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LoRa technology, crucial for low-power wide-area networks, faces signi�cant performance

degradation at extremely low signal-to-noise ratios (SNRs). We present LoRaFlow, a novel approach

using recti�ed �ow to reconstruct high-quality LoRa signals in challenging noise conditions. Unlike

existing neural-enhanced methods focused on classi�cation, LoRaFlow recovers the signal itself,

maintaining compatibility with standard dechirp algorithms. Our method combines a hybrid neural

network architecture, synthetic data generation, and robust augmentation strategies. This

minimally invasive enhancement to LoRa infrastructure potentially extends operational range and

reliability without overhauling existing systems. LoRaFlow opens new possibilities for robust IoT

communications in harsh environments and its core methodology can be generalized to support

various communication technologies.

I. Introduction

The rapid proliferation of the Internet of Things (IoT) has spurred the need for reliable, long-range,

low-power communication technologies. IoT applications span across various domains, including

smart cities, agriculture, industrial automation, and home automation, all of which demand e�cient

and robust communication networks[1].

Low-Power Wide-Area Networks (LPWANs) have become essential for these applications, o�ering

extensive coverage and low power consumption. However, ensuring reliable communication in

environments with low Signal-to-Noise Ratios (SNRs) is a signi�cant challenge. This challenge is

further complicated by the trade-o�s between power consumption, range, and data rate inherent in

LPWANs[2][3].
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Previous e�orts to improve LoRa signal reception have included methods such as multiple gateway

diversity, advanced signal processing techniques, and machine learning (ML) solutions[4][5][6][7][8][9]

[10]. However, these approaches often necessitate dense gateway deployments, signi�cant hardware

modi�cations, or fail to perform optimally in highly noisy environments.

In this paper, we introduce LoRaFlow, a novel approach that leverages advanced generative modeling

techniques, speci�cally di�usion transformers and recti�ed �ow, to perfectly reconstruct the original

LoRa signal from noisy inputs, thereby enhancing LoRa signal demodulation. The key components of

the LoRaFlow framework include a neural signal enhancement module seamlessly integrated with

existing LoRa infrastructure.

LoRaFlow o�ers several advantages: the ability to recover high-�delity signals under extremely low

SNR conditions, compatibility with existing LoRa systems, and minimal hardware changes. This

method has the potential to extend the range and reliability of LoRa networks, thereby improving

overall communication performance in IoT deployments.

The main contributions of this paper are as follows:

We introduce a powerful state-of-the-art recti�ed �ow based LoRa signal enhancement model and

a novel training methodology. Our approach integrates smoothly with existing LoRa software stack

and does not require removing any components unlike previous approaches. Our methodology also

requires extremely minimal data collection for training. For example, we use roughly 80 times less

data than previous methods[10] at Spreading Factor 7.

We thoroughly evaluate our approach and demonstrate almost �awless signal reconstruction in

both phase and amplitude. Our signals are su�ciently perfect to defeat classi�cation-based

approaches when decoding with the simple default dechirp algorithm.

We publish our complete code, model checkpoints, comprehensive evaluation results, etc. publicly

under an open source license.

The remainder of this paper is organized as follows. Section II provides an overview of LoRa signals

and related work in enhancing LoRa signal reception. Section III details the fundamentals of di�usion

models and recti�ed �ow, which are integral to our approach, and shows an overview of the LoRaFlow

framework. Sections IV and V describe the architecture and the training methodology of the LoRaFlow

model, respectively. Section  VI presents a comprehensive set of results demonstrating the
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e�ectiveness of our approach. Finally, Section VII concludes the paper and discusses future research

directions.

II. Background & Related Work

A. LoRa Fundamentals

LoRa (Long Range) is a wireless technology optimized for low-power, long-distance data

transmission, essential for IoT deployments in various sectors such as smart cities, agriculture, and

industry. It utilizes the LoRaWAN network architecture involving end devices, gateways, network

servers, and application servers, facilitating data integrity, security, and e�cient routing[1][2][3].

Operating on sub-gigahertz unlicensed bands (433 MHz, 868 MHz, 915 MHz), LoRa employs Chirp

Spread Spectrum (CSS) modulation[11] that spreads the signal over a wider bandwidth. The process of

chirping in LoRa involves varying the frequency of the signal over time in a linear fashion, either

upwards or downwards. This technique is characterized by two key parameters: the Spreading Factor

(SF) and the Bandwidth (BW).

Transmitted binary bits in LoRa are segmented into subsequences of length  , where  ,

forming symbols with   possible variations. The symbol rate    is de�ned as  , and

the symbol duration   as  , with BW options of 125 kHz, 250 kHz, or 500 kHz a�ecting data

rates and signal robustness. Lower SF provides higher data rates and lower power consumption but is

less reliable in terms of SNR and has a shorter range. Higher SF, on the other hand, enhances SNR

reliability and range but at the cost of lower data rates and higher power consumption. Similarly,

lower BW improves range and robustness but reduces data rate, while a higher BW increases data rate

but decreases range and robustness.

Given the chirp rate  , de�ned as the rate at which the chirp frequency varies over time, and

formulated as    and    is the carrier frequency, the form of the base chirp can be

formulated as[12]:

LoRa modulation uniquely maps each of the    symbols to a distinct chirp. The chirp for the 

 symbol is generated by time-shifting the base chirp by  , where  . Any part of
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the chirp outside    is cyclically adjusted back into the interval. Figure 1 provides a visual

example of this modulation process.

Figure 1. Overview of the iterative re�nement process using di�usion models for LoRa signals. The

forward process adds noise (de�ned in closed-form), while the reverse process denoises the signal using

our model. Signals are presented as STFTs where the top row represents phase while the bottom row

represents amplitude.

At the receiver, the chirp signal is dechirped by mixing it with a reference chirp, converting frequency

variations into a baseband signal for demodulation. The process includes multiplying by the conjugate

of the reference chirp and using Fast Fourier Transform (FFT) to detect peak frequencies of

transmitted symbols. In low SNR conditions, signal quality degrades, particularly over long distances

due to path loss, challenging reliable communication. E�ciently reconstructing the noisy received

signal is essential for accurate dechirping and decoding, crucial for energy conservation in low-power

IoT devices[2][3][1].

B. Related Work

Recent e�orts to enhance the reception of LoRa signals under low SNR conditions have focused on

leveraging multiple gateways, hardware diversity, and advanced signal processing techniques. Four

notable approaches are Charm, OPR, Chime, and Choir. Charm improves energy e�ciency by using the

spatial diversity of multiple gateways to decode weak chirp symbols through coherent combining,

achieving 1-3 dB SNR gain with 2-8 gateways per node[4]. OPR explores disjoint link-layer bit errors

across multiple gateways to recover corrupted packets, resulting in 1.5-2.5 dB SNR gain with 2-6

gateways per node[5]. Chime utilizes heartbeat packets and three gateways to estimate wireless
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2
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channel states and select optimal frequencies for transmission, achieving 2.4-3.4 dB SNR gain with 4-

6 gateways per node[6]. Choir leverages hardware diversity with up to 36 co-located LoRa nodes to

boost received signal strength but does not provide speci�c SNR gain values[7]. These approaches,

however, require dense deployment of gateways and nodes, which may not be cost-e�ective or

feasible in all scenarios.

While recent advancements in machine learning (ML) have opened new avenues for signal procssing,

very few works considered LoRa signals. DeepLoRa[8]  employs a Bi-LSTM DNN to create a land-

cover-aware path loss model, reducing estimation error to less than 4 dB. DeepSense[9] extends this

approach, exploring deep learning-augmented random access for LPWAN coexistence, even under

extreme noise conditions (e.g., -10 dB). A very recent work NELoRa[10] introduces a neural-enhanced

demodulation method that exploits deep learning to support ultra-low SNR LoRa communication. The

architecture of NELoRa comprises two key components: a mask-enabled Deep Neural Network (DNN)

�lter and a spectrogram-based DNN decoder. The �lter aims to recover clean chirp symbols by

masking their noisy input spectrogram, e�ectively separating the signal from noise. Subsequently, the

decoder classi�es the recovered chirp symbols, exploiting the �nite coding space of LoRa to its

advantage. This method achieves SNR gains of 1.84-2.35 dB, outperforming traditional dechirp

methods and other ML-based approaches by lowering the SNR threshold for chirp symbol decoding.

Our work builds upon these foundations, taking a fundamentally di�erent approach. Instead of

focusing on classi�cation, we aim to recover the LoRa signal itself at extremely low SNRs using

recti�ed �ow, a di�usion-based generative modeling technique. This signal recovery approach o�ers

the potential to operate at even lower SNRs than NELoRa, while maintaining compatibility with

existing dechirp algorithms. By reconstructing the signal prior to classi�cation, our method opens up

new possibilities for pushing the boundaries of LoRa communication in challenging environments.

III. LoRaFlow Framework Overview

In this section, we present the LoRaFlow framework starting by discussing the core approach of

LoRaFlow, followed by an in-depth look at the fundamental di�usion models and recti�ed �ow

mechanisms that underpin its operation. Finally, we illustrate the practical implementation of

LoRaFlow within the current LoRa network architecture.
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A. LoRaFlow Approach

Enhancing signal reception under extremely low Signal-to-Noise Ratio (SNR) conditions remains a

signi�cant challenge in LoRa communication. Prior works primarily focus on classifying received

noisy signals into corresponding symbols. Although e�ective to some extent, these methods often

struggle in scenarios with severe signal degradation, limiting the reliability and range of LoRa

networks. Our LoRaFlow framework addresses this issue by reconstructing the received noisy LoRa

signal into a full, denoised signal at the LoRa gateways. Complete reconstruction is a substantially

harder task than classi�cation. By achieving strong signal reconstruction, our method can

signi�cantly enhances communication reliability under extreme noise conditions.

Reconstructing the entire transmitted signal signi�cantly enhances communication systems,

improving accuracy, security, and overall performance for a range of applications. This

comprehensive approach ensures precise data representation, reduces transmission errors, and

bolsters signal integrity even in adverse conditions. Full signal access supports robust security

protocols, including advanced authentication and detailed signal �ngerprinting, while also extending

operational ranges and improving data recovery in challenging environments. Sophisticated signal

processing and decoding techniques are enabled, optimizing network resource utilization and

supporting high-reliability applications such as remote sensing and autonomous vehicles.

Additionally, this method enhances the system’s resilience to sophisticated attacks like spoo�ng and

replay, facilitating accurate transmitter identi�cation and enabling precise forensic analysis in

security breach scenarios. LoRaFlow approach in full signal reconstruction pushes the boundaries of

LoRa communication, o�ering a signi�cant advancement in the �eld and opening new avenues for

research and application in low-power, long-range communication technologies.

B. Fundamentals of LoRaFlow: Di�usion Models and Recti�ed Flow

Achieving high-�delity signal recovery at extremely low SNRs necessitates the use of sophisticated

generative models capable of reconstructing signals buried in noise. Di�usion-based generative

models have recently emerged as powerful tools for synthesizing complex data distributions. These

models operate by progressively corrupting data with noise and then learning to reverse this process

to generate samples by iteratively denoising random noise.

The core principle behind this reversal process is the score function, the gradient of the log probability

density with respect to the data. Knowing the score function allows the model to move from regions of
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low probability (high noise) towards regions of high probability (low noise). Early di�usion models,

such as Noise Conditional Score Networks (NCSN)  [13]  and Denoising Di�usion Probabilistic Models

(DDPM) [14], introduced methods for learning these score functions at discrete noise levels.

Song et al. [15] generalized this approach using Stochastic Di�erential Equations (SDEs), which allow

for continuous-time di�usion processes. The forward SDE is given by:

where   represents the signal at time  ,   is the drift coe�cient,   is the di�usion coe�cient,

and    represents an in�nitesimal increment of a standard Wiener process. The corresponding

reverse-time SDE is:

where    is a Wiener process in reverse time, and    denotes the probability density of  . This

reverse-time SDE depends on the score function and is crucial for the generative process. To address

the computational demands of solving these equations, the concept of a Probability Flow (PF) Ordinary

Di�erential Equation (ODE) was introduced. The PF ODE provides a deterministic counterpart to the

stochastic di�usion process, allowing for more e�cient sample generation. The PF ODE is given by:

Recti�ed �ow [16][17] further improves this by learning a mapping with straight-line trajectories. This

is achieved by minimizing the objective:

where   is a coupling of the noise and data distributions, and   is the velocity �eld of the ODE.

This approach directly maps noise to data, reducing the number of steps needed for high-�delity

signal recovery, making it particularly suitable for low SNR conditions.

Architectural choices are crucial for the performance of di�usion models. While U-Net architectures

have been widely used due to their ability to process spatial information e�ciently at multiple scales,

transformer-based architectures like Di�usion Transformers (DiT) introduced by Peebles and

Xie[18] have shown remarkable scalability and e�ciency. DiT leverages the self-attention mechanism

to capture long-range dependencies, making it highly suitable for high-dimensional data processing.

d = f( , t)dt + g(t)d ,xt xt wt (2)

xt t f( , t)xt g(t)

dwt
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Given the strengths of both U-Net and transformer-based architectures, hybrid approaches

combining elements of both designs o�er signi�cant advantages. Our approach integrates DiT blocks

with convolutional down/upsampling layers. This hybrid architecture leverages the scalability and

�exibility of transformers while retaining the U-Net’s ability to process multi-scale spatial

information e�ectively. Further, it allows us to partially defeat the Transformer’s quadratic compute

complexity along the sequence length. By exploring this hybrid space, we aim to achieve superior

performance in handling complex signal recovery tasks with improved quality and computational

e�ciency.

An example of our iterative re�nement process for LoRa signals is illustrated in Figure 1. The �gure

shows the forward process (top row) and the reverse process (bottom row). In the forward process,

noise is progressively added to the signal, transitioning from a high SNR to a low SNR state. This

illustrates how the original signal is corrupted over time. The reverse process then denoises the signal,

iteratively re�ning it back to a high-�delity state. This illustrates how the model reconstructs the

original signal from noisy data.

During inference, the reverse process is discretized into N steps marked by unique t values, each of

which requires a neural function evaluation (NFE) which is one forward-propagation of the model in

our case.

To map SNRs to the time parameter t in our model, we use the following function:

This mapping allows us to associate di�erent noise levels with speci�c points in the ODE trajectory. In

our inference scenario, we’re able to skip an appropriate amount of noise steps and allows us to

”insert” the received samples at the appropriate place in the ODE. This in turn leads to a natural

property where the less noisy a signal is, the faster our model executes and vice versa.

Our LoRaFlow framework utilizes these advanced generative modeling techniques of di�usion

models, the e�ciency of recti�ed �ow, and the robustness of hybrid DiT architectures to achieve

high-�delity recovery of LoRa signals even when signi�cantly corrupted by noise.

C. LoRaFlow in Practice

Designed to complement existing LoRa infrastructure rather than replace it, LoRaFlow takes a

minimally invasive approach. Unlike more radical redesigns such as NELoRa[19], which overhaul

t = , where SNR =
SNR
− −−−−

√

1 + SNR
− −−−−

√
10SN /10RdB (6)
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signi�cant portions of the LoRa demodulation pipeline, our method focuses on a single, critical

intervention: denoising the raw signal before it reaches the standard dechirp operation. This allows

for seamless integration into current LoRa networks without substantial modi�cations.

The integration of our method into the LoRa framework can be summarized into three main

components (see Figure 2):

1. Signal Reception and Initial Processing: Similar to the NELoRa approach, after the initial signal

reception by the RF front end and conversion to digital samples by the ADC, the signal undergoes

traditional processing steps. These include chirp enhancement, preamble detection, and o�set

recovery. This stage prepares the signal for the subsequent denoising process by correcting any

initial distortions and aligning the signal for optimal processing.

2. LoRaFlow Signal Denoising: This is the core innovation of our approach. The processed signal

then enters our neural signal enhancement module. Here, the signal is denoised up to    times

(depending on the SNR as we skip a number of steps as mentioned previously) using our model.

This module employs recti�ed �ow—a di�usion-like generative modeling technique—to

e�ectively denoise the signal. This denoising process is crucial for separating the LoRa chirps

from background noise, thereby improving the quality of the signal before it undergoes standard

demodulation.

3. Standard Demodulation: The denoised signal proceeds to the standard LoRa demodulation

pipeline, starting with the dechirp operation. After this stage, the denoised signal is transformed

into packets for further application processing. It is notable that our approach is entirely

orthogonal to classi�cation-based approaches. The combination of both while not complicated

to implement is left to future work.

Figure 2. Integration of LoRaFlow at LoRa gateways.

N
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Mathematically, we can express the integration of our method as a preprocessing step:

where   is the raw received signal,   represents our recti�ed �ow denoising operation, and 

 is the cleaned signal that is then fed into the standard dechirp process:

Here,   is the complex conjugate of the base chirp signal.

Our approach o�ers several distinct advantages. By preserving the dechirp operation and subsequent

processing steps, LoRaFlow maintains full compatibility with existing LoRa hardware and software.

The integration requires minimal changes to current LoRa systems, which can accelerate adoption and

deployment, showcasing its simplicity. Additionally, the denoising step is mostly or entirely bypassed

in high SNR conditions, allowing for adaptive use based on signal quality, demonstrating its

�exibility.

Focusing on signal recovery at extremely low SNRs, our method enhances the strengths of LoRa

modulation rather than replacing them. This conservative enhancement approach allows for

incremental improvements to LoRa systems, potentially extending their operational range and

reliability without overhauling existing infrastructure. The simplicity and e�ectiveness of our

integration strategy position LoRaFlow as a practical advancement in LoRa communication, bridging

the gap between cutting-edge machine learning techniques and the real-world constraints of IoT

deployment. As LoRa remains essential for long-range, low-power communication, our approach

pushes the boundaries of its capabilities while maintaining the robustness and reliability that have

made it a cornerstone of IoT networks.

IV. LoRaFlow Model Architecture

Our proposed architecture for the LoRaFlow denoising model integrates elements from advanced

di�usion transformers[20] with domain-speci�c adaptations tailored for LoRa signal processing. The

model is composed of three main components: an input processing stage, a transformer core, and an

output stage. This setup is then enhanced with an auxiliary classi�er during training. These

components are tied to the ”Neural Signal Enhancement” module in Figure 2, which showcases our

method.

(t) = F ( (t))sdenoised sreceived

(t)sreceived F

(t)sdenoised

(t) = (t) ⋅ (t)sdechirped sdenoised s∗
base

(t)s∗
base
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The input processing stage employs a series of convolutional layers and temporal downsampling

modules that progressively downsample the input signal while increasing the feature dimension. This

stage serves two primary purposes: it extracts low-level features from the raw signal and reduces the

sequence length, making subsequent transformer operations more computationally e�cient.

Speci�cally, this stage includes a single 1D convolutional layer followed by 2x temporal downsampling

and convolutional feedforward layers, which e�ciently compress the input signal’s temporal

dimensions.

Figure 3. LoRaFlow Model Architecture.

The core of our model is a transformer block adapted from the Di�usion Transformer (DiT)

architecture.[18][21]  This block processes the latent representation produced by the input stage,

capturing long-range dependencies and global context critical for understanding LoRa chirp

structures. The self-attention mechanism within the transformer is particularly well-suited for

modeling the phase relationships in LoRa signals across di�erent time scales. The DiT architecture

includes several key components shown in Figure 4. The mapping network generates conditioning

embeddings from the time step   and conditional embeddings  . Fourier features are applied to theset c
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inputs to capture these scalar inputs as accurately as possible, followed by linear layers and RMS

normalization (RMSNorm). This results in the generation of conditioning embeddings   (see Figure

4a). The feedforward block consists of a series of linear layers and Gated Linear Units (GELU)

[22]  activations. The GELU activation function helps to introduce non-linearity, which is crucial for

capturing complex signal relationships. The feedforward block is responsible for processing the

intermediate representations within the transformer (see Figure 4b). At the heart of the DiT

architecture, the transformer block includes multi-head attention mechanisms, which allow the model

to attend to di�erent parts of the input sequence simultaneously. This mechanism is augmented with

QKNorm (Query-Key Normalization) and RoPE (Relative Position Encodings) to better capture

positional information. The block also includes AdaRMSNorm (adaptive RMS normalization) layers

and feedforward networks (see Figure 4c) as is standard in Transformers. The convolutional

feedforward block integrates convolutional layers with the same layout as the feedforward blocks

networks. 1D convolutions are used to capture local dependencies in the signal. AdaRMSNorm is

applied to maintain stable training dynamics and condition the network (see Figure 4d).

Figure 4. Detailed Components of the LoRaFlow Architecture

Following the transformer core, the output stage mirrors the input stage in reverse, using

convolutional layers and temporal upsampling modules to upsample the signal back to its original

dimensions. This stage reconstructs the denoised signal from the processed latent representation. The

careful design of the upsampling modules ensures that the high-resolution features are accurately

restored, maintaining the integrity of the denoised signal. This stage speci�cally includes 2x temporal

cg
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upsampling and convolutional feedforward layers, with RMSNorm and linear layers to re�ne the

signal.

A key innovation in our architecture in Figure 3 is the incorporation of an auxiliary classi�er

connected to the transformer’s output. This classi�er is designed to predict the LoRa chirp class

(which is unique per spreading factor) from the latent representation. Importantly, the classi�er is

only used during training and is discarded during inference. This approach guides the model to learn

more discriminative features without constraining its generative capabilities, enhancing the overall

performance of the denoising process.

The model processes time embeddings and augmentation condition embeddings, which are injected

into each block of the network. These embeddings allow the model to adapt its behavior based on the

noise level and speci�c augmentations applied to the input signal. The incorporation of these

embeddings ensures that the model remains �exible and responsive to varying signal conditions, a

crucial feature for e�ective denoising in low SNR environments. It should be noted that   shown in

Figure 3 refers to a noisy sample at timestep t while   refers to the output of the Mapping Network.

V. LoRaFlow Model Training Methodology

In this section, we detail the comprehensive training methodology employed to optimize the

LoRaFlow model. This methodology includes the design of multi-component loss functions, synthetic

data generation, and data augmentation techniques, ensuring the model’s generalizability to real-

world data.

A. Loss Functions and Training Objectives

Our training process employs a multi-component loss function designed to address the unique

challenges of LoRa signal reconstruction at extremely low SNRs. The total loss is a weighted sum of

four components:

where  ,  , and   are weighting coe�cients.

The primary reconstruction loss,  , is based on the recti�ed �ow formulation:

where   is the noisy input,   is the clean target, and   is our model.

xt

cg

= + + +Ltotal Lrecon λ1LFFT λ2LSTFT λ3Lcls (7)

λ1 λ2 λ3

Lrecon

= [ ]Lrecon Et∼U(0,1) ∥ − − (t + (1 − t) , t)∥z1 z0 vθ z1 z0
2
2 (8)

z0 z1 vθ
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To enhance frequency-domain �delity, we incorporate two spectral losses. The FFT loss,  ,

computes the discrepancy between the Fourier transforms of the predicted and target signals after

applying the LoRa chirp:

where   is the LoRa chirp and   represents the complex-valued signals.

The multi-scale STFT loss,  , captures time-frequency characteristics at various resolutions:

where   is a set of (window size, hop length) pairs.

The classi�cation loss,  , is a combination of cross-entropy and an auxiliary regularization term:

where   is a small coe�cient (e.g., 1e-4) to keep the logits normalized[23].

This classi�cation loss serves a crucial role in our training process. The similarity between di�erent

LoRa chirps, which can be viewed as rotations of each other in the signal space, poses a challenge for

reconstruction-based losses alone. These losses may not provide su�cient guidance for the model to

distinguish between similar chirps accurately. By introducing the classi�cation loss, we encourage the

model’s latent representations to be more discriminative, helping it to ”choose correctly” among

similar chirp candidates during reconstruction.

The auxiliary classi�er is designed with additional parameters to contain potential representation

collapse often associated with classi�cation losses. These extra parameters are removed during

inference, ensuring that the �nal model retains the �exibility needed for high-quality signal

reconstruction while bene�ting from the improved feature learning during training.

This multi-component loss function, combined with our hybrid architecture, enables our model to

achieve high-�delity LoRa signal recovery at extremely low SNRs, e�ectively pushing the boundaries

of reliable communication in challenging environments.

B. Synthetic Data Generation for Training

To train our model e�ectively, we developed a comprehensive synthetic LoRa signal dataset that

captures the diversity of real-world LoRa transmissions. Our dataset - taken from NELoRa -

LFFT

= HuberLoss (FFT ( ⋅ c) , FFT ( ⋅ c))LFFT xpred xtarget (9)

c x

LSTFT

= HuberLoss( ( ) , ( ))LSTFT ∑
(n,h)∈S

STFTh
n xpred STFTh

n xtarget (10)

S

Lcls

= CrossEntropy ( , ) + αLcls ypred ytrue log exp( )
∥

∥
∥ ∑

i

ypred,i

∥

∥
∥

2

2

(11)

α
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encompasses a wide range of spreading factors (SF) speci�cally: 7, 8, 9, and 10. For each spreading

factor choice, we generate chirp signals as described earlier using Equation 1. We generate both

upchirps (increasing frequency) and downchirps (decreasing frequency) to represent the full range of

LoRa symbols. To encode di�erent symbols, we apply appropriate time shifts    as described in

Subsection II-A. This approach allows us to generate all possible symbols for each SF, resulting in a

dataset that comprehensively covers the LoRa signal space. We show an example of a real data sample

compared to a synthetic sample in Figure 5.

Figure 5. Showcase of a sample from the NELoRa dataset compared to our dataset of ideal

synthesized data.

The use of synthetic data o�ers several advantages. First, it allows us to generate a large, diverse

dataset without the need for extensive real-world data collection. Second, it provides perfect ground

truth for training, free from real-world channel impairments. Finally, it enables us to systematically

explore the full range of LoRa con�gurations, ensuring our model’s generalizability.

C. Data Augmentation Techniques

To enhance our model’s robustness and generalization capabilities, we implement a suite of data

augmentation techniques tailored to LoRa signals and potential channel e�ects. These augmentations

are applied probabilistically during training, each with a base probability of 0.15. We use an 8-

dimensional input condition vector  , where 7 dimensions correspond to on/o� augmentations (1 or

-1), and the 8th denotes the current SF. This vector is dropped out to all 0s with a 10% probability,

challenging the model to infer augmentations and SF independently. All evaluations are performed

with   set to 0s, which we �nd to be highly e�ective. While we employ several strategies, we focus on

τm

c

c
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describing our frequency-domain masking technique in detail due to its crucial role in simulating

real-world channel impairments.

1) Frequency-Domain Masking

Frequency-domain masking is particularly relevant for LoRa signals, as it simulates frequency-

selective fading and interference, which are common challenges in wireless communications. This

augmentation operates on the Short-Time Fourier Transform (STFT) representation of the signal,

allowing us to manipulate its time-frequency characteristics.

The process of frequency-domain masking can be summarized in Algorithm 1.

Algorithm 1. Frequency-Domain Masking

This augmentation technique randomly attenuates or completely masks small regions of the

spectrogram. The process is applied independently to both time and frequency dimensions, allowing

for a diverse range of potential distortions. The number of masks applied in each dimension is

randomly chosen between 1 and 2, with each mask covering 1 or 2 time/frequency bins. The

attenuation value is either 0 (complete masking) or a random value between 0 and 0.5 (partial

attenuation). Masks are applied to the real and imaginary components of the STFT independently,

allowing for phase distortions as well as amplitude changes. By applying these masks, we simulate
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various channel e�ects such as narrow-band interference, frequency nulls, and short-term fading,

thereby improving our model’s ability to handle these phenomena in real-world scenarios.

2) Additional Augmentation Techniques

In addition to frequency-domain masking, we employ several other augmentation strategies:

Time-domain shifts: We randomly roll the signal in the time domain, simulating the e�ect of

symbol boundary misalignment.

Signal inversion: The entire signal is inverted with a certain probability, helping the model become

invariant to phase changes that might occur during transmission.

Spectrogram rolling: We implement rolling operations on the spectrogram in both time and

frequency dimensions, simulating minor frequency o�sets and time shifts.

The full implementation details of these augmentations, including their probabilistic application, are

available in our open-source code release.1

By combining these diverse augmentation techniques, we create a robust training regime that

prepares our model for the challenges of real-world LoRa signal recovery at extremely low SNRs. This

approach signi�cantly enhances the model’s ability to generalize across a wide range of signal

conditions and channel impairments, ultimately improving its performance in practical deployments.

D. Generalization to Real-World Data

While our approach demonstrates impressive performance on synthetic data, bridging the gap to real-

world LoRa signals is crucial for practical deployment. To address this challenge, we employ a �ne-

tuning strategy that leverages the NELoRa dataset[19], adapting our model to the nuances of actual

LoRa transmissions while maintaining its ability to operate at extremely low SNRs. The NELoRa

dataset comprises 27,329 LoRa symbols covering spreading factors from 7 to 10, collected in real-

world indoor environments.

Our �ne-tuning process is designed to be data-e�cient, recognizing the scarcity of labeled real-

world LoRa signals, especially at very low SNRs. We adopt a one-shot learning scenario, utilizing a

single sample per class from the NELoRa dataset. This approach minimizes the need for extensive

real-world data collection and demonstrates the robustness of our model architecture.

The �ne-tuning procedure closely mirrors our initial training process: 
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where    now represents a mixture of real and synthetic data distributions. Speci�cally, during

training we take samples from real NELoRa dataset with 95% probability and from our synthetic

dataset with 5% probability. Do note that in either case we only have one sample available per class.

This mixture strategy serves two purposes: it prevents catastrophic forgetting of the rich patterns

learned from synthetic data and �lls the gaps where the NELoRa dataset sometimes has only 1 sample

for some classes, in which case, we leave the class out and rely entirely on synthetic data.

The use of the same loss function and optimization setup as in the initial training phase allows for a

seamless transition between synthetic and real data. This continuity in the learning process facilitates

e�cient knowledge transfer, enabling the model to quickly adapt to the characteristics of real LoRa

signals while retaining its ability to operate in extremely challenging noise conditions.

Empirically, we observe that this �ne-tuning approach leads to signi�cant improvements in real-

world performance, particularly in scenarios where the SNR is well below the theoretical limits of

traditional LoRa demodulation techniques. The model’s ability to generalize from a single real-world

example per class underscores the e�ectiveness of our recti�ed �ow-based approach in capturing the

fundamental structure of LoRa signals, transcending the speci�cs of synthetic data generation.

VI. Performance Evaluation

We rigorously evaluate LoRaFlow’s performance across various dimensions to demonstrate its

e�cacy in enhancing LoRa signal reception under challenging low SNR conditions. Our evaluation

metrics include accuracy advantage over baseline dechirp, qualitative signal reconstruction

assessment, and quantitative comparison with the state-of-the-art NELoRa method using Signal

Error Rate (SER) advantage. We also utilize the Area Under Curve (AUC) metric to provide a holistic

performance summary across all SNRs.

A. Experimental Setup

Our training process leverages synthetic data with a single sample per class, necessitating a robust

augmentation strategy. We employ dynamic batch sizes tailored to each Spreading Factor (SF): 2048

for SF7, 1024 for SF8, 512 for SF9, and 256 for SF10. For the scope of this work, we use a bandwidth of

125,000 for all experiments. The model undergoes 300,000 updates on synthetic data, followed by

= [ [∥ − − (t + (1 − t) , t) ]dt]Lfine-tune E , ∼z0 z1 pdata ∫
1

0
Et z1 z0 vθ z1 z0 ∥2

2

pdata
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�ne-tuning with real data. For �ne-tuning, we select one example per class from the NELoRa dataset,

training on real data for 95% of the subsequent 50,000 updates and on synthetic data for the

remainder. Despite one-shot (1 sample per class) �netuning being the most di�cult adaptation

scenario, we �nd that our model excels in it easily.

Training utilizes 6 NVIDIA SXM5 H100 GPUs, optimized with AdamW Schedule Free[24]. We

implement Flash Attention[25]  and leverage torch.compile with dynamic sizes to enhance

computational e�ciency. To ensure reproducibility, we use a �xed random seed and deterministic

splitting across all experiments.

For evaluation, we assess performance across a range of SNRs (-40dB to -10dB) and compare against

both traditional dechirp methods and the state-of-the-art NELoRa approach. Our metrics include

accuracy advantage, Signal Error Rate (SER) advantage, and Area Under Curve (AUC) for

comprehensive performance assessment.

B. Impact of Neural Function Evaluations on Performance

Figure 6 shows the accuracy advantage of LoRaFlow over the baseline dechirp method across various

Spreading Factors (SFs) and Signal-to-Noise Ratios (SNRs), plotted as a function of the number of

Neural Function Evaluations (NFE). This comprehensive analysis reveals several key insights.

LoRaFlow demonstrates substantial performance improvements under certain scenarios, particularly

for SFs 7 and 8 within the mid-range SNRs (-30 to -20 dB), where accuracy improvements of up to 0.4

are observed. The in�uence of NFE is signi�cant, as increases in NFE lead to enhanced performance.

However, increasing NFE beyond 16 does not seem to yield signi�cant bene�ts, suggesting that the

model’s trajectory is simple enough to be su�ciently well approximated by that level of discretization.

While improvements for SFs 9 and 10 are less dramatic, they remain substantial, particularly between

-25 and -15 dB SNRs. At extremely low SNRs (below -35 dB), the performance of LoRaFlow aligns with

the baseline, indicating a potential limitation in signal recovery under severe noise conditions. These

�ndings emphasize LoRaFlow’s capacity to enhance LoRa communication reliability in noisy

environments, particularly at lower SFs where other methods falter. The results also highlight the

crucial role of balancing computational load against signal recovery e�ectiveness in real-world

applications.
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Figure 6. This �gure shows the accuracy advantage over baseline dechirp for all SNRs tested and various

numbers of neural function evaluations (NFE). Light green/yellow indicates equal performance to

baseline, red indicates a performance degradation, and green indicates performance improvement.

C. Qualitative Comparison of Signal Reconstruction

Figure 7 presents a comparative analysis of signal reconstruction quality at di�erent processing

stages, highlighting LoRaFlow’s advanced signal recovery capabilities. The original data displays

distinct chirp patterns in both phase and amplitude domains, typical of LoRa modulation. In contrast,

the noisy signal shows substantial degradation, with chirp structures becoming indistinguishable,

particularly in the amplitude domain. NELoRa’s masked output slightly improves upon this noisy

signal, yet it does not completely restore the original signal structure, especially in the phase domain.

On the other hand, LoRaFlow’s output closely mirrors the original signal in both domains, achieving a

highly accurate reconstruction of chirp patterns. Impressively, LoRaFlow reconstructs the phase with

near perfection, despite phase generally being challenging to accurately restore.

The superior reconstruction quality of LoRaFlow, particularly in preserving phase information, stands

out. This ability to maintain phase accuracy is crucial for correct signal decoding in radio

communications. LoRaFlow’s capability to reconstruct detailed signal structure from heavily noisy

environments highlights its potential to considerably enhance the operational range and reliability of

LoRa networks in challenging conditions.
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Figure 7. This �gure shows a side-by-side comparison for both the amplitude and the phase of a sample

from the NELoRa dataset, the sample at-reception (noisy), NELoRa’s masked output which is their version

of denoising, and our output.

D. Quantitative Comparison with NELoRa

Figure 8 provides a quantitative comparison between LoRaFlow and the state-of-the-art NELoRa

method, utilizing the metric of Symbol Error Rate (SER) advantage over their respective baselines.

This analysis demonstrates that LoRaFlow consistently outperforms NELoRa across various SNRs for

both SFs 7 and 8. The performance advantage is notably signi�cant in the -30 to -20 dB SNR range,

where LoRaFlow achieves up to a 0.4 SER advantage over the baseline for SF=8. Both methods exhibit

diminished advantages at extremely low (below -35 dB) and high (above -15 dB) SNRs, highlighting

the challenges of signal recovery in extreme noise environments and the adequacy of traditional

methods in the weaker SNR regions.

Our results are particularly signi�cant as they are based on evaluations using almost the entire

dataset, whereas NELoRa’s reported results cover only 20% of the dataset, lending greater statistical

signi�cance to our �ndings which is remarkable as our scenario is signi�cantly more challenging.

Additionally, while both models have matched parameter counts, implying similar capacities, NELoRa

utilizes a separately trained network for each SF, whereas our approach employs a single model for all

con�gurations.

We attempted to reproduce NELoRa’s results using the latest code uploaded to their Github[26],

however, as of writing all the models published on their Github failed to outperform the baseline.

Therefore we had to resort to copying NELoRa’s results from the �gures in their paper[10]

To provide a holistic performance summary, we compute the Area Under Curve (AUC) for both

methods across all SNRs. Table I presents these results:
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SF LoRaFlow AUC NELoRa AUC Improvement over NELoRa

7 2.922 2.227 31.2%

8 3.143 2.409 30.5%

Table I. AUC Comparison between LoRaFlow and NELoRa

These AUC values (where higher is better) demonstrate LoRaFlow’s signi�cant overall performance

improvement over NELoRa, with enhancements of 31.2% and 30.5% for SF=7 and SF=8, respectively.

Figure 8. This plot shows the negative signal error rate advantage over each method’s

respective baseline. Values represent an error rate decrease over the baseline (higher is

better). Plot is corrected for di�erences in baselines.

qeios.com doi.org/10.32388/KU8IJY 22

https://www.qeios.com/
https://doi.org/10.32388/KU8IJY


E. Discussion

While LoRaFlow demonstrates signi�cant improvements over NELoRa for SF 7 and 8, there remain

opportunities for enhancement, particularly for higher spreading factors. Our analysis reveals several

key challenges:

Dataset Characteristics: The NELoRa dataset exhibits substantial class imbalance, especially

pronounced in higher SFs. This imbalance potentially favors methods that learn the training set’s

class distribution, an e�ect that becomes more signi�cant as the number of classes increases (e.g.,

512 for SF 9, 1024 for SF 10). In contrast, LoRaFlow’s training on a uniform class distribution, while

ensuring unbiased performance, does not at all leverage the dataset’s statistics.

Computational Constraints: Memory limitations necessitate progressively smaller batch sizes as

SF increases, potentially impacting model optimization for higher SFs. This challenge highlights

the need for more e�cient training strategies or software optimization solutions to maintain

samples seen across all SFs.

Decoding Strategy: Our approach uses the standard dechirp algorithm without class bias. While

this ensures fairness, it may not fully exploit the model’s potential. Learning a classi�er on top of

LoRaFlow could signi�cantly enhance performance, especially for higher SFs.

VII. Conclusion

This paper introduces LoRaFlow, a novel approach to LoRa signal reconstruction using recti�ed �ow.

Our method demonstrates signi�cant improvements over existing techniques, particularly at low

SNRs and for lower spreading factors. LoRaFlow’s ability to recover high-�delity signals from

extremely noisy inputs pushes the boundaries of reliable long-range, low-power communication. By

maintaining compatibility with existing LoRa infrastructure, our approach o�ers a practical path to

enhancing IoT network performance without overhauling current systems. Future work will focus on

addressing challenges at higher spreading factors and exploring the integration of learned classi�ers

to further boost performance. LoRaFlow represents a signi�cant step forward in robust IoT

communications, opening new possibilities for deploying IoT networks in challenging environments.
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