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The spectral theory of periodic differential equations is a branch of mathematics that look into and
study of the eigenvalues and eigenfunctions of differential operators with periodic coefficients. These
equations appear naturally in many scientific and engineering applications in physics, biology, and
mechanics, particularly in the modeling of systems with periodic behavior such as oscillatory systems
in physics and biology.

One of the key features of periodic differential equations is the periodicity in the coefficients of the
differential operators. This periodicity introduces a mathematical structure that leads to unique
properties in the spectral theory of these equations. Unlike the case of constant coefficients, where the
eigenvalues and eigenfunctions are typically well-defined, the periodic of the coefficients rises to a
more complex spectrum.

The study of the spectral theory of periodic differential equations involves understanding the
properties of the spectrum, including the existence and uniqueness of eigenvalues, the behavior of
eigenfunctions, and the stability of solutions. This theory plays an important role in the analysis and
prediction of the behavior of periodic systems, providing insights into their long-term dynamics and
stability.

In this paper, we will explore the spectral theory of periodic differential equations such as Floquet’s
equation, Hill’s equation and Mathieu’s equation. Also, we will concentrate on properties of the

solutions of them.
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1. Introduction and preliminaries

The spectral theory of periodic ordinary differential equations (ODEs) is an essential area of mathematics
that deals with the study of the eigenvalues and eigenfunctions of differential operators with periodic
coefficients. These equations appear in science and engineering, particularly focusing on the modeling of
systems with periodic behavior, such as oscillatory systems in physics and biology. The aim of the paper
is to look deeply at some periodic ordinary differential equations and the characterization of their

solutions such as Floquet’s equation, Hill’s equations and The Mathieu’s equations.

11. Floquet’s equation

Let us briefly show some interesting results about the Floquet’s equation.
The Floquet’s equation is given by
coy " () + ¢y @) + () = 0,

where ¢, c,, ¢, are complex valued functions, piecewise continuous and periodic, all with the same period
g € R and q # 0. To ensure that there is no singular point, we assume that the left and right-hand limits

of ¢((x) at every point are non-zero. It is clear if ¢(x) is a solution of (1), then ¢(x + ¢) is also a solution of (1).
The following theorem is crucial.
Theorem 1.1. There are a non- zero constant g and a non-trivial solution ¢(x) of (1) such that
P(x +q) = Po(x).
Proof. Let y,(x) and y,(x) are two linearly independent solutions of (1) which satisfy the initial conditions:
pi0) =1, ¥, (0)=0, yy(0)=0, y,(0)=1.

Since y,(x +q), y,(x +¢) are linearly independent solutions of (1), it follows from the existence and
uniqueness theorem for solutions of the initial value problem for ordinary differential equation that any
solution of equation (1) is linear combination of y, and v, therefore there are constants 4 ;A <ij<2) such
that

l/’](x +q)= An’//](x) +A12y/2(x).

Wolx T q) = Ay y (x) + Ay (x).

Therefore,
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y(x+q) Ay () 4 ,95(x) Ay Ap\ (v
(wz(x ) ) } (Amoo +A221//2(X)) B (A21 Azz)(wzm)’
where the matrix 4 = (4;) ., ;<», is non-singular ie. det(4)#0 (if det (4) =0, then y,(x + a), y,(x +a)
would be linearly dependent and this is a contradiction).
We know from the essential property of linear second differential equations that every solution ¢(x) of (1)
can be written as a linear combination form of y,, y,. i.e. any solution y(x) can be written as
P(x) = oy (x) + ap,(x)
where o, a, are constants. This property can be proved as follows:
@ () + 1@ (@) + ()
= o) (1) + aqwa)) "+ €110 + o))+ g0 (@1 (0) + o))

= ay (el )+ @ () + €0 () + gy () + €4 I) + @) )
)

because y,(x) and y,(x) are solutions of (1). 2
We need to prove that (2) holds if

(A1) = Bay +A4y0, =0,
(A22 *ﬁ)aszAlzal =0.

The proof for that is as follows:

p(x+q) = ay (x+q) + ay,(x+q)
= oAy (0) + oA o) F ardy i (0) + and ) p,x)
= (014 )+ apdy )y (X) + (a5 + ard ) (x)

= pa 1 V/l(x) + ﬂaz ¢2(x).

This implies that o,4,, + ayd,, = pa; and a4, +a,4,, = pa, as requested. Now, these equations are

satisfied by values of «, and «, , not both zero, if 4 is such that

A, =B Ay

=0.
4, Ay —p

Therefore we obtain quadratic equation for
Ay =Py =p) —Ayd; =0
ie.

B = (A, + Ay + det (4) =0,
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where

All A21

det (4) =
e 41 Ay

The equation (7) is satisfied by at least one value of 3, the value being non-zero since det (4) # 0. It follows

from the initial conditions (3) and (4) and (5) that

y1(0+9) = yi(q) = Ay, (0) + A 1pp5(0) = 4y
w20+ q) = yo(g) = A1y 1(0) + Ayp(0) = 4y
l//i(x +q) = Ally/i(x) + A121;/2'(x).
Yo+ q) = Ay () + gy ().
u/{(O +tq) = w{(q) = Allw{(O) + Alzw;(O) =4,

w,(0+q) = y,(q) = Ay, (0) + Ap,p5(0) = 45,.

Hence, with the usual notation for the Wronskian

All AZI

det (4) = Ay Ay

vi(q) l//{(q)

vo@) vy (q)
=Wy, yo)(q)

e

PR 7 P
=e IOCU(x)dx.

by

y1(0) y,(0)

a0 0|

1 0
0 1

=Wy, py)0) =1,

and Liouville’s formula for Wronskian

e (x) € (x)
P [/ J— e [ ——
Wy, wa)(q) = W, y)(O0)e imm @ = e lin e

Thus, the equation (7) can be written as

cp(x)

B = (@) + wal@p + e limm® =0,

o

Theorem 1.2. There are linearly independent solutions ¢ (x) and ¢,(x) of equation (1) such that either
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L g (x) = €"*P,(x), p,(x) = €"2"P,(x), Wwhere m,, m, are constants, not necessarily distinct and P(x), P,(x) are
periodic with period q.

il 9, (x) = &™P(x), p,(x) = " (P,(x) + xP,(x)), where m is constant and P (x), P,(x) are periodic with period q.

Proof.

i) Assume that the equation (7) has two distinct solutions g, # 0, 8, # 0. Then by the previous Theorem 1.1,

there exist two non-trivial solutions ¢,(x), ¢,(x) of the equation (??)such that

¢1(X+Q):ﬁ1¢1(x)~ 9
Po(x T q) = B, (x). (10)

These solutions ¢,(x), p,(x) are linearly independent because if they were not, then det (4) = 0 and this

would contradict to det (4) # 0. Since g, # 0, 8, # 0, we can find m, m, so that 8, = "1, 8, = e?"2. Define

Pi(x)=e "p,(x).
Pz(x) = e_mzxﬁﬂz(x)-
By (9),(10) we have

Pi(x+q)=e Mg (x+q)
= e*ml(XﬂI)ﬂl(pl(x)
= e TR g (x)
=e Mrfe”™Mde?Mp (x)

=e "% ,(x) = P|(x).

e MUt Dy (x + g)

e "2 "B ypy(x)

e " MyXe *mzqeangoz(x)

Pz(x"'Q)

e 7’”2)‘

= Py(x).

(p2(x)

This means P,(x) and P,(x) have a period ¢. Thus, by (11) and (12), we have
p(x) = emlxpl(x)’
(/)z(x) = emzxpz(x)’

where P,(x), P,(x) have period q.

ii) Assume that the equation (7) has a repeated solution s, = s, = 5. Then similar to part (i), define m so

that g = ¢?". Then, by Theorem 1.1, there exists a non-trivial solution ¢,(x) of equation (1) such that

Y1+ q) = B¥1(x).
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Assume that ¥,(x) is another solution of equation (??) which is linearly independent of ¥ (x). ¥,(x + ¢) is

also solution of equation (??), therefore there are two constants 4, # 0, d, # 0 such that
Wox +a)=d ¥ (x) + d,¥,x).

Our goal is to compute d,. From (15),(16), we have

¥, ¥ )

WY |, ¥))(x) = .
2 2

Y(xtq) P (xtq)
WY, ¥Y)x+q) = ,
b2 Yo +q) Yax+q)

B () B ()
d\¥ (@) + d,)Po(x)  d\¥ () +d, P, (x)

= Bd, (¥, ¥,)(x).
Hence, by Liouville’s theorem for the Wronskian

(%)
g
WP, W) (x + q) = W, Po)@e h am

—jX+qL£dx
P WY |, P () = (P, W) e h nm

Therefore,

cp(x) cp(x)

_rte— _[4—
e ‘..x co(x)dx =e JOCO(,\‘)dx = ,de,

since the integrand has period g. But 8 is a repeated solution for the equation (8) therefore

cp(x)
e 0c,(x)

dx _ g2
Then fd, = p* ie. d, = p. Then (16) becomes
Yo(x + ) = d, ¥, (x) + fE,H).
There are now two subcases:
e Case 1: If 4, =0, we have ¥,(x+q) = p¥,(x). This together with (15) shows that we have the same

situation as
9 ,(x) = e"*P(x).

9,(x) = e"PPy(x).
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But 8, = 8, = p. Hence, as in a part (i) of proof of this theorem with ¢,(x) = ¥,(x), ¢,(x) = ¥,(x) and
my=my=m.
Case 2:If 4, # 0. Then, define
Py(x) = e ™Y (x).
dl

Py(x) = e "™¥p(x) = %xp 100).

Then by (9) and (10), we can prove that P,(x) and P,x) have period ¢ as follows:
Px+gq)=e "OTDY (x+¢q)

= e MR )
e ™e MpBY (x)

=e ™e MY (x)

=e ™Y (x)
= Py(x).

d

Pyx+gq)=e mOTDWY (x +q) - TPt
d, Therefore
= e Me M(d|¥(x) + BYH(x)) — %,(x +@)P(x)
dl dl

=e ™e MW (x) + e e MPY,(x) - LﬁxPl(x) - ?Pl(x)

dl dl
=e M™e MY, (x) - %xPl(x) +e "d P (x)— ?Pl(x)

dl

=e ™Y, (x) - %xPl(x)
= P,(x).

Y, (x) = e™P(x).

d
Pyx) = emx(Pz(x) + q—;xPl(x)).

This sub-case comes under the second part of the theorem with ¢,(x) = ¥,(x) and ¢,(x) = Z—ﬂ‘llz(x).
1

The proof now is complete. i.e.

(ﬂ1(x) = lP](x)
= P (x)e™.

o =Ly
05(x) = —¥,5(x
2 d12

qﬁ mx dl
= d_1€ Py(x) + %xPl(x)

= e"’x(xP] (x) + Py(x) )
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2. Hill’s equation

The name of Hill’s equations is given to the equation

(Pey'@) + 0w =0,

where P(x), O(x) are periodic real- valued functions with the same period 4. Additionally, it is assumed
that P(x) is continuous and nowhere zero and that P'(x) and Q(x) are piecewise continuous. Thus, (18) is a

case of equation (1).
We mention here two ways in which equation (1) with real coefficients can be transformed into an
equation of the type (18). First, let

qcl(t)
O%dt =0.

If equation (1) is multiplied by

c (1)
— — L pe—
< lx)ed () = < 1()c)ejocn(t)dt,

¢ (1)
X e—_
where 4(x) = [ e dt, then

()" D o ®
ey * co(x)e Yy () + co(x)e yx) =0
has the formula of Hill’s equation by assumption
P(x) = e?™).
cy(%)
= A(x)
o) c (x)e .
c(x)
Pl) =4 ()ed () = L pd()
Co(x)

By (19), 4(x) has the period ¢. i.e. A(x + ) = 4(x) and therefore P(x) and Q(x) defined by (22) and (23) have the
c(x)

same period ¢. Second, instead of (19), let % has a piecewise continuous derivative and put
LO X

1

() = z(x)e 34,

Then
] , 1, 1
y )= (z ()~ 54 (x)z(x))eEA(x),

" " ’ ' 1 2 1 " _ lA
3 (%) = (z @) —z @4 (x)+ (ZA ()= 54 (x))z(x))e 34,
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Subtitute (24), (25) and (26) in the Floquet’s equation (1), and by using

¢, (0)eg(x) — e (e (x)

co®)

A" (x) =
we have
, , , L, L,
CO(X)((Z x) =z 04 () + (ZA (x) = EA (X))Z(X))

, 1,
+cq(x) (z (x)— EA (x)z(x)) + ¢x(x)z(x)
= c((x)z ! (x)+ (c](x) —co0)4 '(x) )z '(x)

. 1, 1 ,
+ (cz(x)+c0(x)(ZA 2(x) — 54 (x))— 5e1(04 (x))z(x)
Co(x)
1/ci)\2 1{ci®))’ 1 c1(x)
Tl TGl Gw ) T2 am ) | 2w Y

) 1@ 1 (@) 14®
= gz @ + [ ey + 5 ( ( ) )

. a®
=co@z () + |c;(x) — )= f ¥)

iew 299 om ] " 2em

2
. 160 @\’
=co)z (x)+ (cz(x) - Z% - Eco(x)(%) )z(x) =0.

Then divide by ¢(x) # 0, we have

c e ifa@) fa@)|
2+ cO(x)74 co(x) 2 ay(x) () =0

which, because the coefficient of z(x) is periodic, has the form of (18) with P(x) = 1 and z(x) in place of y(x).

Now, we examine in more details the solutions y,(x) and y,(x) given by Theorem 1.2 as applied to (18). For

c, (1) C](t)

1
(18), since ¢~ [§575 % = ¢ 74(9) = 1 where 4(q) = e
0

dt = 0 therefore the equation (8) becomes

B2 = (1@ + yy@)B+1=0

and the characteristic multipliers g, and g, therefore satisfy 8,4, = 1. The solutions y,(x) and y,(x) of (18)

which satisfy the initial condition (3) are real-valued because P(x) and Q(x) are real-valued.
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Define a real number

D=y (q)+ w;(q),
and it is called the discriminant of the equation (18) therefore the equation (27) becomes
B-DB+1=0.
We have five cases which can be collected in the following theorem:

Theorem 2.1. We have the following cases:

 Case L If D > 2, then the quadratic equation (29) has two positive real distinct solutions g, # 1 and g, # 1.
But 8,8, = 1. Thus, there is real a non-zero number m such that g, = e?", , = e~9". Thus, by part(i) of
Theorem 1.2, ¢, (x) = €™ P,(x) and ¢,(x) = e~ ™ P,(x), where P,(x) and P,(x) have period q.

e Casell: If D < -2, then the quadratic equation (29) has two negative real distinct solutions 8, # 1 and g, # 1.
But B, = 1. Thus, there is real a non-zero number m + %[ such that g, = e?™*, g, = e~ ~i%_Thus, by part(i)
of Theorem 1.2, ¢ (x) = ¢ " * ; )*p (x) and gy(x) = e~ "F ? ) P,(x), where P,(x) and P,(x) have period 4.

e CaselIlIL If -2 < D < 2, then the quadratic equation (29) has two distinct complex conjugated solutions g, f.
But 8,8, = 1, therefore their moduli are unity. Hence, there exists real number « such that 0 < ga < = or
-1 <ga<0and f, = €% p, = e % Thus, by part(i) of Theorem 12, p,(x) = "™ P (x) and ¢ (x) = e “P,(x),
where P(x) and P,(x) have period q.

e Case IV: If D = 2 then the quadratic equation (29) has only one repeated solution 8, = f, = 1. To decide which
part of the Theorem 1.2, we need to compute the rank of 4 — 1, where 1 is the identity matrix and

(AH Alz) Vi@ v,
A= —

Ay Ay vy(@) vy ()

Note that there are here two sub-cases:

L If yy(9) = w,(q) = 0, but

y1(0) y,(0)

a0 0|

v1(q) 0 1 0

0o 11!

Wy, wo)g) = = y(9) t//z,(q)- Wy, w)(0) =

s

A

ey (1)
where we have used the initial conditions (3). ButW(y, y,)(q) = W(w1, w,)(0)e ™~ eyt = Wy 1, w)(0),

where we have used our assumption(19), thenW(y,, y,)(q) = v (q). y/z'(q) = Wy, w,)(0) = 1.
Then we have y/,(9). v, (q) = 1.But D = y,(q) + . (q) = 2¢. Hence y,(q) = y,(q) = 1. Hence rank(4 — I) = 0. This
means that the part(i) of Theorem 1.2 applies because g, = 8, = 1. The characteristic exponents m,, m, are

both zero and theorem 1.2 gives simply ¢,(x) = P,(x) and ¢,(x) = P,(x), where P,(x) and P,(x) have period q.
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il If wy(q) #0 or Wl'(q) #0. In this sub-case rank(4 —1) # 0 and the part (ii) of Theorem 1.2 applies and
similarly m = 0. Hence, for this sub-case ¢,(x) = P,(x) and ¢,(x) = xP,(x) + P,(x), where P (x) and P,(x) have

period q.

» Case V:If D = -2, then the quadratic equation (29) has only one repeated solution g, = 8, = — 1. To decide
which part of the Theorem 1.2, we need to compute the rank of (4 + 1).By the same way in Case (IV) we have
two sub-cases:

LIfyyg) = y/{(q) =0, then

v (@) 0 e ()
W)@ =1 vl ¥1(@)- v, (@)- Wy, wo)(q) = Wy, v~ BLm = Wiy, w)(0) = 1,
2
where we have used our assumption (19) and the initial conditions (3). Then, we have g,8, = — 1 and

D=y(q+ (//é(q) = —2. Hence, y,(q) = y/Z'(q) = 1. Hence rank(4 + 1) = 0. This means that the part (i) of
Theorem 1.2 applies because 8, = p, = — 1. The characteristic exponents m, = m, = %, and therefore for
this sub-case ¢,(x) = e”;ixPl(x) and g,(x) = e%[xPz(x), where P,(x) and P,(x) have period q. It follows from
that

9 (x+q)= e%(“‘”Pl(x +q)

e%!xei”Pl(x)

i

—eq'Pi(x) = —9y().

wrx+q) = e7 TPy (x + )
in .
eq e™P,(x)

= - e;xPz(x) = - (ﬂz(x)a

and hence all solutions of Hill’s equation satisfy p(x + ¢) = — o(x).

ii.

jr}

If py(q) £ 0 or ﬂi(q) # 0. In this sub-case rank(4 + 1) # 0 and the part (ii) of theorem 1.2 applies and with
m= g Finally, for this sub-case ¢,(x) = P,(x) and ¢,(x) = xP,(x) + P,(x) where P,(x) = e%rxpl(x) and

Py(x) = efxpz(x). Similarly, it follows from that P,(x + g) = — P,(x) and P,(x + q) = — P,(x).

Lemma 2.2.31 Liouville’s formula for for the Wronskian of two solutions w,(x) and y,(x) of equation (1) is

. c(®)
Wy 1, wa)g) = Wy, ) Jexp| — -[X?Co(x)dx .

For equation (18) , this gives

W(V/], Wg)(xz) B W(‘//p Wz)(’ﬁ)
Px) PGy

= constant.
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Proof. The Hill’s equation (18) can be written as

PRy (x)+ P () (x) + Q) = 0.

Then

P @)
o P &

Wy, §,)0xy) = Wy, wz)(xl)exp( -

=My, y/z)(xl)exp( — In(P(x,) + lnP(xl))

P(x1)
= Wy, wy)(xexp|In Py

P(x1)

= W(l//p Wz)(x1)~ @

This implies that

W(‘/’p V’z)(xz) W(l//l, ’//2)()‘1)
P(x) Py

(32)

3. Boundedness and periodicity of solutions
Theorem 3.1. We have

LIf |D| > 2, all non-trivial solutions of Hill's equation are unbounded in ( — », + o).

IL If | D| < 2, all solutions of Hill’s equation are bounded in ( — w, + ).
Proof.

i.If D > 2, we have the Case (I) of Theorem 2.1 and ¢,(x) = ¢"™P(x), p5(x) = e ™P,(x) hold. Any linear

combination of ¢,(x) and ¢,(x) is unbounded either as x — « or asx — — o« (or both).

If D < -2, we have case (II) of Theorem 2.1 and ¢,(x) = ¢ " * )P, (x), p,(x) = ¢~ """ 7)*P,(x) hold. Any

linear combination of ¢,(x) and ¢,(x) is unbounded either asx — -« orx — + « (or both).

1.1f |D| <2.ie.-2 < D < 2, we have case (III) of Theorem 2.1 and ¢,(x) = ¢"™P,(x), p,(x) = e "“P,(x) hold.
Hence |¢p,(x)| = [P,(x)| and |p,(x)| = |P,(x)|. Now P,(x), P,(x) are bounded in (-, +), being
periodic. Hence y,(x), y,(x) are bounded in ( - «, + o) therefore so also are all linear combinations of

them. This proves part (ii). &
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Definition 3.2. The equation (18) is unstable if all non-trivial solutions are unbounded in ( - «, + ).

Definition 3.3. The equation (18) is conditionally stable if there is a non-trivial solution which is bounded

in(—oo, + o).
Definition 3.4. The equation (18) is stable if all non-trivial solutions are bounded in ( - «, + ).

Remark 3.5. By the Theorem 3.1, the equation (18) is unstable if | D| > 2, and stable if | D| < 2,and it is also
stable if |D| =2 under the Sub-case (i) of Case (IV) and (V) in the Theorem 2.1, and the equation is
conditionally stable, but is not stable if |D| =2 under the second Sub-case (ii) of (IV) and (V) in the

Theorem 2.1.

Theorem 3.6. The Hill’s equation (18) has non-trivial solutions with period q if and only if D = 2, and with semi-
period q if and only if D = — 2. All solutions of the Hill’s equation have period q or semi-period a if and only if,

additionally y(q) = y,(¢) = 0.
Theorem 3.7. Let k be a positive integer, then the equation (18) has non-trivial solutions with period kq if and

21
only if there exists an integer I such that R = 2cos(77r )

Proof. Since periodic solutions are bounded in (- «, + ), so Case (I) and Case (II) of the Theorem 2.1 do
not arise here.

If & = 1, then we have Case (IV) of the Theorem 2.1 and choose / = 0. If k = 2, then case (IIT) does not occur
because no non-trivial linear combination of ¢ ,(x) = ¢/P,(x) and ¢,(x) = e "““*P,(x) has a period 2q because
ga is not multiple of z. Hence the theorem is covered by cases (IV) and (V) and by choosing /= 0and /= 1.
If £ > 2 and the solution does not have period ¢ or 24, it is case (III) that occurs, then a non-trivial linear
combination a,¢,(x) + a,p,(x) of ¢, (x), 9,(x) I ¢, (x) = ¢““P,(x), p,(x) = e~ “*P,(x) has a period q if and only if

a19,(0)(1 = €M% + a,p,(x)(1 —e "% =0, ie, 1=¢"* this means kga=2/z for some integer / and
27l

D = BB, = 2cos(qa) = 2005(7. ) O

Corollary 3.8. A non-trivial solution of (18), which has a period 2q, has either period q or semi-period q.

Proof. It follows from the fact, when & = 2, it is the Case (IV) or Case (V) of the Theorem 2.1 that occur. 7

Corollary 3.9. If the equation (18) has a non-trivial solution with period ka, where k is a positive integer and k > 2

, but no solution with period q or 2q, then all solutions have period kq.

Proof. As we have seen, it is Case (III) of the Theorem 2.1 that occurs with kga = 2/z holding. Hence both

9,(x) = €®P(x), p,(x) = e “*P,(x) have a period kg and the corollary follows. 7
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2zl ) .
Remark 3.10. Since kqga = 2iz gives a = %, we see from g¢,(x) = ¢'*P,(x), 9,(x) = e "“*P,(x) that, in same

conditions of the Corollary 3.9, so any solution ¢(x) of (18) has the form

2limx

o(x) = alexp(k—q )Pl(x) + azexp( - ?)Pz(x),

where c,, ¢, are constants.

Theorem 3.11. Let P(x), O(x) be even. Then the equation (18) has a non-trivial solution which is

I. Even and with period q if and only if l//{(%q) =0.
I1. 0dd and with period q if and only ify/2(%q) =0.
I11. Even and with semi-period ¢ if and only ifz//l(éq) =0.

IV. 0dd and with semi-period q if and only if V/Z'(éq) =0.

Proof.

P(x), O(x) are even, y( — x) is solution of (18) when y(x) is. Particularly w(x) and (- x) are solutions which
satisfy the same initial conditions at x = 0. Hence y;(x) = w;(—x), so that y(x) is even. Similarly,
wH(x) = — wo( — x), so that "w,(x) is odd. It follows that any even solution of (18) is a multiple of y(x) while
any odd solution is multiple of w,(x). Now t//l(%q) =y(- %q) and so y;(x) has period ¢ if and only if
l//{(éq) = x//{( - %q). But, since y,(x) is even, y/{(%q) = - (//i( - %q), and this proves part (I). For part (III), note
that y,(x) has semi-period ¢ if and only if qzl'(%q) =~y (- %q) and y/l(%q) =~y (- %). But, by
v, (x) = y,(—x), we have t//l(%q) =y, (- %q) and this proves part (iii) Parts (II) and (IV) are proved similarly

by using w,(x). O

4. Complex-Valued Coefficients

There are one or two places in sequel where we need to refer to an equation of the form (18) but with
P(x), O(x) complex-valued coefficients. The number D is still defined by (28) but it is now complex, and

there is one further case in addition to the cases in the Theorem 2.1. This case is denoted by Case (VI).

Case (VI): D = y,(q) + w;(q) is non- real. Here #, and g, are non-real and distinct. Also, |,| # 1 and |8,| # 1
because if g, = ¢/ , where 4 is real, then, by 8,8, =1, ,=¢ " and hence D = f, + 3, = 2cosd is a real.
Therefore, there is a non-real number m with Rem # 0 such that g, =¢?" 8, =¢ 9. Then, as for
9,(x) = e"P(x) and ¢,(x) = ¢~ " P,(x). Because of Rem # 0, we have the result that, as the part (I) of the

Theorem 3.1, all non-trivial solutions of (18) are unbounded in this case.
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5. Instability and Stability interval

Let us involve a real parameter 1 in the form
O(x) = As(x) — q(x),

where s(x) and ¢(x) are piecewise continuous with period « and there exists a constant s > 0 such that

s(x) > 5. If we write p(x) instead of P(x), then the equation (18) becomes

(p(x)y ’(x))' + (3s() — g () = 0.

In order to indicate the dependence of 1 which occurs in the last equation (34), we write ¢,(x, 1), ¢,(x, 1) for

the solutions of (34) which satisfy the initial conditions

¢,(0.0)=1, ¢,0.4)=0,
$20.4) =0, ¢,(0.)=1.

Define the discriminant
D) = ¢(a.2) + $,(a, 2).

Although the parameter / is taken to be real here, it is sometimes necessary to allow it to be complex.

Whether 1 is real or complex, ¢,(x, 1),¢,(x, 4) and their x — derivatives are for fixed x, analytic functions of 2

. Hence, by (37), D(4) is analytic function of pRcd

Since, in particular, D(2) defined by (37) is a continuous function of 2 because ¢,(x, 1), ¢,(x, A) are analytic
functions of 2 for fixed x, the values of /1 for which |D(1)| <2 form an open set on the real 1 - axis. This
set, which as we shall see is not empty, so this set can be written as the union of countable of disjoint
open intervals. Thus, the second part of the Theorem 3.1, the equation (34) is stable when 4 lies in these
intervals, and the intervals are therefore called the stability intervals of (34). Similarly, the intervals in
which |D@)| > 2 are called the instability intervals of (34). Finally, the intervals formed by the closure of
the stability intervals, as well as, those in which |D(7)| < 2 are called the conditional stability intervals of

(34).

6. The periodic and semi-periodic eigenvalue problems

We introduce two eigenvalue problems associated with (34) and the interval [0, ¢], where 4 is regarded as
eigenvalue parameter. These problems are basic in the theory of stability and instability intervals. Some

of their properties that we mention here will be used in the investigation of D(%).
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L The periodic eigenvalue problem includes (34) considered to hold in [0, ¢], and the periodic boundary
. ¥(g) = (0) . . . e
condltlonsy,(q) 0 Note it is a self-adjoint problem and the existence of a countable infinity of
eigenvalues can be established by the standard method of constructing the Green’s function and
defining a compact linear operator in an inner-product space. Here, the inner-product space is that
continuous functions in [0, 4] with the inner-product
(1o 12 = | gf'l @V (x)s(x)dx. We shall denote the eigenfunctions throughout by ¢, (x) and the eigenvalues

by i, (n € N),where i, <2, <,....and2, —» wasn — .

Any double eigenvalue is counted twice. Choose ¢, (x) as real-valued and to form an orthonormal set

if n=m,
0 if n#m.

over [0, 4] with weight function s(x). Thus[{¢,(x)@,,x)s(x)dx = { :
By (38), the ¢,(x) can be extended to R = (-, + ) as continuously differentiable functions with
period ¢. Hence the 2, are the values of 1 for which (34) has a non-trivial solution with period ¢
. Further, the double eigenvalues are the values of 4 for which all solutions of (34) have period ¢. It
follows from previous section Case(IV) of the Theorem 2.1 ) that D(2,) -2 = 0. i.e. 4, are the zeros of
the functions D(%) — 2 and that 4, is double eigenvalue if and only if y,(g, 1) = y;{(q, Ay =0.

II. The semi-periodic eigenvalue problem includes (34), considered to hold in [0, 4], and the semi-
periodic boundary conditions
Yq) = —y(0).
y' (@)= —»'(0). It is also a self-adjoint problem and we shall denote the eigenfunctions by ¢,(x) and
the eigenvalues by ., (n € N) where u, <y, <p,....,and u, — «© as n — «. Any double eigenvalue is
counted twice. Choose & (x) as real-valued and to form an orthonormal set over [0, g] with weight
function s(x). By (40), the ¢ (x) can be extended to R = (-, +) as continuously differentiable
functions with semi-period q.
Hence the 4, are the values of 4 for which (34) has a non-trivial solution with semi-period ¢. Further,
the double eigenvalues are the values of / for which all solutions of (34) have periodic ¢. Then by

previous section Case(V) of the Theorem 2.1), we conclude that D(x,) +2 = 0. i.e. u, are the zeros of

the functions D(2) + 2 and that 4, is double eigenvalue if and only if y,(q, 1) = 4//1' (g, 1) = 0.

In the following sections, we need some consequences of variational nature concerning the 7, and ,. We

give proofs here in the case of 7, only because the results of 1, and 11, are similar.

Let F be the set of all complex-valued functions f{x) which are continuous in [0, 4] and have piecewise

continuous derivative in [0, ¢]. Then the Dirichlet integral J(f, g) in F is given by
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J(f:9) = jZ(p(x)f’ Mg @) + q)) |dx

= [pe)f (g’ ()ax + [JqCai)g(dsx.

Assume that

1= [pef e @

If ¢ " (x) exists and is piecewise continuous in [0, ¢] and integration by parts

I=

. o
P () lo - [0 (p(x)g'(x)) dx,

then

. - ' —

J(.2) = |peyg @ |y = [0 p(x)g’(x)) dx + [1g(o)g(x)d

- — -q " _ — '
= |pesng @ [y + 0] awge) - (p(x)g’(x)) ]dx. @3)

If fix) and g(x) satisfy the boundary conditions (38), the integrated terms cancel out. Particularly, if we

substitute g(x) = ¢,(x) in (43), then we have

JIt, p,) = dx

o ) o
P ¢,’,(x)lo + [0 [q(x)d)n(x) - (p(x)qb,;(x))

= [peaod,@ 7 + i [q(x) 8,0~ (pg,0) ]dx.
But for each n € N, ¢, satisfy the equation (34) with 1 = 1 , therefore
’ q q ’ ’ ’
W) = [pes08,0 ] + [ [p(x) b.() + 2,50, (x) — (p(x)¢n(x)) ]dx.

Denote the Fourier coefficients by f, and are given by

In= .[ g/‘(x)s(x)gbn(x)dx. (44)
This gives

I b =0, (45)
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A particular case of (44) is

n

m
Y L P ()

Theorem 6.1. Let f(x) be in F and satisfies the boundary condition (38). Then, with the Fourier coefficients f,

defined as (44), then

DIVHTAREN (3 BNCY)!
n=0

Proof. Assume first that ¢(x) > 0. Then, by (42), we have J(g,g) >0 for any g(x) € F and particularly,
Hf= 3N fu®nf— Sofud,), where Nis a positive integer. Then
N N N N
HED =T, B ) = I 2 Fub) + I Sy B D Fnbr)

n=0 n=0 n=0 m=0
N N - N -
JES) = 2K D) = 2SI B+ D 2ff 2 0,

n=0 n=0 n=0

where we have used (46) to obtain the last summation. Since

K, N = I @)

then, by using (45), we have

N
JEN= D 2,112 20
n=0
ie.
N
JEN = D a2
n=0

Now let N — o, we have

NI DRI

n=0

To prove the theorem without assumption that ¢(x) > 0. Let ¢, be a constant which is sufficiently large to

make
g(x) +qos(x) = 0

in [0, «]. Then (34) can be written as
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(P @)+ (s~ 0 = 0,

where A = 1+ g, and O(x) = g(x) + ¢g,s(x). Since O(x) = g(x) + g,s(x) = 0, the first part of the proof gives

> Gt an > < Jo (P01 0017 + (90 + gos0) ) 1)1 .

n=0

By Parseval’s formula

2112 = [ s,
n=0

and

JENZ D 2f)
n=0

follows in the general case. Since 4, > 1, and by (50) and (51), we have

n —

TEN) 2 2 2 112 = 2[00 | 2s(x)ex.

n=0
The equality holds here only when f, = 0 for all » such that 4, > A, i.e. only when f{x) is an eigenfunction

corresponding to 4,. Thus

Ap = min

43
41/ sy |

where the minimum being taken over all (x) # 0) € F which satisfy (49). The minimum is attained only
when f{x) is an eigenfunction corresponding to 2. 07

Theorem 6.2. Let 7, ,(n > 0) be the eigenvalues in the periodic problem over [0, a] when p(x), q(x) and s(x) are

replaced by p,(x), ¢,(x) and s (x), where
p1(0) 2 px),  q(x) 2 4gx), s(x) <s(x)
Then

L If s, (x) = s(x), we have 1, , >4, for all n.

ii. Otherwise, we have 1, , > A, provided n is such that 7, > 0.

Proof. Let ¢, ,(x) be the eigenfunction corresponding to /; , and let J,(f, ¢) be the Dirichlet integral given

1,n

by
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J1(19) = [o|p1@)f (92 () + g, (Mg () .

By using our assumption (53), we have J,(f, /) > J(/. /).
To prove the theorem for »=0, we consider fix)=¢, (x). Then, by (52), we have
20= (B0 D10 2By 0 By o) Z 44T ()s(x)dx. Now, by (53), we have

[087 (st = [ (s = 1

with the equality holding in part(i) of the theorem and strict inequality in part (ii). Hence

q 2
41,0 =110 v1,0 2 W1 ,0 1,0 2 /10‘[0‘//1 Lo@)s(x)dx

gives 2, , > 7, in first case, but it only gives 4, , > 4, in the second case if 2, > 0. This proves the theorem

forn=0.
For » = 1, consider
fx) = C0¢1 ,o(x) + C1¢]’1(x)’
where C;and C, are real constants such that
c+ci=1,
Codo+Ci4, =0,

where
_[4
Ay = [381 oD Pe0s(x)dx
_ (4
A, = i) 1P )s(x)ax.
Such a choice of C;and ¢, is always possible.
The first condition (55) makes

jgfz(x)sl(x)dx = 3C3¢%,0(x)31(x)dx ZC%(,b%’l(x)sl(x)dx

+ ZIZCO- C191,0) @1 1(*)s1(x)dx
22
7C0+C1

=1,

and the second condition makes
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Ty = [0 By
= [3(Cod1 000+ C11 1)) BoIstd

= Co_‘.g¢1 ,o(x)‘po(x)s(x)dx + C1Jg¢1 , 1(x)¢0(x)s(x)dx
= Codo + €4,
=0.

By (46) applied to ./, we get
Jf) = 2y 0Co+ 2y 1€ < 2y 4(C+ CD =1y .

Also, by (47) and the fact f;, = 0, we have

TN 2 20\l 2+ 202 00 21 = 0 [P s
n=1

n=1
on using the Parseval Formula (50). Hence, by J, (7, /) > J(f, /), we obtain
Ay 1 2 0 PEs(d.

Then the theorem for » = 1 follows in similar way for » = 0. The argument can be extended to deal with

general case for ». Consider
fix) = Copy o)+ +Cy ()
, where C, -+, C, are real constants such that
C(2)+c§+_._+ci= I, f,=0
and 0 < r < n — 1. The latter conditions are » homogeneous linear algebraic equations to be satisfied by the
n+ 1 numbers C, ---, C, and such numbers always exist which satisfy the normalization condition
Co+CittCo=1.
Then, the proof of theorem for general » follows the same lines as the proof for» = 1. 7
Remark 6.3. We note from the last theorem that
LAy, > 4, i 110 > I .

i If p,(x) = p(x), ¢,(x) = q(x) and s, (x) = s(x), then J, (£, /) = J(, ).

7. The function D(%)

We have defined D(%) by (37) as the discriminant of the equation (49).

Theorem 7.1. For n € N,
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L. The numbers 1, and u, occur in the order

Ao SHoSHy <A SAy Sy Spy<AySig <

IL In the intervals [A,,,, 1,1, D(2) decrease from 2 to 2.

2m
I1L. In the intervals [u,,, . 1, /9, + 1], D(2) increase from =2 to 2.
IV. In the intervals ( — «, 1) and (1,,,, , |, Ay +2), DG) > 2.

V. Inthe intervals (u,,,, 15, 4 1), D) < — 2.
Proof. We prove the theorem in many stages.

a. There is a number A such that D(2) > 2 for all 7 < A. Since s(x) > s > 0, we can choose A negative if
necessary, so that
g(x) = As(x) > 0
in (- o, + o). Let y(x) be any non-trivial solution of (49) such that y(0) > 0 and y '(0) > 0. Then there is
an interval (0, §) in which y(x) > 0. Consider any interval (0, X) in which y(x) > 0.
In (0, X) we have
(' @) = @00~ 2560w > 0
for all 2 < A, by (60). Hence p(x)y (x) increasing in (0, X). This gives if p(x) > 0, then y '(x) > 0 in (0, X) and
therefore y(x) is increasing in (0, X). It follows that y(x) has no zero x = X in (0, «), and therefore
p()y’ () and y(x) are increasing in (0, «).
In particular
v1(g, A > (0,1 = 1,
vo(g. ) > wy(0.2) = 1,
where we have used p(q) = p(0) in the second inequality. Hence D(1) > 2 forall 1 < A.

b. D'(#) is not zero at values of 4 such that |D(2)| < 2. First differentiate (34) with y(x) = y(x, 2) , with

respect to /. This gives

d d [ Ow(x,2) Oy (x,4) e el .
—p)— | — +(s(x) = g(0)——3— = —s(x)y,(x, ). Also, from the initial conditions (35) we have

Oy (0,2) d [oy,(0,2)
o dx ol

)— 0.The variation of constants formula applied to (61) and (62) gives

&2 (0w (x.0) . d (o () ayy (x.2)
PO S\~ | TP W5 T | T 0 m g T F sty (x, 4) = 0.

p(x) o p®

a2 [0 (x,2) p'(x) d [0w (x,2) (As(x) —q(x)) O (x,4) s(x)yy(x,4)
&2 o TEY -
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—s(Dyy(1.2) s(Oy(1,4)
N~ it -~

owr (x, 2) p(1) p(1)
1 X X
= vl oy di+ (. D) dt
w ('//1, wz)(t) W(y/l, qu)(t)
palt, (O, (0) (6 sy (2, 2) .
Then = y(x, 2) z;dt — o, ;“)J.f);dt since
pOW (1,50 pOW (w1, )0)

= 0O [ w0y 620 [, . 1w . 0

= ) [ (w1x Dt D = sl Dy (8.2) YO, (6 e
PO (w1, wr)(x) is a constant and has the value p(0). Similarly,
Oy (x,4)

e (p(O))71,[’(;(1//1()6,)»)1//2(@2)—l//z(x, Dy, (t, A))s(z)z//l(t, 2)dt. Now differentiation of both sides of

dx

d (D) d e
- a T ((p(O)) f O(V/l(x, Aot 2) = o, Dy (&, i))S(l)wz(t, l)dt)
(64) with respect to x gives

= (OO o (e e, 2) = vy Dy 8.0 s, A,
D' =y (g + vy (q.2)
This together with (63) gives , .
= @) [i(vy3e D+ (v = v Jun e D) =~y ) s
where we have substituted x = ¢, and we have written for (» = 1, 2)

VD=, (@)=Y,

Since by Liouville’s formula for Wronskian
(0)

w//é - wzl//{ =Wy, vo)q) = 2(—61) =1,

we have

D) = (1 +y,)? = v+ )+ 2u 8,
= 41//15//2' - 49!/25//{ + wf + (qu')z - 21//1&//2' + 4@!/21//{
=4y, —yw ) H ()P = 2uy + Ay
=4+ (yy —w)? + Ay,

Hence the equality (65) can be written as

4D’ ) = =[5 (202~ (1~ w3 Jyate ) st
- (4 - DZ(X)) S st
Now assume that |D(?)| < 2. Then, by the equality (66), we have y,D'(2) <0 and, in particular
D'(%) # 0 as required.
.Atazero /., of D() - 2,D(2,) = 0if and only if
vad.4) = vy(@.2,) = O
Also, if D'(2,) = 0, then D"(2,) < 0. If y,(q, 2,) = ¢1'(q, 2,,) = 0 holds, we also have y (g, 1,) = y/zr(q, A =1

as in the first Subcase (i) of case (IV) of theorem 2.1. Then D '(An) =0, by (65).
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Conversely, if D'(2,) = 0, then

5030+ (1= w3 Yot . 2) = wape ) oo = o.

Since (1, 1), w5(t, ) are linearly independent, this implies to w,(q, 1,) = 0 and (g, 1,) = Wé(q, 2,). Then,
from (65), we obtain y;lr(q,)vn) = 0 as required. To prove that result about D "(4,), we differentiate (65),
with respect to 2 to express D" (1) in terms of the 1-derivatives of v, y,, y/{ and w; ,we then put 1 =2,

and substitute for the /. — the derivatives using (63) and (64), we get

D"(,) =2(p(0)) ? ((ngl(z, 2,1, /1”)s(t)azz)2 = [0, 2, )s(dd dye, in)s(t)dt).

Hence D"(%,) <0 by Cauchy-Schwarz inequality and, further, the case of equality is ruled out
because y,(t, 4,), w,(t, 1,) are linearly independent. There is a corresponding result to (c) for the zeros

1, of D(2) + 2 the only difference being that D" («,) > 0if D'(u,)) = 0.

It follows from what we have just proved that no zero of D(%) F 2 is of higher order than the second.

Also, a zero 4, of D(1) - 2 is of order 2 only if D(%) assumes a maximum at 7, while a zero y,, of D(%) +2
is of order 2 only if D(1) assumes a minimum at ,,.

d. In this stage of the proof, we use the preceding results (a)-(c) to determine the behaviour of D(2) as 4

increases from —w to +c. When / is large and negative, D(1) > 2 by (a). Hence, as / increases from —o,
D(2) remains greater than 2 until A reaches the first zero 1, of D(1) - 2.

Since D(2) is not assuming a maximum at 1, 1, is a simple zero of D(1) - 2, and it follows that D) < 2
immediately to the right of 4. Then, as 1 increases from 1, D(1) decreases by (b) until 2 reaches the
first zero u, of D(Z) + 2. In the interval ( — », /), therefore, D(1) > 2, and in (4, »,), D(%) decreases from 2
to-2.

In general, x, will be a simple zero of D(2) +2 and so D(Z) < -2 immediately to the right of x,. As 2
from y, D(1) will remain less than -2 until 4 reaches the next zero x, of D) + 2.

Since D(4) is not assuming a minimum at 4, «, is simple zero of D(1) + 2, and it follows that D(1) > -2
immediately to the right of 41,. Then, as 4 increases from x,, D(}) increases by (b) until 2 reaches the
next zero 4, of D() — 2. In (u, 1), therefore, D(1) < —2and in (uy, 4,), D(Z) increases from -2 to 2.

In general, 4, will be a simple zero of D() -2 and so D(1) > 2 immediately to the right of 4,. As 4
increases from 1,, D(2) remains greater than 2 until 1 reaches the next zero 1, of D(2) - 2.

The argument used above starting with 4, can now be repeated starting with 4, and it will continue
to be repeated as . — oo.

This proves the theorem except when D(2) + 2 has double zeros. If, for example, 1, is a double zero of

D(#) + 2, then D(1) > -2 immediately to the right of ., and the previous analysis of D(%) continues to
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hold except that the interval («, ;) no longer figures in the argument. What we must show to prove
Ao <to Sty <Ay <Ay <py <py <2y <A, < inthe present situation is that x, = 4, or in other words,
that 4 is double eigenvalue in the semi-periodic problem. That this is the case follows immediately

from ¢,(a,u,) = ¢{(a, u,) = 0 and the condition corresponding to ¢,(¢, 1,) = ¢i(q, 2,)=0forDQ)+2. O

8. The Mathieu’s Equation

The Mathieu equation is
3" () + (A — 2veos2x)y(x) = 0,
where v € Rand v # 0. This equation is a case of (34) with the period ¢ = =.
Theorem 8.1. For no values of /. and v + 0 do the solutions of (67) either all have period = or all have semi-period
.
Proof. We write out the proof for the case of the period =. The case of semi-period = is similar.
We suppose that all solutions of (67) have period = and to get contradiction.

Let y,(x, 2), w,(x, 1) have period . cos2x is an even function of x and therefore, as in the proof of Theorem

3.11, y,(x, 4) is an even function of x while y,(x, 1) is an odd function of x. Hence the Fourier expansions

1
wi(x,2) = Sap+ Z’i d,€082rx

I%

wyx, ) = X7 d,sin2rx.

Since cos2x in (67) is infinitely differentiable, the same is true of y,(x, 1), y,(x, ) as functions of x because
the expanding series of y,(x, 1) and y,(x, 1) are infinitely differentiable. Hence their Fourier series can be

differentiated many times term by term. Then, substituting (68) we get
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0 0
1
- Z (2r)2ar0052rx + (4 — 2vcos2x) (an + z arcos2rx)

r=1 r=1

o0 0

1
- z (2r)2ar0052rx + an(l —2vcos2x) + (A — 2vcos2x)z @,co82rx

r=1 r=1

0 0

1
= z a,(l— (2r)2)0052rx + an(l — 2vcos2x) — vz 2a,c082xc0s2rx
r=1 r=1
= z a, (A — (2r)")cos2rx + an(/l — 2vcos2x) — vz a,(cos2(r + 1)x + cos2(r — 1)x)
r=1 r=1

0 o0
1
=Y a,(— (2r)P)cos2rx + a0k v (aocos2x + D a,(cos2(r + 1)x + cos2(r — l)x))
r=1 r=1

=0,

where we have used cos2(r + 1)x + cos2(r — 1)x = 2cos2rxcosx. Similarly, we get

> d (.~ (2r))sin2rx — V(Z d (sin2(r + 1)x + sin2(r — l)x)) =0,
r=1 r=1

1
but by using sin2(» + 1)x + sin2(» — 1)x = 2sin2rxcos2x. These give Shag=va; =0 and, forr > 1,

G- @»Da,~ e, +a,.;)=0.  (70)
(= @)Dd, = Wd,y +dpy) =0, (71)

where d, is defined to be zero. On eliminating (,1 - (2r)2) between the last two equations we obtain

V(ar(drfl Jrd;“rl) B dr(arfl + ar+1)) =0
or, since v # 0 and for for » > 1,

ardr+1 - drar+1 =4 ldr - dr— 19

(72)

The right hand side of the equality (72) is the same as the left hand side but with - 1 in place of . Hence,

forr>1,

ad, | —da, | =ayd, —dy,

=agd,
1
since dj = 0. Now a, # 0 because if ay = 0, then, J4a — ga; = 0,and
(/l - (2r)2)ar -va,_;+a, )=0

would imply that all @, = 0, ¢ being non-zero. Similarly, by (71), we get d, # 0. But (68) are convergent
infinite series, and so ¢, — 0 and d, — 0 as » — . Hence, let » — o« in (8), We obtain the contradiction that

agd; = 0, and this proves the theorem. 7
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