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We present Homotopical Quantum Mechanics (HQM), a new formulation of quantum theory that

resolves the quantum measurement problem using Homotopy Type Theory (HoTT) and  -category

theory. In HQM, the pre-measurement state of a system is a homotopy class of paths in an  -topos,

with all representatives physically equivalent and capable of interference. Measurement is modeled as

a homotopy pullback that, when an information-bearing interaction occurs, deterministically

contracts the entire homotopy class to a single representative path via a functor rendering the type

contractible. This contraction is driven by entanglement between system and observer, not by a

stochastic collapse postulate. We introduce a complete dynamical model of contraction, triggered

when apparatus–system entanglement entropy exceeds a critical value   or when pointer states

become operationally distinguishable beyond a detector tolerance  . Using a Hamiltonian pointer

model, we show that contraction maps under a functor   to the Lüders update,

guaranteeing agreement with the Born rule via the Busch–Gleason theorem and preserving no-

signaling. Thus, this formulation eliminates the ad hoc stochastic collapse postulate, unifies system

and observer in a single topological and logical structure, and provides a physically grounded,

operationally testable criterion for outcome definiteness. HQM thus offers both a mathematically

rigorous foundation for quantum measurement and new experimental signatures—such as finite

contraction delay—that distinguish it from standard quantum mechanics.
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I. Introduction

The quantum measurement problem arises from the tension between two seemingly incompatible

features of standard quantum mechanics: unitary evolution, in which the Schrödinger equation preserves

coherent superpositions of states; and wavefunction collapse, in which measurement appears to select a

single outcome in a non-unitary and probabilistic manner. This duality raises foundational questions:

What is the physical mechanism of collapse? Is it truly stochastic? Where is the quantum–classical

boundary? Traditional interpretations approach these issues in different ways. The Copenhagen

interpretation treats collapse as a fundamental postulate, without further explanation. Many-worlds

eliminates collapse entirely, but at the cost of proliferating non-interacting branches and leaving the Born

rule unexplained. Decoherence theory explains the suppression of interference through environmental

entanglement, but does not address why one definite outcome is experienced. Homotopical Quantum

Mechanics (HQM) takes a different approach by embedding quantum theory in the language of Homotopy

Type Theory (HoTT) and  -category theory. In HQM, the state of a single particle is not a single

worldline or wavefunction, but an entire homotopy class of physically indistinguishable paths in an  -

topos. All representatives of the class are physically equivalent until an information-bearing interaction

occurs. Measurement is then described as a homotopy pullback that contracts this entire class to a single

representative path via a functorial process. This contraction is a deterministic process, arising from

entanglement between the system and the observer (or environment), which changes the logical context

in which the state is defined. Crucially, this removes the need for a stochastic collapse postulate—

outcome selection is a topological and informational process. From this perspective:

Collapse is not random, but a deterministic contraction of a homotopy class.

The Born rule emerges naturally in statistical ensembles where multiple distinct homotopy classes

exist across repeated trials.

The observer is not external to the system, but part of the same topological structure.

This article develops the HQM formalism in detail, shows how it recovers familiar quantum predictions,

and proposes possible experimental distinctions from standard quantum mechanics.

A. Brief Introduction to Homotopy Type Theory

Homotopy Type Theory (HoTT) is a foundational system for mathematics that unifies logic, type theory,

and homotopy theory. In HoTT, types are interpreted as spaces (up to homotopy), and terms of a type are

∞
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points in that space. Equality between terms is treated as a path type, with higher equalities

(homotopies) between paths, forming an  -groupoid structure. An  -topos is a higher categorical

structure generalizing the notion of a topos, incorporating homotopy theory. It provides a framework

where spaces can have higher-dimensional structures, and morphisms preserve these structures up to

coherent homotopies. In HQM, we leverage HoTT to model quantum states as homotopy classes in an  -

topos, where superpositions correspond to connected components, and measurements induce changes in

the homotopy structure.

II. Background

A. The Measurement Problem

In standard quantum mechanics, two distinct evolution rules coexist:

1. Unitary evolution — For a closed system with Hamiltonian  , 

which preserves the norm 

and maintains quantum superpositions.

2. Collapse upon measurement — For an observable  , the postulate says 

  with probability 

where   projects onto the eigenspace of  .

3. Observer–system divide — The theory does not specify where the “cut” lies between quantum and

classical domains, nor the physical mechanism for collapse.

B. Existing Approaches

Several strategies attempt to address the problem:

Decoherence — System    entangled with environment    yields a reduced density matrix 

where interference terms vanish in a preferred basis, but the state remains mixed rather than definite.

∞ ∞

∞

H

|ψ(t)⟩ = U(t, )|ψ( )⟩, U(t, ) = ,t0 t0 t0 e
− H(t− )i

ℏ
t0 (1)

⟨ψ(t)|ψ(t)⟩ = 1, (2)

= | ⟩⟨ |M̂ ∑i oi oi oi
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|ψ⟩Πok

⟨ψ| |ψ⟩Πok

− −−−−−−−
√
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P ( ) = ⟨ψ| |ψ⟩,ok Πok (4)
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Many-worlds — Retains the universal state 

  with all outcomes realized in separate branches; no collapse occurs, but Born probabilities lack a

natural derivation.

Objective collapse models — Modify the Schrödinger equation with stochastic terms, introducing

collapse dynamics at the fundamental level.

Topos-theoretic frameworks — Replace Boolean truth values with contextual logics; reformulate

propositions but do not address the physical cause of outcome selection.

C. HQM’s Conceptual Shift

In Homotopical Quantum Mechanics (HQM), all physically possible histories of a particle between fixed

initial and final boundaries are continuous paths 

in the configuration space  . Key pre-measurement postulate: Before any information-bearing

interaction, all paths belong to the same homotopy class 

meaning they are continuously deformable into each other without leaving the allowed configuration

space. This single connected class supports interference. Measurement as two-step process:

1. Topological distinguishability — An interaction (with an observer, apparatus, or environment)

alters the topology of   so that the original class   splits into distinct, disconnected components.

Physically, this corresponds to acquiring enough information to tell the alternatives apart.

2. Topological contraction — Once the paths are in separate components, the system–observer

dynamics contract the relevant component to a single representative path  . This contraction

preserves the endpoints   and  , but removes all other continuous alternatives via a functor

rendering the type contractible.

Special cases: If no topological distinguishability occurs: 

|ψ⟩ = | ⟩∑
i

αi oi (6)

γ : [0, 1] → C (7)

C

∈ (Path(C)),π0 (8)

C [γ]

[γ] ⟶ {[γ , [γ , …}]1 ]2 (9)

γ∗

γ(0) γ(1)

[γ] remains connected  ⇒  interference survives. (10)
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  If distinguishability occurs but no contraction is applied: multiple disconnected classes exist

simultaneously — physically corresponding to many-worlds–like branching. If both occur: 

a single definite outcome is obtained — matching the phenomenology of collapse. In this way, HQM

replaces the ad hoc stochastic collapse postulate with a two-step topological mechanism: class splitting

by topological distinguishability, and contraction to a single representative. The observer and system are

both part of the same  -topos, and collapse is reinterpreted as an internal topological refinement rather

than an external, discontinuous projection.

III. HQM Formulation of Quantum States and Paths

A. Quantum States as Homotopy Classes of Histories

In the HQM framework, the quantum state of a system is not described directly as a vector in a Hilbert

space  , but rather as the homotopy class of all continuous histories   in a configuration space   subject

to fixed boundary conditions: 

The collection of all such histories is denoted 

and the equivalence relation   is defined by the existence of a continuous deformation (homotopy)

between them. The physical state is identified with the equivalence class 

 Before any measurement interaction, all physically allowed paths connecting   and   belong to one

such homotopy class. In HoTT terms, the path space   is a type, and the homotopy class

corresponds to a connected component in its  -groupoid structure, potentially carrying higher

homotopies encoding quantum phases.

B. Measurement as Topological Distinction

A measurement interaction — which may be direct observation, apparatus coupling, or environmental

scattering — can encode which-path information into an external degree of freedom. In HQM, this

changes the topology of the path space: 

[γ]  →  [γ    { }]k − →−−−−−
contraction

γ∗
(11)

∞

H γ C

γ : [0, 1] ⟶ C, γ(0) = , γ(1) = .xin xout (12)

Path(C; , ),xin xout (13)

γ ∼ γ ′

[γ] ∈ (Path(C; , )).π0 xin xout (14)

xin xout

Path(C; , )xin xout

∞
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where    is the modified configuration space including the interaction. Topological distinguishability

means that two paths    that were once deformable into each other (homotopic) now belong to

different connected components of the updated path space, potentially altering higher homotopy groups 

 ( ).

C. Contraction to a Single Path

Once topological distinction is established, contraction occurs: each connected component of the post-

interaction path space collapses to a single representative path. Physically, this corresponds to the system

adopting a definite outcome consistent with the distinguishability introduced by the measurement.

Formally, if the measurement yields components 

then for the observed outcome, HQM models the selection as a contraction 

where   is a single, physically realized history. In HoTT, a type is contractible if it is equivalent to the unit

type  , meaning there exists a point   such that for every other point  , there is a path 

, and all such paths are homotopic, with this structure extending to all higher dimensions. The

contraction is a functor    that renders    contractible, selecting    as the center of

contraction, analogous to the geometric realization functor in algebraic topology.

D. Preservation of Boundary Data

Because contraction is homotopical, the endpoints of the path are preserved: 

where   corresponds to the measurement outcome label  .

IV. Measurement as a Homotopy Pullback

A. The Pullback Framework

Let   denote the system’s configuration space and   the observer–apparatus configuration space. Before

interaction, the system and observer evolve independently: 

(Path(C)) ⟶ (Path( )),π0 π0 C′ (15)

C′

,γ1 γ2

πn n > 0

(Path( )) = {[ ], [ ], …},π0 C′ γ1 γ2 (16)

[ ] ⟶ ,γk γ∗
k

(17)

γ∗
k

1 ∈ [ ]γ∗
k

γk ∈ [ ]γ ′ γk

p : =γ∗
k

γ ′

F : [ ] → 1γk [ ]γk γ∗
k

(0) = , (1) = (k),γ∗
k

xin γ∗
k

xout (18)

(k)xout k

S O
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with paths    and    belonging to their respective homotopy classes. A

measurement interaction is modeled as a coupling map 

into a shared measurement space    that encodes the information content (including possible

distinguishability) of the measurement.

B. Homotopy Pullback Definition

The homotopy pullback of   and   is defined as the limit in the  -category: 

where   is a homotopy in   connecting   and  . Intuitively:   is the system’s representation in

measurement space;   is the observer’s representation; and   ensures logical compatibility. Formally, 

  is the  -categorical fiber product  , equipped with natural transformations ensuring

coherence up to higher homotopies.

C. Measurement-Induced Topological Change

If    and    map previously homotopic system paths to distinct connected components of  , then the

pullback   consists of disconnected components. This is the topological distinguishability that triggers

contraction in HQM: 

where   is the system configuration space after measurement coupling. Higher homotopy groups   (

) may encode quantum phases or interference effects before contraction.

D. Contraction as Selection in the Pullback

Once   decomposes into disconnected components  , the HQM postulate is: 

for some  , meaning one component survives as the realized history while others are eliminated. This is

modeled as choosing a section in the fibration over  , rendering the fiber contractible. The realized 

 inherits: 

S ×O (19)

: [0, 1] → SγS : [0, 1] → OγO

f : S → M, g : O → M (20)

M

f g ∞

P = {(s, o,λ) ∣ s ∈ S, o ∈ O,λ : f(s) ≃ g(o)}, (21)

λ M f(s) g(o) f(s)

g(o) λ

P ∞ S O×h
M

f g M

P

(Path(S)) → (Path( ))π0 π0 S ′ (22)

S ′ πn

n > 0

P , , …P1 P2

⟶Pk γ∗
k

(23)

k

M

γ∗
k

(0) = , (1) = (k).γ∗
k

xin γ∗
k

xout (24)
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E. Summary Diagram

In homotopical terms, the measurement process is: 

Topological distinguishability in   Contraction in  . Distinguishability corresponds to a change in

connected components of  , and contraction is a functorial reduction to a single representative in  .

V. Double-Slit Experiment in HQM

A. Pre-measurement: Single Homotopy Class

Let   be the configuration space of the electron in the experimental setup. The slits   and   correspond

to geometrically different but topologically connected regions in  . A single homotopy class   contains

all paths from the source to the detection screen: 

 Since  , interference is preserved.

B. Measurement Space Without Distinguishability

Let   map each path to its representation in the measurement space   (which includes any

environmental record). If the apparatus does not measure which slit the particle passes through — e.g.,

photons scattered from slit   and   are indistinguishable — then: 

remains connected. The pullback: 

remains connected as well. No contraction occurs, and all paths in   interfere.

M ⇒ P

M P

S A B

S [γ]

[γ] = { , , , …}.γA γB γdiffraction (26)

(Path(S)) = {[γ]}π0

f : S → M M

A B

Im(f) ⊂ M (27)

P = {(s, o,λ)} (28)

[γ]
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C. Measurement Space With Distinguishability

If the slits emit photons of different frequencies upon particle passage, the environmental states 

 and   become orthogonal: 

This makes   disconnected in  : 

where   is the disjoint union. In HQM, this disconnection implies that the pullback   splits: 

Topological contraction then selects one component, say  , collapsing all system paths to a single

representative   by rendering   contractible.

D. HQM Interpretation

No distinguishability    remains connected    no contraction, interference observed.

Distinguishability    disconnected    contraction selects one path    definite outcome, no

interference.

E. Diagram

In the “with distinguishability” case: 

Only one diagram survives physically after contraction. This example grounds the HQM formalism in a

familiar experiment, showing how interference and collapse emerge from topological distinguishability

and contraction without invoking stochastic collapse postulates.

| ⟩EA | ⟩EB

⟨ | ⟩ = 0.EA EB (29)

Im(f) M

Im(f) =   ⊔   ,MA MB (30)

⊔ P

P =   ⊔   .PA PB (31)

PA

γ∗
A

[ ]γA

→ P →

→ P → →
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VI. Physical Interpretation of Contraction in HQM

A. Pre-measurement Phase

Before any information-bearing interaction, all physically possible paths 

connecting the same endpoints   and   belong to a single homotopy class 

This reflects the fact that no topological refinement distinguishes one path from another. The

interference pattern observed in experiments such as the double-slit experiment is a manifestation of

the coherent sum over these homotopic contributions.

B. Measurement Interaction

A measurement — whether implemented by an observer, apparatus, or environment — is modeled as a

topological refinement. The interaction modifies    so that the homotopy class    no longer contains

multiple representatives; it contracts to a single representative   satisfying: 

while keeping the endpoints   and   fixed. This contraction is the HQM analogue of “collapse” —

but unlike the standard postulate, it is triggered physically by the acquisition of topologically

distinguishing information and mathematically by rendering the type contractible.

C. Distinguishability as the Trigger

Topological distinguishability means that the interaction changes the configuration space so that the

formerly continuous deformation between different paths is broken. In the double-slit example,

distinguishability arises if each slit leaves a distinct, recordable mark in the environment (e.g., different

photon emissions). Decoherence fits into HQM as a mechanism inducing topological distinguishability by

entangling the system with the environment, leading to orthogonal pointers that disconnect components

in  . However, HQM views decoherence as sufficient but not necessary for distinguishability, as other

interactions could achieve similar topological changes.

γ : [0, 1] → C (33)

γ(0) γ(1)

[γ] ∈ (Path(C)).π0 (34)

C [γ]

γ∗

[γ] ⟶ { }γ∗ (35)

γ(0) γ(1)

M
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D. Post-measurement Determinism

After contraction, the evolution of   is deterministic under the joint system–observer unitary dynamics.

All randomness is associated with which topological refinement occurs in a given run; once it happens,

the selected representative is fixed.

E. Unitary Dilation and Update Map

To formalize the contraction mathematically, consider a system    with Hilbert space    and an

environment    with Hilbert space  . The measurement interaction is modeled as a unitary    on 

: 

where   are Kraus operators and   are orthonormal pointer states of  . The reduced state after

interaction is 

In HQM, contraction corresponds to the selection of the homotopy component    associated with a

single Kraus branch, yielding the post-measurement state 

This is precisely the Lüders update rule, derived here from the topological contraction picture via a

unitary system–environment coupling, guaranteeing consistency with standard quantum operations and

preserving no-signaling.

VII. Measurement and Contraction in HQM

In Homotopical Quantum Mechanics, the kinematical state of a single particle or composite system is

represented as an element of a gauge-refined homotopy class in an  -topos  . Prior to measurement, all

representatives of the class are physically equivalent, with amplitudes related by higher morphisms

corresponding to parallel transport in a flat   bundle. Superposition corresponds to taking coherent

linear combinations of such representatives in the associated Hilbert space image under the functor 

.

γ∗

S HS

E HE U

⊗HS HE

U (|ψ ⊗ |0 ) = ( |ψ ) ⊗ | ,⟩S ⟩E ∑
k

Mk ⟩S ek ⟩E (36)

{ }Mk {| ⟩}ek E

= .ρ′
S

∑
k

MkρSM
†
k

(37)

[γ]k

= .ρ
(k)
S

MkρSM
†
k

Tr[ ]MkρSM
†
k

(38)

∞ T

U(1)

F : HQT → Hilb
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A. System–Apparatus Bipartition

We consider the composite  , where    is the system under investigation and    is the measurement

apparatus, optionally extended to include any relevant environment  . The total state    is

assumed pure for definiteness; mixed-state generalizations follow by purification. The reduced density

matrix of the apparatus is 

The entanglement entropy

quantifies the entanglement between   and its complement  [1][2].

B. Entropy-Triggered Contraction Postulate

Postulate. In HQM, contraction of the gauge-refined homotopy class   to a single representative occurs

when the entanglement entropy    between apparatus and system exceeds a device-dependent

critical value  : 

The value of   is fixed by the operational resolution of the apparatus: it is the minimal entanglement

needed for the pointer states , correlated with different system outcomes  , to be distinguishable

with probability of error less than the detector tolerance  .

C. Operational Meaning of the Entropy Threshold

Let   denote the apparatus state conditional on system outcome  . The operational distinguishability

of two outcomes   is quantified by the trace distance [3][4]

Standard inequalities (Fuchs–van de Graaf and quantum Pinsker) bound    in terms of the relative

entropy, which in turn is bounded below by the Holevo quantity 

In typical measurement models with monotonically increasing  , there exists a calibration

function   such that 

SA S A

E |Ψ(t)⟩SA(E)

(t) = [ |Ψ(t)⟩⟨Ψ(t)| ] .ρA TrS(E) (39)

(t) = −Tr[ (t) log (t)]Sent ρA ρA (40)

A S(E)

C

(t)Sent

Scrit

(t)  ≥   .Sent Scrit (41)

Scrit

{ }ρ
(k)
A

k

εdet

ρ
(k)
A

k

k,k′

D( , ) = ∥ − .ρ
(k)
A

ρ
( )k′

A

1

2
ρ

(k)
A

ρ
( )k′

A
∥1 (42)

D

χ = S( ) − S( ), = .ρ̄A ∑
k

pk ρ
(k)
A

ρ̄A ∑
k

pkρ
(k)
A

(43)

(t)Sent

f
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Thus the entropy threshold (41) is equivalent to an operational distinguishability threshold fixed by the

apparatus.

D. Contraction Dynamics

When    reaches  , HQM prescribes that the gauge-refined homotopy class    undergoes

contraction to a single representative   corresponding to the realized outcome  . In the Hilbert-space

image under  , this contraction coincides with the Lüders update 

where   are the spectral projectors of the measured observable. The randomness of   is governed by

the Born rule, ensuring statistical equivalence with standard quantum mechanics.

a. Physical interpretation

The entropy growth reflects the transfer of coherence from   to inaccessible degrees of freedom in  ,

suppressing interference between distinct    branches. Once this suppression surpasses the apparatus

tolerance, further coherence is operationally irrelevant, and the topological contraction formalizes the

selection of a single outcome.

VIII. Towards a Homotopical Born Rule

The path-measure construction below provides a heuristic motivation for the Born rule. A rigorous

derivation follows using the Hilbert-space embedding   and the Busch–Gleason theorem.

A. Heuristic Path-Measure Picture

Consider the (gauge-refined) path groupoid    after measurement-induced topological

refinement, with outcome components   that are disjoint by construction. Let   be the

cylinder  -algebra on   generated by finite-time evaluation maps, and let   be

an amplitude functional (e.g., Feynman-type   after gauge-fixing).

(t) ≥ ⇒ (t) ≡ D( , )  ≥   .Sent Scrit Dmax max
k≠k′

ρ
(k)
A

ρ
( )k′

A
εdet

(t)Sent Scrit C

[ ]pk k

F

  ↦   ,ρS
PkρSPk

Tr( )PkρS
(44)

{ }Pk k

S A(E)

k

F

Path( )C′

{ ⊂ Path( )Pk}k C′ Σ

σ Path( )C′ A : Path( ) → CC′

eiS[γ]/ℏ
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a. Decoherence by contraction

In HQM, contraction is applied when the apparatus–system entanglement entropy reaches the critical

value   (Sec. 7.2). At that time, cross-component interference between distinct outcome domains   is

operationally suppressed. In this decoherent regime, we may define a positive,  -additive measure on 

 by 

for some reference cylinder measure  . Only the restriction of    to the disjoint outcome sets    is

operationally relevant.

b. Normalization over outcome components

The probability of outcome   is then 

For qubit examples, when the refined domains   are mapped to the   branches and   factors

through the usual propagator, (46) reproduces  ,   after contraction.

B. Born Rule from the HQM–Hilbert Functor

Assume there exists a symmetric monoidal dagger functor 

such that: (i) concatenation maps to composition and path reversal to adjoint, (ii) the decoherence

functional on path classes coincides with inner products under  , and (iii) each outcome domain   is

mapped to the spectral subspace of a projective measurement   on  . Under (i)–(iii), the

pushforward of   satisfies 

i.e., the Born rule. This coincides with the rigorous probability assignment obtained independently from

the Busch–Gleason theorem for effects in  .

Scrit Pk

σ

(Path( ), Σ)C′

μ(A) = |A[γ] dν(γ),∫
A

|2 (45)

ν μ { }Pk

ok

P ( ) = .ok
μ( )Pk

μ( )∑j Pj

(46)

,P0 P1 |0⟩, |1⟩ A

P (0) = |α|2
P (1) = |β|2

F :  Path( ) ⟶ HilbC′ (47)

F Pk

{ }Πok F ([γ]) ≡ |ψ⟩

μ

P ( ) = μ( ) = ⟨ψ | |ψ⟩,ok Pk Πok (48)

Hilb
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C. Born Rule from Categorical Gleason Theorem

Within  , Gleason’s theorem states that for  , any frame function assigning probabilities to

projectors is given by   for some density matrix  . Busch’s extension covers POVMs and  [5].

Because    is dagger compact, measurement effects in HQM correspond to positive

operators   in   with  . A homotopical probability measure is a function 

that is additive over mutually orthogonal effects and invariant under homotopical equivalences. By the

categorical Gleason theorem (Hardy, Wilce 2012), the only such   is given by 

where   is the density matrix corresponding to the initial HQM state via  . In particular, for a pure state 

 and a projective measurement  , 

Thus the Born rule follows from the probabilistic consistency of HQM under the functor  , without

additional postulates.

IX. Implications for Quantum Foundations

HQM reframes the measurement problem by treating all pre-measurement evolution as occurring within

a single homotopy class of paths representing one particle’s state. In the absence of which-path

information, all geometrically distinct trajectories remain physically indistinguishable and belong to the

same equivalence class. The interference pattern is a manifestation of the coherent sum over these

homotopic contributions, with higher homotopy groups potentially encoding phase information. When

an observer or environment becomes entangled with the system in a way that distinguishes trajectories

—such as detecting different photon signatures from two slits—the homotopy equivalence is broken.

This induces a contraction, mapping the original class to a single representative path. The probability of

this outcome is computed via the homotopical Born rule, ensuring agreement with standard quantum

predictions. In this picture:

Collapse is not fundamental but emerges from the breaking of path equivalence due to entanglement.

The observer’s role is as an agent of entanglement, refining contextual knowledge through the

homotopy pullback, not consciously selecting outcomes.

Hilb dimH ≥ 3

Tr(ρ⋅) ρ dim = 2

F : HQT → Hilb

Ek Hilb = I∑kEk

μ : { } → [0, 1]Ek (49)

μ

μ( ) = Tr(ρ ),Ek Ek (50)

ρ F

|ψ⟩ { }Πk

P (k) = Tr(|ψ⟩⟨ψ| ) = |⟨ |ψ⟩ .Πk ok |2 (51)

F
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Nonlocal correlations arise from the global topology of the homotopy class, consistent with Bell-type

phenomena.

X. HQM Analysis of EPR/Bell-Type Experiments

A. Pre-measurement Joint Topology

Consider two spatially separated subsystems    and    prepared in an entangled state. The combined

configuration space is: 

with joint paths 

Before measurement, all joint paths lie in a single homotopy class 

reflecting the entanglement.

B. Measurement on One Side

When a measurement is performed on  , the apparatus–system interaction refines    into

disconnected components corresponding to distinct outcomes for  . The contraction sends    to a

single representative  , consistent with the measurement result on  . Since    is a path in  , the

contraction determines the correlated outcome for  , reproducing EPR correlations [6].

C. Locality and No-Signaling

Although contraction appears “instantaneous” in the joint configuration space, HQM respects no-

signaling: the marginal distribution for    is unchanged unless classical communication is used. The

refinement is purely topological in   and does not involve physical signal propagation.

D. Bell Inequalities

Violation of Bell inequalities arises from the global topology of    before contraction, encoding

quantum correlations. The “collapse” to   is replaced by a deterministic contraction triggered by a local

interaction, not a stochastic postulate.

A B

= ×CAB CA CB (52)

Γ : [0, 1] → .CAB (53)

∈ (Path( )),π0 CAB (54)

A CAB

A [Γ]

Γ∗ A Γ∗ CAB

B

B

CAB

CAB

Γ∗
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XI. Experimental Signatures of HQM

A. General Strategy

HQM makes the same quantitative predictions as standard quantum mechanics for probabilities, but

differs in the mechanism of collapse as topological contraction. Experiments should probe the onset of

distinguishability and contraction timing. If contraction requires a minimal entanglement threshold to

render a component contractible, HQM predicts a measurable delay in outcome definiteness.

B. Delayed-Choice and Quantum Eraser Tests

In HQM, removing path-distinguishing information before contraction preserves the homotopy class’s

connectedness, restoring interference. This matches standard quantum eraser predictions but reframes

them as prevention of topological refinement. Prediction: In ultra-fast eraser setups, if erasure occurs

after partial contraction, HQM predicts residual interference with visibility  , where 

 depends on the homotopy cardinality.

C. Weak Measurements

Weak measurements extract partial information, leading to partial contraction. HQM predicts a

continuous degradation of interference visibility  , where    is measurement strength and 

  is a timescale related to the homotopy cardinality. This matches known results but provides a

topological explanation.

D. Macroscopic Superpositions

HQM predicts that isolated macroscopic superpositions persist longer than expected from decoherence if

no topological refinement occurs. Prediction: In systems like superconducting qubits, coherence time 

 (decoherence time) by a factor proportional to the dimension of higher homotopy groups.

E. Entanglement Swapping

HQM interprets entanglement swapping as contraction in an extended joint configuration space.

Prediction: Time-resolved experiments may reveal a topological delay in correlation onset, measurable in

photonic systems, proportional to the entanglement depth.

V = 1 − ϵ

ϵ ∝ |Aut([γ])|−1

V (κ) = e−κ/τ κ

τ

>τc τd
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XII. Resolution of Some Foundational Questions in HQM

A. Characterization of Contraction Dynamics

The question is whether contraction can be described as a continuous-time topological flow, conjectured

to be governed by entanglement entropy. We propose modeling contraction using Moore flows in HoTT, as

defined in the homotopy theory of Moore flows. A Moore flow is a small semicategory enriched over the

biclosed semimonoidal category of enriched presheaves over a reparametrization category  , where 

  has contractible map spaces and a semigroup structure on objects. This allows for continuous

reparametrization of paths, enabling a continuous-time description. Formally, define the contraction

dynamics as a Moore flow  , where the flow parameter    (reparametrized in  )

maps to a homotopy class that progressively contracts to  . The contraction functor 

 renders intermediate types partially contractible, with the final  . The rate is

governed by entanglement entropy  , where    is the reduced density matrix of the

system-observer entanglement. Define the contraction timescale  , so higher entropy (stronger

entanglement) accelerates contraction. This aligns with decoherence timescales but is topological, as

entropy measures the "distinguishability" via orthogonalization in  . This model uses the Quillen

equivalence between Moore flows and flows, ensuring consistency with HQM’s  -topos structure.

B. Operational Distinguishability as the Contraction Trigger

While   provides a qualitative indicator of measurement strength, a physically grounded trigger for

contraction is obtained from the operational distinguishability of apparatus pointer states. Let    be

the apparatus state conditioned on the system being in  . Define the maximal pairwise trace distance: 

HQM trigger postulate (operational form): Contraction occurs at the earliest time   such that 

where    is the minimal resolvable distinguishability of the apparatus (determined by detector noise,

thermal fluctuations, or engineering constraints). In this form, the contraction condition is directly

measurable and independent of the entropy functional. The link to   follows from the inequality 

R

R

M : R → [ ]γk t ∈ [0, 1] R

γ∗
k

: [ ] → [Ft γk γk]t ([ ]) = 1F1 γk

S = −Tr(ρ logρ) ρ

τ ∝ e−S

M

∞

(t)Sent

(t)ρ
(k)
A

| ⟩ok

(t) = (t) − (t) .Dmax max
k≠k′

1
2

∥∥ρ
(k)
A

ρ
( )k′

A
∥∥1 (55)

tcrit

( ) ≥ ϵ,Dmax tcrit (56)

ϵ

Sent

(t) ≤ ,Dmax

ln − (t)dA Sent

2 ln 2

− −−−−−−−−−−−

√ (57)
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for apparatus dimension  , ensuring consistency with the entanglement-entropy picture.

C. Contraction Dynamics from Entanglement: A Fully Specified Model

In the HQM framework, contraction is triggered by topological distinguishability induced by entanglement

between system and apparatus (or environment). To make this fully predictive, we introduce an explicit

open-system model in which the onset of contraction is quantitatively defined.

1. Hamiltonian model

Let   denote the system,   the apparatus. The total Hamiltonian is 

with measurement interaction 

where   is the pointer basis and   are Hermitian operators on   producing distinguishable pointer

states. This form ensures that if the system is initially in 

the interaction generates an entangled state 

with   decreasing towards   as the apparatus states become orthogonal.

2. Trigger condition

Let   be the reduced system state and 

its von Neumann entanglement entropy. HQM contraction postulate: When 

with    a fixed threshold (e.g.    for a  -dimensional pointer), the homotopy class 

 associated with the realized outcome is contracted to a single representative  .

dA

S A

H = ⊗ + ⊗ + ,HS IA IS HA Hint (58)

= | ⟩⟨ | ⊗ ,Hint ∑
k

ok ok Bk (59)

{| ⟩}ok Bk A

|ψ⟩ = | ⟩,∑
k

αk ok (60)

|Ψ(t)⟩ = | ⟩⊗ | (t)⟩,∑
k

αk ok Ak (61)

⟨ (t)| (t)⟩Ak Ak′ δkk′

(t) = [|Ψ(t)⟩⟨Ψ(t)|]ρS TrA

(t) = −Tr[ (t) log (t)]Sent ρS ρS (62)

(t) ≥ ,Sent Scrit (63)

Scrit logdpointer d

[ ]γk γ∗
k
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3. Contraction as a CP map

To preserve no-signaling, contraction is implemented as a completely positive (CP) map: 

where  . In HQM terms, the pullback   decomposes into components  , and contraction

replaces the selected   by the contractible singleton  .

4. Born rule derivation

The amplitude functor   assigns to each path   an amplitude  . For outcome  , 

which, by construction of  , reduces to 

Thus the Born rule emerges from the amplitude structure and the CP contraction dynamics.

5. No-signaling

Because the non-selective map is CPTP and local, tracing over    leaves the apparatus’ marginal state

unchanged. This guarantees that contraction triggered by entanglement cannot be used for superluminal

signaling, even though it is deterministic in the HQM formalism.

6. Experimental prediction

If   is nonzero, there is a finite delay between the onset of decoherence and full contraction. In ultra-

fast weak-measurement experiments, HQM predicts residual interference visibility 

where  . Standard quantum theory without such a threshold predicts   to drop as soon

as decoherence sets in, providing a potential experimental discriminator.

Non-selective:

Selective outcome k:

ρ ↦ ρ ,∑
k

Πk Πk

ρ ↦ ,
ρΠk Πk

Tr( ρ)Πk

(64)

(65)

= | ⟩⟨ |Πk ok ok P [ ]γk

[ ]γk { }γ∗
k

A γ A[γ] ∝ eiS[γ]/ℏ k

P (k) = ,
|A[γ] dμ(γ)∫[ψ→ ]ok

|2

|A[γ] dμ(γ)∑j ∫[ψ→ ]oj
|2

(66)

Hint

P (k) = |⟨ |ψ⟩ .ok |2 (67)

S

Scrit

V (t) ≈ ,e−( − (t) /ΔSScrit Sent )+ (68)

(x = max(x, 0))+ V
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D. Functorial Embedding of HQM in Hilbert Space Quantum

Mechanics

Let   be the dagger compact  -category of homotopy quantum types, whose objects are homotopy

classes of paths with higher morphisms encoding phases and gauge data. Let   denote the category

of finite-dimensional Hilbert spaces with linear maps. We define a symmetric monoidal dagger functor 

with the following properties:

On objects:  , where    is the number of distinct measurement outcomes reachable from 

 after topological refinement.

On morphisms: 1-morphisms map to unitary operators; 2-morphisms (homotopies between paths)

map to multiplication by   phase factors, encoding gauge holonomies (e.g. Aharonov–Bohm)[7].

The monoidal product   corresponds to composition of independent systems.

This embedding ensures that any topological contraction in   has a well-defined image under   as

the Lüders update in  , preserving the probabilistic structure and reproducing standard interference

effects.

E. No-Signaling from HQM Contraction

Let the system   be entangled with a remote system  . A measurement on   in HQM is implemented by:

1. Unitary dilation:  , with    the apparatus Hilbert space from 

.

2. Registration: store the pointer value in a classical register   via an isometry  .

3. Selective contraction: conditioning on register value   implements  .

The non-selective map (averaging over  ) is 

which is CPTP and satisfies 

HQT ∞

Hilb

F : HQT ⟶ Hilb (69)

F ([γ]) = C
n n

[γ]

U(1)

⊗

HQT F

Hilb

S R S

: ⊗ → ⊗USA HS HA HS HA HA

F (HQT )

C VAC

k ρ ↦ ρ /Tr( ρ)Πk Πk Πk

k

Λ( ) = ( ⊗ ) ( ⊗ ),ρSR ∑
k

Πk IR ρSR Πk IR (70)

[Λ( )] = [ ],TrS ρSR TrS ρSR (71)
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ensuring the marginal state of    is unchanged. Therefore, HQM contraction—when realized via such a

dilation—cannot be used for superluminal signaling.

F. Experimental Discrimination

To test HQM’s contraction vs. standard QM, adapt the unconscious observer experiment. Setup: Two

qubits in superposition, measured by an "unconscious" observer (e.g., quantum dot) that sets another

state without full collapse. Apply unitary rotation and measure interference. In standard QM (collapse),

probability = 0.5; in unitary interpretations, deviation due to interference. In HQM, contraction delay 

 predicts partial interference if measurement time  , leading to visibility  . Test

in ion traps or photonic systems: Measure coherence persistence beyond decoherence times, or visibility

curves in weak measurements. If observed, distinguishes HQM’s topological threshold from

instantaneous collapse.

G. Relativistic Consistency via Tomonaga–Schwinger Formalism

In relativistic HQM, states are functionals    on spacelike hypersurfaces  [8][9], evolving via the

Tomonaga–Schwinger equation 

Measurement regions are spacetime domains    with boundary  . Contraction is applied locally

within    when the operational distinguishability threshold is met in  , yielding a new functional 

  that differs from    only inside the causal future of  . This formulation avoids a preferred

foliation and guarantees that spacelike-separated contractions commute, preserving Lorentz invariance

and no-signaling.

H. Future Directions

Develop a field-theoretic HQM with infinite-dimensional configuration spaces.

Apply HQM to quantum gravity, where topological changes are natural.

Unify HQM with topos-theoretic quantum logic via  -categorical methods.

R

τ ∝ e−S < τ V = 1 − e−t/τ

Ψ[Σ] Σ

iℏ Ψ[Σ] = (x)Ψ[Σ].
δ

δΣ(x)
Hint (72)

R ∂R ⊂ Σ

R R

[Σ]Ψ′ Ψ[Σ] R

∞
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XIII. Discussion and Outlook

A. Summary of HQM’s Core Contributions

HQM reframes quantum measurement as a topological contraction of a homotopy class, retaining

unitary evolution, attributing collapse to topological distinguishability, and eliminating the stochastic

postulate. It extends to multipartite systems via joint configuration spaces and homotopy pullbacks.

B. Measurement Problem Revisited

The measurement problem becomes the question of what triggers topological refinement.

Distinguishability is the essential trigger, with contraction ensuring deterministic outcomes and

interference requiring connectedness.

C. Relation to Other Approaches

Decoherence — HQM incorporates decoherence as a mechanism for distinguishability but views it as

sufficient, not necessary; contraction provides definiteness.

Many-worlds — HQM avoids branching by selecting a single path after contraction.

Objective collapse — HQM’s contraction is deterministic; randomness arises from the choice of

refinement.
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