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Statically Signi�cant Linear Regression

Coef�cients Solely Driven by Outliers in

Finite-Sample Inference
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In this paper, we investigate the impact of outliers on the statistical signi�cance of coef�cients in

linear regression. We demonstrate, through numerical simulation using R, that a single outlier can

cause an otherwise insigni�cant coef�cient to appear statistically signi�cant. We compare this with

robust Huber regression, which reduces the effects of outliers. Afterwards, we approximate the

in�uence of a single outlier on estimated regression coef�cients and discuss common diagnostic

statistics to detect in�uential observations in regression (e.g., studentized residuals). Furthermore, we

relate this issue to the optional normality assumption in simple linear regression[1], required for exact

�nite-sample inference but asymptotically justi�ed for large   by the Central Limit Theorem (CLT). We

also address the general dangers of relying solely on p-values without performing adequate regression

diagnostics. Finally, we provide a brief overview of regression methods and discuss how they relate to

the assumptions of the Gauss-Markov theorem.
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1. Introduction

Linear regression is a foundational method widely used for modeling due to its simplicity, interpretability,

and strong theoretical underpinnings. The classical simple linear regression (SLR) model in scalar

notation is given by:

where   (the intercept) and   (the slope) are the coef�cients capturing the linear relationship between

the predictor    and the dependent/outcome/response variable  , for  . Estimation via OLS
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yields interpretable, closed-form solutions and enables simple statistical inference using t-tests and

con�dence intervals, assuming that the classical linear model conditions hold. As shown in[2], under

assumptions SLR.1 through SLR.4 for simple linear regression, the OLS estimates remain unbiased; SLR.5,

which assumes normally distributed errors, is only required for valid �nite-sample inference using the t-

distribution, but can in general be relaxed in large samples due to the Central Limit Theorem. (CLT)

One of the major advantages of linear regression is the interpretability of the estimated coef�cient  ,

representing the expected change in the response   for a one-unit (assuming no re-scaling e.g. standard-

units) increase in the predictor  . Additionally, hypothesis testing on coef�cients is conducted using

Student’s t-statistic:

which provides measures of statistical signi�cance with the associated p-values, assuming the normality

of the error term or a (suf�ciently) large sample size.

Despite its upsides, a critical limitation of OLS is its strong sensitivity to outliers. The use of the squared

loss function    for model �ttings causes observations with large residuals to have a

disproportionately high in�uence on the estimated coef�cients. Although the sensitivity can in general be

informative, it can also lead to highly misleading subsequent inferences and effect calculations. Even a

single outlier can distort the estimated coef�cient  , resulting in underestimated standard errors and

thus false statistical signi�cance of the predictor variable[3].

This paper investigates how outliers can lead to misleading conclusions in regression analysis. Through

simulation using R, we demonstrate the fragility of OLS-based inference when a �nite sample inference is

manipulated by insertion of a single outlier. To mitigate this issue, we additionally �t a robust Huber

regression[4].

In doing so, we aim to demonstrate the limitations of classical OLS regression based on the quadratic loss

function for statistical inference and advocate the use of additional robust alternatives and model

diagnostic tools.

These include regression diagnostics (for example, residual analysis, leverage, studentized residuals,

Cook’s distance[5]), model �t statistics (for example,  , F tests), and formal outlier detection methods

such as single outlier statistical tests[6][7][8]  using residuals, to ensure reliable and transparent

communication of statistically signi�cant results.
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2. Linear Regression and Statistical Inference

We begin by recalling the standard form of the linear regression model in matrix notation: 

where    is the dependent/outcome/response variable,    is the covariate matrix of

predictors (assumed to have full column rank),    is the vector of coef�cients to be estimated, and 

  is its error term, assumed to be independent and identically distributed with zero mean and

constant variance  [2]. These assumptions are known as the classical linear model assumptions denoted

as MLR.1–MLR.5 in[2] in the context of multiple regression for example.

2.1. OLS Estimation

The coef�cients   are estimated using OLS, which minimizes the sum of squared residuals: 

The solution to this optimization problem is given by: 

This formula is valid under assumption MLR.3 (no perfect multicollinearity), which ensures that   is a

invertible matrix product[2].

2.2. Distribution of the OLS Estimator

Under optional assumption MLR.5, which states that the error term    is normally distributed, the OLS

estimator   also follows a multivariate normal distribution: 

This result forms the basis for inference procedures such as hypothesis testing and con�dence interval

construction[2].

2.3. Estimating Variance

Because    is unknown in practice, it is estimated using the residuals from the �tted model. Under

assumption MLR.4 (homoskedasticity), an unbiased estimator of the variance is given by: 

Y = Xβ + ε, ε ∼ N (0, I),σ2 (3)

Y ∈ R
n X ∈ R
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where   is the vector of residuals[2].

2.4. Standard Error and Hypothesis Testing

The standard error of the estimated coef�cient   is computed as: 

To test the null hypothesis  , we compute the corresponding  -statistic as: 

Under the assumptions of the classical linear model—and particularly MLR.5—this statistic follows a

Student’s  -distribution with   or written as   (depending on intercept inclusion) degrees of

freedom: 

The two-sided p-value can be calculated as: 

which tests whether the coef�cient    is statistically different from zero in the population regression

model[2].

3. The Effect of a Single Outlier on Regression Coef�cients

OLS is sensitive to outliers. One unusual point can strongly affect the estimated slope, especially if the

point has high leverage—that means, if it lies far from the center of the predictor distribution. This can

make a non-signi�cant result appear statistically signi�cant[3][5].

We can show this with a simple example. We generate 100 observations   in R using the seed: 123 with

no true relationship. Model 1, based on this clean data, shows no signi�cant coef�cient. In Model 2, we add

one extreme outlier. This one point changes the slope to 1.62 and creates a highly signi�cant result. Model

3 uses robust regression (Huber’s M-estimator), which reduces the outlier’s impact and gives a smaller

slope again (see Table 1).
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Variable

No Outlier With Outlier Robust Regression

Estimate SE Estimate SE Estimate SE

Intercept -0.103 0.098 -0.115 0.230 -0.162 0.097

Coef�cient on  -0.052 0.107 1.620*** 0.171 0.184** 0.072

Residual Std. Error 0.971 (df = 98) 2.289 (df = 99) 0.966 (df = 99)

 / Adj.  0.002 / -0.008 0.476 / 0.471 -

F Statistic 0.241 (1, 98) 89.99*** (1, 99) -

Observations 100 101 101

Table 1. Impact of a Single Outlier on the Statistical Signi�cance of Linear Regression Estimates

Notes: Model 1 is estimated on clean data. Model 2 adds one outlier, which changes the slope and makes the result

statistically signi�cant. Model 3 uses robust regression (Huber) to reduce the in�uence of the outlier. Robust

models often omit   or F-statistics because they do not apply directly. See Appendix A for Residual Plots.

Signi�cance levels:  *  ;  **  ;  *** 

We can also illustrate the effect mathematically. When a single value in the data changes, the approximate

change (using the result of a �rst-order Taylor approximation) in the OLS estimate is approximately given

by:

where    is the row vector for the  -th observation. This shows that the change in the estimated slope

depends on both the residual size ( ) and the leverage of the (outlier) point. Leverage is de�ned as:

where   measures how far    is from the center of the predictor space. High-leverage points can have a

disproportionate effect on the �t[3].

Robust methods help reduce this sensitivity. Huber’s M-estimator[4]  uses a different loss function that

grows quadratically near zero but linearly in the tails of the distribution, limiting the in�uence of large

x

R2 R2
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residuals. Another robust approach is Least Trimmed Squares (LTS), which �ts the model using only the

subset of observations with the smallest residuals[9].

Robust regression methods provide more stable and reliable estimates when datasets contain outliers.

4. Single Outlier Tests for Linear Regression Models

Outlier detection in linear regression models typically revolves around residuals, i.e., differences between

observed and �tted values. Several test statistics target unusually large residuals to identify potential

outliers.

4.1. Internally Studentized Residuals

The internally studentized residual for observation   is: 

Here,    is the leverage (diagonal of the so-called hat matrix  ). The denominator

rescales residuals the by the local variance.

Under the assumption of normally distributed errors (MLR.5),    approximately follows a standard

normal distribution for large  , but does not exactly follow a  -distribution. The externally studentized

residual, which removes the  th observation when estimating variance, follows a   distribution.

4.2. Maximum Absolute Internally Studentized Residual

The test statistic for detecting a single outlier is the maximum studentized residual: 

Under the null hypothesis    (no outliers), an approximate critical value can be obtained using the

Bonferroni correction. To control the family-wise error rate at level  , we compare   to the quantile of

the Student’s t-distribution with   degrees of freedom: 

i
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4.3. Normalized Maximum Ordinary Residual

An alternative approach avoids using the hat matrix    and instead relies on the unadjusted, or raw,

residuals. The corresponding test statistic is the normalized maximum ordinary residual: 

This statistic highlights large absolute residuals relative to the overall residual magnitude. Since it does

not account for leverage, it can be more sensitive to large deviations in response values. However, this also

means it may overlook in�uential outliers associated with high-leverage points.

4.4. Distributional Properties and Critical Values

The exact distributions of    (maximum studentized residual) and   (normalized maximum ordinary

residual) are not analytically tractable. Therefore, critical values are typically estimated using one or more

of the following methods:

Bonferroni-adjusted  -tests applied to individual residuals,

Monte Carlo or permutation tests under the null hypothesis  ,

Conservative bounds derived from F-distributions or inverted Student’s  -distributions.

4.5. Upper Bound of Single Outlier Test Statistics

Ugah et al.[8] derive an upper bound as identical for both as: 

H

= ⋅ = ⋅ .R∗
n n−−√

| |maxi ei

∥e∥2
n−−√

| − |maxi yi ŷ i

∑n
j=1 e

2
j

− −−−−−
√

(18)

Rn R∗
n

t

H0

t

= .R∗
0

(n − p)Fα/n,1,n−p−1

n − p − 1 + Fα/n,1,n−p−1
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√ (19)
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Figure 1. Upper bounds of critical values for   by sample size   and signi�cance level  .

5. On the Normality Assumption in Regression Analysis

Recall again MLR.5 for exact �nite-sample inference. Under this assumption, the least squares estimator 

is unbiased, ef�cient, and follows: 

This enables valid inference using standard test statistics.

The t-statistic for testing   is: 

where 

The residuals  , however, are correlated due to their dependence on the �tted values via the hat matrix 

, where   and  .

Rn n α
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While OLS remains unbiased and consistent under weaker assumptions (e.g., �nite variance and

exogeneity), the exact distribution of test statistics like   requires normality.

Outlier Effects on Normality Assumption in Regression Analysis

Outliers violate this assumption in two key ways:

�. Non-normality of residuals: A single outlier induces skewness or kurtosis in the residual

distribution, invalidating  . Deviations from linearity are often visible in the Q–Q plot.

 In�ated or de�ated Type I error rates.

�. Distortion of variance estimates: Outliers distort  , affecting directly    and thus statistical

inference. For high-leverage points    (diagonal entries of the hat matrix), even a small residual 

 can disproportionately in�uence:

  Misestimated p-values, false signi�cance, or masked effects. (Robust methods reduce the

outlier’s in�uence.)

Under outlier contamination, the OLS estimator becomes: 

where    increases with leverage    and residual magnitude  . Thus,    can become biased in �nite

samples and may become inconsistent, particularly if the outlier introduces dependence between the

covariates and the errors.

By the Gauss–Markov theorem, OLS is known as the Best Linear Unbiased Estimator (BLUE) under

classical conditions, regardless of normality. In large samples, the Central Limit Theorem (CLT) implies

that   is approximately normal, allowing for asymptotic inference even when the error distribution is not

normal.

6. An Overview of Regression Methods

Linear regression relies on the Gauss–Markov assumptions, which ensure that the OLS estimator is the

BLUE. These assumptions include linearity of the model, meaning the outcome variable   is expressed as

a linear combination. The covariate matrix    must have full column rank so that    is invertible,

ensuring that the parameter estimates are uniquely de�ned. Exogeneity is also required, meaning the

regressors are uncorrelated with the error term:  , which implies  . The error

tj

∼tj tn−p

⟹

σ̂
2

SE( )β̂j

hii

ei

SE( ) ∝β̂j ( X)X⊤ −1
jj

− −−−−−−−
√ (24)

⟹
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terms must be homoscedastic, following a constant variance  , and they must be

uncorrelated across observations, i.e.,   for all  . While these assumptions are suf�cient

for OLS to be unbiased and ef�cient, an additional assumption of normally distributed errors, 

, is required for exact �nite-sample inference using t-tests and F-tests.

In practice, these conditions are often violated. To address such limitations, various extensions and robust

methods have been developed. Below, we outline some of the most widely used regression methods and

highlight their relation to the underlying Gauss–Markov assumption.

6.1. Deming Regression

Deming regression accounts for measurement error in both   and  , minimizing orthogonal distances: 

Useful when both variables are noisy[10].

Assumptions addressed: Violates �xed  ; assumes homoscedastic, independent errors.

6.2. Ridge Regression

Ridge regression applies an   penalty to control variance from multicollinearity: 

[11].

Assumptions addressed: Mitigates multicollinearity.

6.3. Lasso Regression

Lasso uses an   penalty to induce sparsity: 

Some coef�cients may be exactly zero[12].

Assumptions addressed: Mitigates multicollinearity.

6.4. Elastic Net

Elastic Net combines   and   penalties: 

Var(ε) = Iσ2

Cov( , ) = 0εi εj i ≠ j

ε ∼ N (0, I)σ2

x y

, λ =min
,β0 β1

∑
i=1

n ( − −yi β0 β1xi)2

1 + λ

σ2
x

σ2
y

(26)

x

L2

( − β + λmin
β
∑
i=1

n

yi x⊤
i )2 ∑

j=1

p

β2
j (27)

L1

( − β + λ | |min
β
∑
i=1

n

yi x⊤
i )2 ∑

j=1

p

βj (28)

L1 L2
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Balances sparsity and stability[13].

Assumptions addressed: Mitigates multicollinearity.

6.5. Robust Regression

Robust regression reduces sensitivity to outliers by using a different loss function   less sensitive than

squared error: 

Huber’s loss is a common default choice for example[4].

Assumptions addressed: Handles non-normality and heteroscedasticity.

6.6. Quantile Regression

Quantile regression estimates conditional quantiles by minimizing asymmetric loss: 

[14].

Assumptions addressed: Handles heteroscedasticity and non-normality.

6.7. Principal Component Regression (PCR)

PCR applies PCA to  , then regresses    on the top components. It reduces multicollinearity and

variance[15].

Assumptions addressed: Mitigates multicollinearity.

6.8. Partial Least Squares (PLS)

PLS projects    onto components maximizing covariance with  , often outperforming PCR when

predictors are correlated with the outcome[16].

Assumptions addressed: Mitigates multicollinearity.

6.9. LOESS

LOESS �ts local linear models weighted by distance: 

( − β + ∑ | | + ∑min
β
∑
i=1

n

yi x⊤
i )2 λ1 βj λ2 β2

j (29)

ρ(⋅)

ρ( − β)min
β
∑
i=1

n

yi x⊤
i (30)

( − β), (u) = u(τ − )min
β
∑
i=1

n

ρτ yi x⊤
i ρτ 1{u<0} (31)

X y

X y
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Flexible and nonparametric[17].

Assumptions addressed: Relaxes linearity; locally handles heteroscedasticity.

6.10. Spline Regression

Spline regression uses piecewise polynomials with a smoothness penalty: 

The smoothing parameter   controls complexity[18].

Assumptions addressed: Relaxes linearity.

6.11. Generalized Linear Models (GLMs)

GLMs generalize linear models via a link function: 

Includes logistic and Poisson models[19].

Assumptions addressed: Handles non-normality and heteroscedasticity.

6.12. Generalized Additive Models (GAMs)

GAMs allow additive nonlinear effects: 

Each   is estimated nonparametrically (e.g., splines)[20].

Assumptions addressed: Relaxes linearity; handles non-normality and mild heteroscedasticity.

7. Conclusion

Outliers can in�ate the signi�cance of regression coef�cients, leading to incorrect inferences. The

normality assumption of the residuals is critical for valid t-tests, and its violation—commonly due to

outliers—necessitates careful diagnostic checks or the use of robust methods. It is advised to always

conduct residual diagnostics and robust regression techniques to assess and mitigate these issues, even

post outlier-removal, especially in �nite-sample inference.

(x)( − −min
,β0 β1

∑
i=1

n

wi yi β0 β1xi)
2 (32)

min∑( − f( ) + λ∫ ( (x) dxyi xi )2 f ′′ )2 (33)

λ

g(E[ ]) = βyi x⊤
i (34)

E[ ] = α + ( ) + ⋯ + ( )yi f1 xi1 fp xip (35)

fj
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Also, the use of outlier diagnostics utilizing both residuals and leverage is recommendable, such as

standardized residuals, leverage plots, Cook’s distance, DFBETAS, and in�uence plots. Normality of

residuals can be assessed using tools like the Q–Q plot, Shapiro–Wilk test, or histogram of residuals.

Appendix A. Residual Diagnostics

This appendix presents residual diagnostic plots for three models: (1) a clean OLS model without any

outliers, (2) an OLS model with a single high-leverage outlier, and (3) a robust regression model �t to the

contaminated data. These plots provide visual evidence of how outliers affect model assumptions and how

robust methods mitigate their in�uence.
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A.1. Residual Plots: SLR OLS Model (Clean Data/No Outlier)

Figure 2. Diagnostic plots for the OLS model. The residuals appear homoscedastic (constant variance),

symmetrically distributed, and independent. The Q-Q plot indicates approximate normality, validating the

assumptions of OLS.
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A.2. Residual Plots: SLR OLS Model With An Outlier

Figure 3. Diagnostic plots for OLS model including a high-leverage outlier. The residuals show clear distortion:

heteroscedasticity, skewness, and heavy tails are evident. The Q-Q plot deviates signi�cantly from the normal

line, and the residuals vs. �tted plot shows a large residual corresponding to the outlier. This illustrates the

breakdown of classical OLS assumptions.
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A.3. Residual Plots: SLR Huber Robust With An Outlier

Figure 4. Residuals vs. �tted values for the robust regression model applied to the data with an outlier.

Compared to the standard OLS �t (A.2), the residuals are more evenly spread and the extreme in�uence of the

outlier is visibly diminished. This con�rms that the robust method effectively downweights the anomalous

observation, preserving the integrity of the regression �t.

Notes

JEL Codes: C10, C12, C13, C80, C81.
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