovae light curve

time duration at redshift   could be denoted by:

z > 1

1 + z =
T(z)

T0

z ∼ 1

1 + z =
T(z)

T0

z

T (z) = (1 + z)( + )T̄ 0 σint (29)
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where    the average pivot value of the supernovae light curve time duration near  , and 

 denotes a normal-distributed uncertainty due to the intrinsic scattering.

If there is any dissynchronization between our, the observer’s Hubble patch, and the source galaxy’s

Hubble patch that needs to be modeled, we can use a factor   called lapse to quantify it. Here we

borrowed the name lapse from the timescape cosmology[16], which was originally introduced to describe

the multiplicative factor between volume-averaged clocks of walls and voids. Following the argument on

how the clock of an astronomical event should primarily anchor to the clock of the cosmological patch it

resides on in the �rst paragraph of this section, the measurement on the time duration will be dressed by

this lapse factor  .

We have no means to �nd the absolute value of time lapse from observation for a single event. It would be

degenerate with the intrinsic scattering of the time duration.

We do, however, have the possibility to statistically test if such non-trivial (non-unity) lapse exists or not.

With the characteristic time determined by the astronomical physics captured by the local average

measured value  , we assume that the uncertainty around this pivot value could be decomposed into

two independent uncertainties, due to the intrinsic scattering cosmological clock dissynchronization: 

 where   is the variance of  , and we used the fact   on cosmological scale is a small time duration

that can substitute   in the de�nition of lapse  .

Now we look into the modeling of  . Recall one of the most important result in the second section of

this article,  , and when the saturation of geodesic congruence to the spacetime substance �ow

happens,   can be effectively interpreted as the acceleration of a patch. Assuming a free fall motion, thus

a parabolic trajectory of any distant Hubble patch with respect to our Hubble patch, the relationship

between the acceleration and the time lapse of a distant patch becomes 

When writing down this relationship, we are putting the patch in which a distant galaxy resides in a

Rindler coordinate, and treating the earth observer as stationary. Then the time transformation between

a Rindler proper time and the stationary observer time gives the above result, and    is the comoving

distance of the source patch4. Thus,

T̄ 0 z = 0

σint

γ ≡
dτo

dτs

T (z)− > γT (z)

T̄ 0

T (z) = (1 + z)( + )T̄ 0 + (γ)σ2
int T̄ 0σ

2
− −−−−−−−−−−−

√ (30)

σ(γ) γ T̄ 0

dts γ ≡
dτo

dτs

σ(γ)

Λ ∼ ( )σ2 ᾱ

α

=γs χsαs (31)

χs

σ( ) = σ( )γ̄s χs ᾱ (32)
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And the variance of the supernovae light curve duration time modulated by the    factor and its

local average pivot value is:

where   is the fractional characteristic time duration of supernovae light curve modulated by

the   factor, and   is the fractional intrinsic scattering.

Equation (33) has already shown a very obvious difference between the signal predicted by fractal

cosmology and standard cosmology: The variance of the observable   would have redshift dependence in

fractal cosmology, as a result of the cosmological clock dissynchronization, while in the standard

cosmology   will only have a redshift-independent intrinsic scattering term.

A fake-data illustration of the difference between the standard cosmology and the fractal cosmology

prediction on the overplotted supernovae light curves data points grouped by redshift is presented in

�gure 4. This �gure cannot be read quantitatively, as it is only designed to schematically show what kind

of mode could potentially distinguish the two models: the light curves will spread in a wider range on the

time axis with growing redshift in fractal cosmology, while this effect is not expected to be as drastic in

the standard cosmology.

(1 + z)

( ) = + (z) ( )σ
2 tc σ~2

int χ2
σ

2 ᾱ (33)

≡tc
T(z)

(1+z)T̄ 0

1 + z = /σ~int σint T̄ 0

tc

σ( )tc
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Figure 4. Fake supernovae light curves samples behavior predicted in fractal

cosmology (upper panel) and standard cosmology (lower panel). In the upper panel,

the lifetimes of the ten fake light curves in a redshift bin are subject to a growing

uncertainty described in equation (33), while the lower panel only has a linearly

growing uncertainty on the normalized �ux mimicking the growing uncertainty on

fainter objects and a redshift-independent scattering of the light curve lifetime.

Most intriguingly, equation (33) gives an observable estimation of the metric term coef�cient   thus

a completely new quantitative prediction of the accelerated expansion rate of our observational universe.

( )σ2 ᾱ

qeios.com doi.org/10.32388/KQFN4W.2 24

https://www.qeios.com/
https://doi.org/10.32388/KQFN4W.2


Speci�cally, it suggests that if fractal cosmology is a successful cosmological model, at medium redshift (

), the variance of the dimensionless characteristic time   could be linearly

�tted by the comoving distance square  . The slope is predicted to take approximately the value of

the cosmological constant    as de�ned in  CDM model, and the constant term accounts for the

intrinsic scattering of the time duration    of a type of the astronomical events with characteristic

time scale determined by its physics.

From the observation obtained in[29], a trend of higher redshift supernovae have more scattered light

curve can be seen. However, such a trend could be due to fainter luminosity, and larger observational

uncertainty on the �ux. The observational uncertainty on the variance   need to be treated carefully

when carrying out the linear �tting proposed here, so it is not clear whether the sample size of 

  in[29]  is large enough to carry out the alternative estimation on    presented above before

further experimenting on the real data.

Another factor worth noting is the possible redshift-drifting of the intrinsic scattering term   due to

some unresolved environment evolution for supernovae (or other astronomical events) throughout the

expansion history. Even if such extra redshift-dependent mode does exist in  , it is not very possible

for such mode to be completely degenerate with the   mode with a slope  . However, it could

be a major contributor to the systematics on the   estimator proposed here.

This article hereby raises the analysis described in this section on the lifetime variance of any

astronomical event with a characteristic time as a challenge to any group working on time-domain

astronomy.

Footnotes

1 It might reminds one of ether, but the substance of spacetime is not quite the same. Ether �ow is a

vector �eld still living on 3D manifold, and the one extra dimension is essential here to save the whole

story from the failure of ether. Any measure of time, thus the velocity in physics sense, cannot be made

independently from the spacetime substance �ow, which is very different from the assumption in the

ether (thought) experiments where time can be measured regardless of the dynamics of this medium.

2 An even more intriguing number game could be that the fraction    is well captured by 

.

0.1 <∼ z <∼ 2 ≡tc
T(z)

(1+z)T̄ 0

χ2

Λ Λ

T

( )σ2 tc

∼ 1000 ( )σ2 ᾱ

σ~2
int

σ( )tc

(z)χ2 ∼ ( )σ2 ᾱ

( )σ2 ᾱ

: :Ωb Ωm ΩΛ

1 : :d2
F d3

F
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3 Each patch could have a slightly �uctuating    away from zero, but one can validate by a quick

calculation that as long as the distribution around each center value has the same shape, the scaling of 

 on averaged value stays the same.

4 In the discussion here, we decomposed the motion of a distant galaxy into the motion of its

cosmological patch plus its motion in that patch, and assumed that the latter introduces negligible

dissynchronization effect while the former is the focus.
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