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Abstract

The most common neurological diversity that children experience is dyslexia and it manifests itself in reduced reading

ability. There is a genetic predisposition for dyslexia, and more recent theories explain it as a disruption in left

hemispheric lateralization that reduces effective reading and writing. Software for smartphones called Auto Train Brain

helps children with dyslexia to improve their reading comprehension and reading speed. Measuring the efficacy of the

mobile app training was done manually with psychometric tests beforehand and we use a biomarker detection software

to measure the efficacy of the neurofeedback. Machine learning (ML) techniques have recently been used to classify

children with dyslexia and typically developing children (TDC). The data consists of 100 sessions of 2-minute resting-

state eyes-open 14-channel Quantitative Electroencephalography (QEEG) data from 100 children with dyslexia and of

100 TDC. We used the dyslexia biomarker detection software to assess the efficacy of 14-channel neurofeedback that

was applied with Auto Train Brain. The results have shown that 48% of the sessions of children with dyslexia were

classified as electrophysiologically normal, and 61% of the children with dyslexia were classified as

electrophysiologically normal for at least 1 session after the 20th session of neurofeedback.

Günet Eroğlu*a, MHD Raja Abou HARBb

a Computer Engineering Dept, Engineering and Nature Faculty, Bahçeşehir University, Istanbul, Turkey
b Computer Engineering Dept, Engineering and Nature Faculty, Işık University, Istanbul, Turkey 

* Corresponding author:

Tel.: +905323265582.

E-mail address: gunet.eroglu@healthmobilesoftware.com

 

Keywords: Dyslexia detection, developmental dyslexia biomarkers, QEEG, Artificial-Neural Network, Auto Train Brain.

 

1. Introduction

Qeios, CC-BY 4.0   ·   Article, January 3, 2023

Qeios ID: KZLSRC.3   ·   https://doi.org/10.32388/KZLSRC.3 1/24

https://www.qeios.com/read/KZLSRC.3#reviews
https://www.qeios.com/profile/17813
https://www.qeios.com/profile/20695


Developmental dyslexia is a specific learning disorder that affects the reading ability and is not related to intelligence

(American Psychiatric Association, 2013). It has a strong genetic component, with dyslexic individuals being more likely to

have dyslexic children (Francks et al., 2002; Van Bergen et al., 2012). Other potential causes of dyslexia include maternal

stress, autoimmune responses and infections during pregnancy (D'Souza et al., 2016), and an overactive stress response

leading to early maturation at the expense of neuroplasticity (Kershner, 2019, 2021). Developmental dyslexia may also be

explained by delays in the lateralization of the brain, specifically in the left hemisphere (Yılmaz & Akyüz, 2021). It is

important for children to establish left-brain dominance before entering school in order to facilitate learning (Kershner,

2020).

There are different subtypes of dyslexia, which can be characterized by various underlying factors such as auditory

processing deficits (Schulte-Körne, 2010), visual processing impairments (Lassus-Sangosse et al., 2008), attentional

deficits (Bednarek et al., 2004), abnormal eye movements (Bellocchi et al., 2013), and irregularities in processing

(Horwitz, 1998). Dyslexia is characterized by difficulty in accurately translating written letters (graphemes) into

corresponding sounds (phonemes) (Rubinsten et al., 2006). It may also involve abnormalities in certain subcortical

structures (Geschwind & Galaburda, 1985). Research suggests that poor integration of auditory and visual information

may be a diagnostic feature of dyslexia, possibly resulting from a weakness in the early binding of audiovisual speech in

the sensory cortices (Kershner, 2021). This model suggests that dyslexia may be caused by dysfunction in the large-scale

ventral and dorsal attention networks that control such binding and that excessive activity in these networks due to the

Locus coeruleus-norepinephrine system may interfere with multisensory integration and impair the acquisition of reading

by disrupting grapheme-phoneme conversion (Kershner, 2021).

A new theory in evolutionary developmental biology suggests that early exposure to stress may be a cause of dyslexia.

This theory combines research in the neurobiology of stress with the Extended Evolutionary Synthesis (EES) framework,

which focuses on the role of genes in maturation and the evolution of reading skills in literate societies (Kershner, 2020).

According to this theory, chronic stress can over-activate the hypothalamic-pituitary-adrenal stress axis, disrupting the

balance between epigenetic, stress-induced, and cognitive-growth genetic programs in the brain (Kershner, 2020). This

can compromise neuroplasticity and learning potential, particularly in the prefrontal cortex and networks associated with

dyslexia (Kershner, 2020). The theory also suggests that stress can interfere with the coordination of afferent signals with

cognitive performance in the insular cortex, amygdala, and hippocampus, and can over-recruit the brain's Default Mode

Network (Kershner, 2020). Additionally, stress can amplify the release of stress hormones from the Locus

coeruleus/norepinephrine system, which can impair the entrainment of oscillations in the lower phonological frequencies

of speech (Kershner, 2020). These changes in the brain's cellular and regional networks may contribute to the

development of dyslexia. This evidence supporting a stress-growth imbalance in dyslexia is preliminary but holds promise

for a new understanding of the neurobiology of dyslexia and potential ways to reduce its prevalence (Kershner, 2020).

There is also evidence to suggest that inflammation may play a role in dyslexia. Inflammation is a natural response of the

body to injury or infection, and it involves the activation of immune cells and the release of inflammatory molecules

(Yektas et al., 2022). Some research has found that individuals with dyslexia have higher levels of inflammation in the
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brain, and that inflammation may contribute to the neurocognitive changes associated with dyslexia (Estes et al., 2016;

Jiang et al., 2018; Kuban et al., 2015; Yektas et al., 2022; Eroğlu, 2022). However, the specific mechanisms by which

inflammation and stress may contribute to dyslexia are still not fully understood and require further research.

Multiple studies have demonstrated that children with dyslexia exhibit slower brain waves at FC5 and F7, and do not

experience changes in beta-1 activity while reading, in areas related to Broca's area (FC5, which is involved in speech

production and articulation) and the Angular gyrus (CP5, P3, which is involved in understanding semantics and

mathematics) (Klimesch et al., 2001). Additionally, there is reduced activity in the left parieto-occipital area (P7, O1)

(Rippon & Brunswick, 2000). Children with dyslexia may also have increased sluggish activity in the right temporal and

parietal regions (P8 and T8) (Arns et al., 2007), and reduced activity in the left temporal region (Thornton & Carmody,

2005). People with both dyslexia and ADHD may also exhibit increased sluggish activity in the frontal region of the brain.

The alpha and beta bands show increased coherence in the right temporal region (T3 and T4), while the delta and theta

bands show increased coherence across both hemispheres (Arns et al., 2007). However, there is reduced coherence in

the delta, theta, and alpha bands between P7 and O1. Difficulties in the gamma band and reduced functioning

connections have also been linked to dyslexia (Fraga González, 2018; Kraus, 2012). The reduced activity in the left

temporal region is associated with difficulties in auditory processing and reading (Thornton & Carmody, 2005). These

abnormalities in various brain regions provide evidence of underlying neurological dysfunction in the temporo-occipital and

parietal-temporal regions, particularly in ventral attentional networks, and may significantly impact dyslexia.

Children with dyslexia may require a significant amount of time and support, including proper nutrition, education, and

assistance, in order to catch up to their peers in reading ability. This is because dyslexia is often accompanied by deficits

in phonological processing, including the ability to consciously manipulate speech sounds (phonological awareness),

temporarily store phonological information in verbal short-term memory, and quickly retrieve long-term phonological

representations (McDougall et al., 1994). These difficulties may make it challenging for children with dyslexia to accurately

process and comprehend written language.

We focused on the study of the previous works in the publications that specialized in classifying dyslexia among children

through supervised machine learning techniques using EEG datasets.

A lot of works in the literature worked on Support Vector Machines (SVM) classifiers in their proposals. Zainuddin et al.,

(2018) focused on Radial Basis Function (RBF) kernel in SVM, and the reached accuracy was 0.91. EEG data were

recorded from 33 participants with the age ranging from 7 to 12 years old, 8 of them were normal, 17 were poor dyslexics

and 8 were capable dyslexics. This data was acquired with the assistance of the Dyslexia Association of Malaysia and the

Rakan Dyslexia Malaysia group. Rezvani et al., (2019) reached 0.95 accuracies with their proposal, and the data was

collected using 44 participants, 29 of them were dyslexic and the rest were good readers. The studied age was the age of

third grade. & Setarehdan (2020) focused on identifying the brain parts that are related to reading to improve them. Data

was taken from the Atiyeh clinic center. The sample group consisted of 30 primary school students equally separated

between dyslexic and good reader children. They used 19 channels for EEG signals and sampled at 250 Hz.
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Karim et al. (2013) worked on Multi-Layer Perceptron (MLP) in solving the research problem. The Dataset was collected

using the Dyslexia Association of Malaysia, at Ampang Hilir and Titiwangsa branches for the dyslexic children, and the

good-reader children were selected randomly from different schools. The age range was from 4 to 7 years old. the highest

reach accuracy was 0.86 with eyes closed condition.

Formoso, Ortiz, Martinez-Murcia, et al. (2021) used Naïve Bayes (NB) Classifier for classification. Data was taken from

the Leeduca group at the University of Málaga. Control and experimental groups are extracted by a careful screening

process from a cohort (N = 700) followed from 4 years to the second evaluation of 7 years in 20 different primary schools

(Junta de Andalucía). The reached accuracy was 0.82 with the 4.8 Hz stimulus.

Two main works focused on K-Nearest Neighbors (KNN) classifiers in solving the research problem. Zainuddin et al.,

(2016) reached through this methodology 1.00 in accuracy for normal and capable dyslexic children using Euclidean with

a k-value at 5 for the Random and Nearest rule. But no checking for overfitting was done. They collected EEG data from

21 participants between 7 and 12 years old, 7 of them were classified as capable dyslexic, while 4 of them were classified

as poor dyslexic, and the rest were good readers. Zainuddin et al. (2019) worked on KNN and extreme learning machine

(ELM) classifiers to classify dyslexia. The EEG data was self-recorded. The number of participants was 20, equally

separated between dyslexic and good reader children. The age range was from 7 to 12. The highest accuracy was 0.89

and it was scored by ELM.

Several of the previous works tested several ML models in their design. Alex & Larry (2018) tested Several ML models

were experimented such as Decision Trees (DT), Neural Networks (NN), and SVM, but they mentioned SVM only. The

highest accuracy reached was 0.78. The dataset was self-collected, and the total number of participants was 32 Hebrew

native children 17 of them were dyslexic while the rest were good readers. Ortiz et al. (2020) worked on Deep learning

with SVM classifiers. The EEG data used in this work was provided by the Leeduca Study Group at the University of

Malaga. The highest scored accuracy was 0.96. Gallego-Molina et al. (2022) worked on Phase–amplitude coupling (PAC)

and then SVM. EEG data were obtained by the Leeduca research group at the University of Málaga. The total number of

participants was 48, 32 were good readers while the rest were dyslexic. The age range was from 88 to 100 months. The

highest accuracy was 0.729 for the 4.8 Hz stimulus. Formoso, Ortiz, Martínez-Murcia, et al. (2021) used a new way to

combine the ML models. They used SVM to detect the most discriminant nodes and then ensemble classifier using

Random Forest (RF) and Gradient Boosting classifiers. The used data was provided by the Leeduca Research Group at

the University of Málaga. EEG signals were recorded using the Brainvision acticHamp Plus with 32 active electrodes

(actiCAP, Brain Products GmbH, Germany) at a sampling rate of 500 Hz during 15-minute sessions while presenting an

auditory stimulus to the subject. The number of participants was 48, 17 of them were good readers while the rest were

dyslexic. The Area Under Curve (AUC) metric was used and the highest value reached 0.73. 

From the studied previous works we can see that the highest accuracy score was 1.00 from Zainuddin et al. (2016),

however the overfitting issue that ML models have was not taken into consideration. Most of the previous works focused

on SVM classifiers to solve the classification problem Formoso, Ortiz, Martinez-Murcia, et al., (2021); Gallego-Molina et

al., (2022); Kheyrkhah Shali & Setarehdan (2020); Ortiz et al. (2020); Rezvani et al., (2019); and Zainuddin et al. (2018),
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while other ML methods chose KNN classifier Zainuddin et al. (2016); Zainuddin et al. (2019), NB classifier Formoso,

Ortiz, Martinez-Murcia, et al. (2021), and MLP Karim et al. (2013). From the studied previous works, we can see that there

was a limitation in choosing supervised ML models, so there was no overall comparison of the performance of other ML

models. The chosen supervised ML models were not also achieved good performances in the classification problem. Most

of the previous works did not take into consideration the overfitting issues that ML models may face over the given

datasets. Processing time for the studied previous works was also not mentioned.

Auto Train Brain is a cutting-edge system that combines multi-sensory learning, neurofeedback from 14 channels, and

special education concepts to improve reading skills in children with dyslexia (Eroğlu et al., 2021). This system includes

machine learning algorithms and has been tested in clinical trials, which have shown that it is an effective method for

improving reading skills in dyslexic children, as demonstrated by pre- and post-treatment differences on the Multiscale

entropy and TILLS tests (Eroğlu et al., 2021; Eroğlu et al., 2022). In this study, the researchers used a machine learning-

based dyslexia diagnostic system to evaluate the effectiveness of 14-channel neurofeedback using Auto Train Brain.

2. Methods and materials

2.1. Participants

Our experiment group consisted of 100 children with dyslexia who regularly utilized Auto Train Brain at home for

neurofeedback (Mage= 8.85, SD = 1.56, 75 males, 25 females; the ethnic group is white). There were 100 healthy

children present in the experiment (Mage = 8.75, SD = 1.50; 79 males, 21 females; the ethnic group white). Psychiatrists

identified the children in the experiment group as having dyslexia and advised their families to use Auto Train Brain at

home. Psychiatrists used the TILLS tests to determine whether the test subjects satisfied the DSM-V criteria for dyslexia.

The children were picked at random to take part in the experiment by using social media advertisements. In this

retrospective study, the participant's main objective is to use Auto Train Brain software as a neurofeedback device at

home. Individuals were advised to conduct a 2-minute resting state QEEG assessment for the purpose of data collection

prior to each neurofeedback session. The participants utilized Auto Train Brain before leaving for school in the morning.

The inclusion criteria for the study were that the participants hailed from middle-SES families, did not use any

medications, and did not have any comorbid conditions aside from dyslexia, and were aged between 7-10. They resided

in numerous cities all around Turkey. A survey of the parents of the children was done to assess their socioeconomic

position. The survey asks questions about employment, education (elementary, secondary, and graduate), and income

(low income 6,000 TL, middle income 6,000 TL to 20,000 TL, high income >20,000 TL) (staff, blue-collar workers, white-

collar workers).

Before each neurofeedback session, 2-minute resting-state eyes-open theta, alpha, beta1, beta2, and gamma-band

powers were measured (60 sessions per subject on average). This study makes use of many measurements and a

limited sample size (200 participants). Using Auto Train Brain, 2-minute resting-state QEEG data from typically developing

children are collected 60 times per participant, and the data for the experiment and control groups are balanced to have

Qeios, CC-BY 4.0   ·   Article, January 3, 2023

Qeios ID: KZLSRC.3   ·   https://doi.org/10.32388/KZLSRC.3 5/24



an equal number of occurrences in each group.

2.2. The Test of Integrated Language & Literacy Skills (TILLS)

The TILLS is a test for the assessment of oral and written language abilities in students 6–18 years of age. Published in

2016 (Nelson, Plante, Helm-Estabrooks, & Hotz, 2016), it is unique in the way that it is aimed to thoroughly assess skills

such as reading fluency, reading comprehension, phonological awareness, spelling, as well as writing in school-age

children. The test is originally developed in English. Turkish Dyslexia Association has translated and adapted it to Turkish.

This test has been used for diagnosing learning disabilities. For 6-7 years old children, a TILLS descriptive score of less

than 24 indicates a learning disability with 84% sensitivity and 84% specificity. For 8-11 years old children, a TILLS

descriptive score of less than 34 indicates a learning disability with 88% sensitivity and 85% specificity.

The TILLS test has 2 dimensions (language and modality). For listening modality, it has (1) Vocabulary awareness, (2)

Phonemic awareness, (6) Listening comprehension, (8) Following directions; for the speaking modality, it has (4) Nonword

repetition, (3) Story retelling, (13) Social communication; for reading modality, it has (10) Nonword reading, (11) Reading

fluency, (7) Reading comprehension; for writing modality, it has (5) Nonword spelling, (12a) Written expressions- Word

score, (12b) Written expression -discourse score, (12c) Written Expression – sentence combining score; for Memory, (14)

Digit span forward, (15) Digit span Backward, (9) Delayed story retelling subtests. The TILLS descriptive point is the sum

of all subtests’ scores.

2.3 Electroencephalography (EEG) recording

The EPOC-X headsets from EMOTIV were utilized throughout the tests. The headset's internal sampling rate for each

channel was 2048 samples per second. Prior to down-sampling, the principal artifacts and alias frequencies were

eliminated from the EEG data and each channel was sampled 128 times per second. Two additional channels were

employed as controls, and a total of 128 samples per second were applied to each of the 14 EEG channels. To ensure

that each electrode could deliver high-quality EEG data, the EMOTIV EPOC-X headset was calibrated on the participants'

scalps using the EMOTIV APP mobile applications prior to the training. The 14-channel EEG data were acquired in the

theta (4–8 Hz), alpha (8–12 Hz), beta-1 (12–16 Hz), beta-2 (16–25 Hz), and gamma (25–45 Hz) bands for all analyses in

this work. The EMOTIV headset interfaces lacked data from the delta (0–4 Hz) band. It has been shown that EMOTIV

EPOC-X delivers high-quality QEEG data (Badcock et al, 2013). There are 70 features in the dataset. On the Auto Brain

Train device, electrodes are used to collect the data (AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, FC6, F8, F4, AF4).

2.4. Neurofeedback treatment protocol and multi-sensory learning method

Neurofeedback and multi-sensory learning techniques are employed in the Auto Train Brain smartphone app. The

EMOTIV EPOC-X headsets are compatible with it. It is a non-invasive technique that helps people of all ages gradually

improve their brain function. The only side effect that was occasionally seen was a headache. Traditional neurofeedback

training may have surprising results when applied to the wrong brain regions or when the wrong neurofeedback protocols
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are used for the subject's condition. Before each neurofeedback session, Auto Train Brain's AI-assisted algorithms

analyze the 2-minute resting state eyes-open QEEG data and based on the results, the optimum neurofeedback protocol

is offered for the subsequent session. 1700 healthy people aged 4 to 80 gave QEEG data to Auto Train Brain.

This norm data is used to compare the subject's QEEG readings to those of TDC throughout the neurofeedback session.

Neurofeedback training is carried out on the brain regions that are the most dysfunctional. In prior studies and clinical trials

for kids, Auto Train Brain was found to be useful with the intention of minimizing adverse effects (Eroğlu et al., 2021). It

provides online, real-time visual and aural neurofeedback while reading and interpreting QEEG signals from 14 channels.

Within this software, a system and approach for increasing learning capacity are provided. We believed the following

strategy might be helpful because dyslexia is described in the literature as a disconnection disorder in the left temporal

area. On dyslexic children, this neurofeedback technique has already been tried in a clinical setting.

Reduce absolute theta waves at FC5 if they are higher than the age-matched norm theta; and/or, 

Reduce absolute theta waves at T7- P7- O1 if they are higher than the age-matched norm theta; and/or, • Find the

channels with the highest absolute power of theta waves in the left hemisphere and reduce absolute theta; and/or, 

Find the channels with the highest absolute power of theta waves in the right hemisphere and reduce absolute theta.

A green arrow on the screen denotes positive reinforcement, whereas a red arrow and a "beep" sound denote unfavorable

comments. When a favorable reward is received, the score that is visible on the screen increases. If the participant's

absolute theta levels are over the norm, a red arrow is shown on the screen, and they are encouraged to try to change it

to a green one. Neurofeedback sessions typically last for 30 minutes. After the neurofeedback session, a phoneme-

grapheme matching alphabet teaching approach is provided. The fact that the Auto Train Brain incorporates

neurofeedback with multi-sensory learning ideas sets it apart from previous neurofeedback systems. A distinctive

technique is the 14-channel neurofeedback system. According to Eroğlu et al. (2021), utilizing Auto Train Brain to lower

theta reduces the dyslexia disconnection syndrome and improves the left lateralization of the brain. The results of the

TILLS test show that reducing QEEG theta band power practically improves coherence across multiple brain regions.

2.5. Study Design

An app for mobile devices that may be used at home is the Auto Train Brain solution. The QEEG assessment electrodes

were placed on the scalp while each participant sat in a chair. The participant was placed 0.5 meters away from the

phone's display. Before each neurofeedback session, the resting-state QEEG readings were obtained for two minutes

using the EMOTIV EPOC-X and the Auto Train Brain app. The individual was asked to relax and keep their eyes open

while doing the QEEG assessment. This study is designed as a repeated measurement.

2.6. Statistical Analysis

The QEEG band power data was collected from 14 electrode channels during each session and averaged over 2 minutes.

Z-scores were calculated for each QEEG band power using the equation z = (x-m)/s, where m and s represent the mean
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and standard deviation of the sample, respectively. Outliers (values greater than 5 or less than -5) were removed and

missing values were replaced with the mean of the featured data. The data was labeled by a computer scientist based on

a psychiatrist's diagnosis of the participant, which did not change throughout the neurofeedback sessions. The data was

balanced and pre-processed, and a binary classification using a supervised machine learning model was applied. The

model, which was an artificial neural network, outputs a probability score for dyslexia positivity. The model was chosen

based on the best performance among various hidden layers and activation functions and was evaluated using the k-fold

cross-validation technique with ten folds. To prevent overfitting, dropout was applied between layers. The results were

also tested with an external set of diverse input data. Python, Google Collab, Sci-kit Learn, and TensorFlow machine

learning libraries were used for statistical and data analysis, including k-folding, cross-validation, and the creation of

confusion matrices. The Mat plot library was used to plot learning, validation, and ROC curves.

Google Colab, an online cloud-based Jupyter notebook environment that supports ML and deep learning models on

CPUs, GPUs, and TPUs, has been used to reach the results in this work. All the results were rounded to 4 digits after the

floating point. Accuracy, sensitivity, and specificity evaluation measures were used in comparing the ML model results in

this work. Receiver Operating Characteristic (ROC) curves and Area Under Curve (AUC) were extracted to compare the

performances.

2.7. Experimental Methodology

Figure 1 summarizes the methodology that we used to reach our results. After collecting the dataset and validating it, the

QEEG records for the first 20 sessions are used in training the ML models after splitting it into training and testing

according to the ratio 80:20. After the training process, testing the trained ML models was conducted. In order to check

the effectiveness of the neurofeedback treatment protocol, a validation process was conducted using the QEEG records

of children with dyslexia in the sessions from 21 to 100. Lastly, the results were analyzed.

To have better knowledge of the effectiveness of using specific parts of the brain in the classification process, the

experiment is repeated for the following brain sections:

Left Hemisphere represented by the electrodes: AF3, F3, FC5, T7, P7 and O1,

Left Frontal represented by the electrodes: AF3, and F3,

Left Temporal represented by the electrodes: T7, and FC5,

Left Occipital represented by the electrodes: O1, and P7,

Right Hemisphere represented by the electrodes: AF4, F4, FC6, T8, P8, and O2,

Right Frontal represented by the electrodes: AF4, and F4,

Right Temporal represented by the electrodes: T8, and FC6,

Right Occipital represented by the electrodes: O2, and P8.

The used Supervised ML models in the conducted training are Logistic Regression (LR), Random Forests (RFs), Support

Vector Machines (SVMs), Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), and lastly soft voting

ensemble classifiers using a combination of the separately mentioned classifiers except for RF classifier since it had a
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negative effect on the learning process. Please refer to Appendix I for more details about the used parameters. 

 

Figure 1. The Used Methodology.

 

3. Results

The highest accuracy reached when the full brain signals were used in the training and testing was with the Random

Forest algorithm (RF), and the accuracy was 99.6% (sensitivity= 98.70% and specificity= 99.73%). The second best score

with RF was for the Right Temporal with 99.25% of accuracy (sensitivity= 98.39% and specificity= 99.37%). The third

highest accuracy with RF was for the Right hemisphere and the accuracy was 99.21% (sensitivity= 98.70% and

specificity= 99.28%) (Table 1).

 

Table1. Accuracy, Sensitivity, and Specificity

Results for RF Classifier. 
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Brain Part Accuracy Sensitivity Specificity

Full Brain 0.9960 0.9870 0.9973

Left Hemisphere 0.9873 0.9736 0.9892

Right Hemisphere 0.9921 0.9870 0.9928

Left Frontal 0.9877 0.9832 0.9883

Left Temporal 0.9837 0.9633 0.9865

Left Occipital 0.9889 0.9770 0.9905

Right Frontal 0.9869 0.9767 0.9883

Right Temporal 0.9925 0.9839 0.9937

Right Occipital 0.9861 0.9797 0.9869

 

Figure 2. Accuracy Results for the Used ML models Based on Brain Parts.

 

Figure 3 shows the evaluation measurement results for all the ML models that were tested based on the recordings of the

brain parts. For the implementation time, Table 2 shows in seconds each of the ML model took for training and validation. 
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Figure 3. Accuracy, Sensitivity, and Specificity Results for the Tested ML models.

 

 
full
brain

Left
Hemisphere 

Right
Hemisphere 

Left
Frontal

Left
Temporal

Left
Occipital

Right
Frontal

Right
Temporal

Right
Occipital

soft
voting

5.6782 2.5382 2.5947 1.3643 1.4542 1.3681 1.3608 1.4852 2.9106

LR 0.4875 0.4243 0.3703 0.1563 0.1528 0.1872 0.1556 0.192 0.1374

SVM 2.2846 2.2941 2.1608 2.473 2.1793 2.6697 2.4271 1.9177 3.3719

GB 0.362 0.2812 0.279 0.275 0.3259 0.269 0.2738 0.2597 0.4214

LGBM 2.5294 1.0677 1.1097 0.4787 0.4889 0.4574 0.4854 0.4888 1.4723

RF 0.6788 0.538 0.5108 0.4314 0.4063 0.4831 0.4028 0.3844 0.45

Table 2. Implementation times for the ML models. 

 

Figures 4, 5, 6, 7, 8, 9, 10, 11, and 12 show the ROC curves and AUC values for ML models based on the full brain, left

hemisphere, right hemisphere, left temporal, left frontal, left occipital, right frontal, right temporal, and right occipital

respectively.
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Figure 4. ROC Curves and AUCs for the Studied ML Models for Full Brain.

Figure 5. ROC Curves and AUCs for the Studied ML Models for the Left Hemisphere

Part.
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Figure 6. ROC Curves and AUCs for the Studied ML Models for the Right Hemisphere

Part.

Figure 7. ROC Curves and AUCs for the Studied ML Models for the Left Temporal

Part.
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Figure 8. ROC Curves and AUCs for the Studied ML Models for the Left Frontal Part.

Figure 9. ROC Curves and AUCs for the Studied ML Models for the Left Occipital Part.
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Figure 10. ROC Curves and AUCs for the Studied ML Models for the Right Frontal

Part.

Figure 11. ROC Curves and AUCs for the Studied ML Models for the Right Temporal

Part.
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Figure 12. ROC Curves and AUCs for the Studied ML Models for the Right Occipital

Part.

 

For the validation results, the bar chart in Figure 13 shows the percentage of the dyslexic cases that were classified as

TDC after the neurofeedback procedure from the sessions of 21 to 100. The results have shown that 48% of the sessions

of children with dyslexia were classified as electrophysiologically normal, and 61% of the children with dyslexia were

classified as electrophysiologically normal for at least 1 session after the 20th session of neurofeedback.

 

Figure 13. The Validation Process of the Supervised ML Models.
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4. Discussion

The novelty of this work was employing supervised ML techniques in the classification of dyslexia among children, and

checking the improvement in the detected cases after applying the neurofeedback procedure. The results have shown

that 48% of the sessions of children with dyslexia were classified as electrophysiologically normal, and 61% of the children

with dyslexia were classified as electrophysiologically normal for at least 1 session after the 20th session of

neurofeedback.

Based on the results mentioned in Figure 2, we can see that in order to increase the accuracy of detecting dyslexia

among children, it is advised to have full brain signals, however, left occipital can yield the highest score ML models such

as RF and LGBM classifiers.

From Figure 3, and the Figures from Figure 4 to Figure 12, we can say that the RF classifier scored the highest

performance in the studied classifying problem, moreover the implementation time for it was comparably better based on

the implementation times that were mentioned in Table 2.

Prior research has demonstrated the efficacy of 14-channel neurofeedback with Auto Train Brain in improving reading

comprehension in individuals with dyslexia. In a clinical trial, the experimental group showed a significant increase in

reading speed from 38 to 65 and an increase in TILLS descriptive point from 20.25 to 24.12 after 60 sessions of

neurofeedback (Eroglu et al., 2020). Statistical analysis revealed that the simple effect of time on reading comprehension

subtests was significant for the experimental group [F (1, 14) = 4.98, p=.042], and post-doc tests showed that

neurofeedback training was statistically more effective at improving reading comprehension than special education. The

experimental group experienced a 70% improvement in reading comprehension, going from an average score of 3.06 (SD

= 4.22) to 5.20 (SD = 4.41), while the control group regressed by 10%, going from an average score of 7.12 (SD = 3.18)

to 6.36 (SD = 4.22) (Eroglu et al., 2020).

Neurofeedback has been shown to be effective in reducing the symptoms of dyslexia through the use of EEG data

displayed in real-time to the patient, allowing them to gain better mental control through operant conditioning (Ninaus et

al., 2015). Research has also suggested that neurofeedback can enhance brain structure and improve cognitive function

(Canolty et al., 2006; Lubar et al., 1976; Terrasa et al., 2020). Neurofeedback has been recognized as a "possibly

efficacious" treatment by the American Psychological Association (Melnikov, 2021). While clinical trials have often been

used to demonstrate the effectiveness of neurofeedback, it can be challenging to demonstrate its usefulness. Using fMRI,

it is possible to show the changes in brain activity that occur after neurofeedback, although it is more difficult to do so

using QEEG. In one study, an hour of neurofeedback training was associated with enhanced fractional anisotropy (FA) in

the corpus callosum and improved functional connectivity in the sensorimotor resting state network, as well as increased

functioning in the default network configuration (Marins et al., 2018).

In this study, we developed a dyslexia biomarker detection software with high accuracy for classifying children with
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dyslexia and typical developmental control (TDC) using QEEG data collected during the resting state in the latter

neurofeedback sessions. The results showed that 48% of the sessions of children with dyslexia were classified as

electrophysiologically normal or TDC and 61% of the children with dyslexia were classified as electrophysiologically

normal or TDC for at least one session after the 20th session of neurofeedback. These findings, obtained after 100

sessions of neurofeedback, are promising and align with the results of the clinical trial. In the future, we plan to further

develop machine learning models for more fine-grained classification of dyslexia severity, rather than the current binary

classification of dyslexia and TDC. This will allow us to assess the extent to which neurofeedback can improve dyslexia

symptoms in individuals who are still classified as having dyslexia after training.

4.1. Limitations of the Study

The first limitation of the study, we used repeated measures from the same subjects to collect QEEG data from each

session. The second limitation of the study is the possibility of placebo effects. According to Gaab et al.(2019), children

who receive individualized attention and specialized therapies may improve their functioning primarily as a result of the

social and environmental effects of those interventions. The maturation effects are the third limitation of the study. All

children's brains change significantly as they grow. Therefore, it is anticipated that maturation will have an impact on

QEEG changes over the next six months.

5. Conclusions

In conclusion, the use of machine learning techniques in the diagnosis and training of dyslexia has shown promise in this

study. The development of a classification system using QEEG data and RF was successful in accurately diagnosing

dyslexia, and the application of neurofeedback as training showed potential for improving symptoms in individuals with

dyslexia. These findings suggest that machine learning may be a valuable tool in the dyslexia training process, offering a

new and innovative approach to addressing this learning disorder. However, further research is needed to fully understand

the potential of these techniques and to determine their long-term effectiveness in improving outcomes for individuals with

dyslexia. Despite this, the use of machine learning in the field of dyslexia research and training is an exciting development

that has the potential to make a significant impact on the lives of those affected by dyslexia.
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Appendix 1

The Used Parameters For the ML Models
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ML Algorithm Used Parameters 

LR random_state=0

RF

n_estimators=20

criterion='entropy'

random_state=0

SVM
kernel='rbf'

random_state=0

GB

n_estimators=70

 learning_rate=0.75

 max_features=2

 max_depth=2

 random_state=0

LGBM

 learning_rate=0.75

 boosting_type='gbdt' #GradientBoostingDecisionTree

 objective='binary' #Binary target feature

 metric='binary_logloss' #metric for binary classification

 max_depth=10

epocs=100

Soft Voting
Combination of the previous classifiers with the same used
parameters 
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