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In the digital age, the challenge of forgetfulness has emerged as a signi�cant concern, particularly

regarding the management of personal data and its accessibility online. The right to be forgotten

(RTBF) allows individuals to request the removal of outdated or harmful information from public

access, yet implementing this right poses substantial technical di�culties for search engines. This

paper aims to introduce non-experts to the foundational concepts of information retrieval (IR) and

de-indexing, which are critical for understanding how search engines can e�ectively ”forget”

certain content. We will explore various IR models, including boolean, probabilistic, vector space,

and embedding-based approaches, as well as the role of Large Language Models (LLMs) in

enhancing data processing capabilities. By providing this overview, we seek to highlight the

complexities involved in balancing individual privacy rights with the operational challenges faced by

search engines in managing information visibility.

Corresponding author: Giancarlo Ru�o, giancarlo.ru�o@uniupo.it

1. Introduction

De-indexing is the process of removing speci�c content or links from a search engine’s index,

preventing them from appearing in search results. Unlike deleting content from a Website, de-

indexing does not erase the information from its original source; instead, it ensures that the

information is less accessible through search engines. This process is often requested by individuals

who seek to limit the visibility of certain online information that may be outdated, irrelevant, or

harmful to their reputation.

De-indexing is closely associated with the right to be forgotten (RTBF), a legal principle that allows

individuals to request the removal of personal data from public access when it no longer serves a
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legitimate purpose. Originating in Europe with the landmark case Google Spain SL, Google Inc. v

Agencia Española de Protección de Datos in 2014, the RTBF is now a cornerstone of privacy rights in

the digital age, de�ned in legislations such as the General Data Protection Regulation (GDPR), Article

17. De-indexing serves as a practical mechanism for enforcing the RTBF, balancing the individual’s

right to privacy and the public’s right to information.

However, to fully understand the dynamics, the possibilities and the technical challenges behind Web

de-indexing, it is important to have a grasp of the basic principles of indexing and, more in general, of

information retrieval (IR). The goal of the present document is to provide the reader with a general,

technical overview of IR, enabling re�ections and allowing an analysis of the implications of de-

indexing and RTBF on search engine algorithms and data privacy.

The present document is organized as follows. In Sect. 2 we provide a technical overview of the most

common models of information retrieval, reviewing the basics of boolean models, probabilistic

models, vector space and embedding-based models. We will also introduce the reader to Large

Language Models (LLMs), which are the latest innovation in IR and textual data mining. Finally, in

Sect.  3 we conclude with a brief discussion on deindexing in light of the technical arguments

elaborated in the previous sections.

If the reader is particularly interested in IR, we strongly suggest the following references: [1][2][3][4].

Nevertheless, this paper succinctly addresses some of the most fundamental aspects behind the

principal IR technologies, although our primary objective is to describe how modern IR engines deal

with ’forgetting’ information.

2. Models of Information Retrieval

Information retrieval (IR) is the process of �nding relevant information from large collections of

unstructured or semi-structured data in response to user queries. Unlike structured data retrieval in

databases, IR primarily deals with text-heavy datasets such as documents, Web pages, and

multimedia. The goal of an IR system is to satisfy the user’s information needs by providing results

that are relevant and ranked in importance order. This �eld lies at the intersection of computer

science, linguistics, and cognitive science, drawing on various methods to develop algorithms capable

of processing and interpreting human language, an inherently complex task.
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The fundamental process of information retrieval involves several stages, including preprocessing the

data (tokenization, stemming, stop-word removal), indexing the content to enable fast searches, and

ranking documents based on their relevance to a query. Modern IR systems utilize a variety of

techniques, such as query expansion, relevance feedback, and term weighting, to improve the quality

of search results. Increasingly, machine learning (ML) and natural language processing (NLP) are

being integrated into IR pipelines, allowing systems to handle user queries more intelligently and

adapt to evolving information needs.

IR models, which provide the theoretical foundation for how information is retrieved, can be broadly

divided into three categories:

1. Boolean Models: These models treat documents and queries as sets of terms and use strict

matching criteria based on logical operators (AND, OR, NOT) to determine relevance. Although

simple and intuitive, Boolean models lack mechanisms for ranking results or accounting for

partial matches.

2. Vector Space Models: These models represent documents and queries as vectors in a multi-

dimensional space, where each dimension corresponds to a term. Relevance is calculated using

measures such as cosine similarity, which captures the degree of alignment between document

and query vectors. This approach enables partial matching and ranking, but requires careful term

weighting to be e�ective.

3. Probabilistic Models: Probabilistic models predict the likelihood that a document is relevant to a

given query, based on prior probabilities and the presence or absence of terms. One prominent

example is the probabilistic relevance model, which underpins advanced techniques like BM25[5].

In addition to these foundational models, Large, pre-trained, transformer-based deep language

models such as BERT[6], T5[7]  and GPT[8], have been shown e�ective for text passage retrieval and

ranking[9][10][11][12].

2.1. Boolean Models and Document Representations

The Boolean retrieval model is a model for information retrieval in which we can pose any query in the

form of a Boolean expression of terms, i.e., in which terms are combined with the operators AND, OR,

and NOT. In Boolean models, documents and queries are represented as sets of terms and, by applying
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one or a combination of the logical operators, the model yields the documents that are pertinent to the

terms speci�ed in the query.

There are many possible ways to explore a document: the most intuitive would be a linear scanning

(grepping) of the entire document to retrieve the selected words. However, this is an extremely

expensive process, particularly for very long texts and complex queries. As a response to this issue, we

can resort to di�erent techniques. A possible solution would be to build a term-document matrix

(TDM). A TDM is a tabular representation used to capture the frequency or presence of terms across a

collection of documents. In this matrix each row represents a unique term from the corpus, while each

column corresponds to a document. The cell values indicate the frequency (or binary presence) of a

term in a document.

Let:

 be a corpus consisting of n documents: .

 be the vocabulary of unique terms in the corpus, consisting of m terms:  .

The TDM is an   matrix  , where:

Here,    is a function that quanti�es the association between term    and document  .

Common choices for   include:

1. Term Frequency (TF):  .

2. Binary Representation: 

3. TF-IDF (Term Frequency-Inverse Document Frequency):

.

As an example, consider a corpus with    and vocabulary 

:

The term-document matrix   with term frequencies is:

C , , … ,D1 D2 Dn

V , , … ,t1 t2 tm

m × n A = [ ]aij

= {aij
f( , )ti Dj

0
if term~ ~occurs in document~ ,ti Dj

otherwise.

f( , )ti Dj ti Dj

f( , )ti Dj

f( , ) = Count of~ ~in~ti Dj ti Dj

f( , ) = 1~if~ ~appears in~ ; 0~otherwise.ti Dj ti Dj

f( , ) = TF-IDF score of~ ~in~ti Dj ti Dj

C = { , , }D1 D2 D3

V = {"apple", "banana", "orange"}

= "apple banana apple"D1

= ''banana orange''D2

= ''orange apple orange''D3

A
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By transforming a corpus of documents into a matrix, algebraic techniques can be leveraged to

analyze them more e�ciently; moreover, in a real-world corpus the matrix will likely be sparse,

enhancing even more computational e�ciency.

Another very common method to index documents is the inverted index that provides signi�cant

advantages over TDM in terms of space e�ciency, query processing speed, support for complex

queries, ease of updates, and scalability, making it the preferred data structure choice for modern

information retrieval systems.

The inverted index maps each term    to a set of document identi�ers and, optionally, the

positions where the term appears. Formally, the inverted index is de�ned as:

where   is the index of a document   in   and   is the set of positions where the term   appears in

document  .

If we consider the same corpus   and vocabulary   of the previous example:

The inverted index for this corpus is:

Here:

“apple” occurs in   at positions   and in   at position  .

“banana” occurs in   at position   and in   at position  .

“orange” occurs in   at position   and in   at positions  .

A =
⎡

⎣
⎢

2

1

0

0

1

1

1

0

2

⎤

⎦
⎥

∈ Vti

Index( ) = {(j, )|  occurs in  },ti Pij ti Dj

j Dj C Pij ti

Dj

C V

= ''apple banana apple''D1

= ''banana orange''D2

= ''orange apple orange''D3

Index(''apple'') = {(1, {1, 3}), (3, {2})}

Index(''banana'') = {(1, {2}), (2, {1})}

Index(''orange'') = {(2, {2}), (3, {1, 3})}

D1 {1, 3} D3 {2}

D1 {2} D2 {1}

D2 {2} D3 {1, 3}
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As we can see, while the TDM directly associates terms with numerical values in each document, the

inverted index reverses the structure, associating terms with the documents (and positions) they

occur in. This structure is also particularly useful for e�cient search queries, and is an extremely

common method for Web pages indexing.

2.1.1. Limitations of Boolean Query Models

Boolean query models, while foundational in traditional IR systems, have several notable limitations:

Rigidity of Queries: Boolean queries are often too rigid as they strictly match the speci�ed

keywords without considering their relevance or context within documents. As a result:

Documents containing all keywords are retrieved, regardless of the relationships or importance

of these terms in the document.

Relevant documents that use synonyms or paraphrased expressions might be missed.

Feast or Famine Problem: This issue arises when Boolean queries retrieve either too many

documents (feast) or none at all (famine). Speci�cally:

Broad queries result in an overwhelming number of results with little relevance.

Narrow queries exclude potentially relevant documents.

Incorporating proximity-based evaluation in inverted index structures can partially address this issue

by ranking documents based on the closeness of query terms.

Lack of Flexibility: Boolean models do not account for semantic similarity or linguistic variations,

such as:

Synonyms: For example, ”car” and ”automobile.”

Morphological Variations: For example, ”run” and ”running.”

Traditionally, this is addressed by expanding the query vocabulary using techniques such as thesauri

or stemming. However, these methods often fail to fully capture nuanced relationships.

Binary Results: Boolean models categorize documents as either:

Relevant (if they match the query precisely), or

Non-relevant (if they fail to match any part of the query).

This binary classi�cation does not allow for ranking documents based on their relevance. Advanced IR

systems often use ranking mechanisms like Term Frequency-Inverse Document Frequency (TF-IDF)
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or machine learning models to overcome this limitation.

2.2. Vector Space Models

The Vector Space Model (VSM) is another possible approach for representing and comparing text

data. In this model, both documents and queries are represented as vectors in a high-dimensional

space, where each dimension corresponds to a unique term in the vocabulary. The relevance of a

document to a query is determined by the similarity between their respective vectors.

Let:

 be a collection of   documents.

 be the vocabulary of unique terms in the corpus.

Each document   is represented as a vector:

where    is the weight of term    in document  . The term weights,  , play a crucial role in

determining the e�ectiveness of the VSM. Common approaches include:

1. Term Frequency (TF): Re�ects how often a term appears in a document.

2. TF-IDF (Term Frequency-Inverse Document Frequency): Balances term frequency with the

rarity of a term across the corpus.

where   is the document frequency of   (i.e., the number of documents that contain  ), and   is

the total number of documents in the corpus.

Finally, the relevance of a document to a query is computed using similarity measures. The most

widely used is cosine similarity, de�ned as:

where:

 is the dot product of the vectors,

C = { , , … , }D1 D2 Dn n

V = { , , … , }t1 t2 tm

Dj

= [ , , … , ],dj w1j w2j wmj

wij ti Dj wij

= TF( , ) = Count of   in  .wij ti Dj ti Dj

= TF( , ) × log( ),wij ti Dj
n

DF( )ti

DF( )ti ti ti n

CosineSimilarity( , q) = ,dj

⋅ qdj

∥ ∥∥q∥dj

⋅ qdj
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 and   are their magnitudes.

Intuitively, cosine similarity measures the angle between the vectors in a  -dimensional space, with

smaller angles indicating higher similarity between the document and the query.

2.3. Probabilistic Models

Finally, let’s discuss probabilistic models. Probabilistic models for information retrieval provide a

statistical framework to predict the likelihood that a document is relevant to a given query. These

models are grounded in probability theory and use the principle of uncertainty to handle the

variability and ambiguity inherent in natural language. The fundamental idea is to rank documents

based on their probability of relevance to a query.

2.3.1. The Probabilistic Relevance Model

The probabilistic relevance model (PRM) assumes that there exists an ideal set of relevant documents

for a query. The goal is to rank documents in order of their probability of belonging to this set. Given a

query    and a document  , the relevance score is calculated as the probability  ,

where   is a binary variable indicating relevance.

Using Bayes’ theorem:

Since   is constant for a given query, it can be omitted when ranking documents. This leads to the

ranking function:

To estimate  , PRM typically assumes independence between query terms:

For practical implementations, simplifying assumptions are made regarding the distribution of terms

in relevant and non-relevant documents.

∥ ∥dj ∥q∥

|V|

Q Dj P (R = 1 ∣ ,Q)Dj

R

P (R = 1 ∣ ,Q) = .Dj

P (Q ∣ ,R = 1) ⋅ P (R = 1 ∣ )Dj Dj

P (Q)

P (Q)

Score( ) ∝ P (Q ∣ ,R = 1) ⋅ P (R = 1 ∣ ).Dj Dj Dj

P (Q ∣ ,R = 1)Dj

P (Q ∣ ,R = 1) = P (t ∣ ,R = 1).Dj ∏
t∈Q

Dj

qeios.com doi.org/10.32388/L03NWT 8

https://www.qeios.com/
https://doi.org/10.32388/L03NWT


2.3.2. BM25 and Term Weighting

As an example of a probabilistic model, let’s analyse the BM25 algorithm[5]. Building on the

probabilistic relevance model, BM25 introduces a ranking function widely used in modern IR systems.

BM25 addresses two important aspects:

1. Term Frequency Saturation: Unlike TF-IDF, where term frequency increases linearly, BM25

applies a saturation function to limit the impact of very frequent terms.

2. Document Length Normalization: Longer documents are penalized to prevent arti�cially high

scores due to term occurrences.

The BM25 score for a document   and query   is given by:

where:

 is the inverse document frequency of term  .

 is the term frequency of   in document  .

  and    are tuning parameters controlling term frequency saturation and document length

normalization.

 is the length of document  , and avglen is the average document length in the collection.

2.4. Document and Word Embeddings

While traditional VSM represent documents and queries as sparse vectors based on raw term

frequencies or TF-IDF weights, this approach often fails to capture semantic relationships between

terms. To address this limitation, modern information retrieval systems increasingly rely on

embeddings, dense vector representations that encode semantic meaning in a continuous, low-

dimensional space.

2.4.1. Word Embeddings

Word embeddings are dense vector representations of words, where semantically similar words are

mapped to nearby points in the embedding space. These embeddings are typically learned using neural

Dj Q

BM25( ,Q) = IDF(t) ⋅ ,Dj ∑
t∈Q

TF(t, ) ⋅ ( + 1)Dj k1

TF(t, ) + ⋅ (1 − b + b ⋅ )Dj k1
len( )Dj

avglen

IDF(t) t

TF(t, )Dj t Dj

k1 b

len( )Dj Dj

qeios.com doi.org/10.32388/L03NWT 9

https://www.qeios.com/
https://doi.org/10.32388/L03NWT


network-based models trained on large corpora of text. Popular methods for generating word

embeddings include:

1. Word2Vec[13]: Uses a shallow neural network to generate embeddings via two main approaches:

Continuous Bag of Words (CBOW): Predicts a word given its surrounding context.

Skip-gram: Predicts the context words given a target word.

2. GloVe (Global Vectors for Word Representation)[14]: Combines global word co-occurrence

statistics with local context to produce embeddings.

3. FastText[15]: Extends Word2Vec by representing words as a collection of character n-grams,

allowing better handling of out-of-vocabulary words and morphological variations.

In these models, each word   is represented as a vector   in a continuous space, such that the cosine

similarity between two vectors approximates the semantic similarity of the corresponding words. For

example:

2.4.2. Document Embeddings

While word embeddings capture semantic relationships at the word level, document embeddings

provide vector representations for entire documents. These embeddings aggregate information from

individual word embeddings or sentences to capture the overall semantic content of a document.

Techniques for generating document embeddings include:

1. Averaging Word Embeddings: A simple approach where a document embedding is computed as

the mean of its constituent word embeddings. While computationally e�cient, this method may

fail to capture complex relationships and context.

2. Doc2Vec[16]: Extends Word2Vec by introducing document-speci�c vectors. Two main

approaches are used:

Distributed Memory (DM): Learns document vectors by predicting words based on the

document vector and surrounding word vectors.

Distributed Bag of Words (DBOW): Learns document vectors by predicting document-speci�c

words without using context.

3. Transformers: Pretrained language models like BERT[6], T5[7], and GPT[8]  produce powerful

contextual embeddings for documents. These models encode documents using self-attention

wi vi

CosineSimilarity( , ) > CosineSimilarity( , ).vking vqueen vking vcar
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mechanisms, enabling them to capture intricate relationships between words and phrases. For

document retrieval, embeddings are typically generated by taking the output of a special token,

such as [CLS] in BERT, or by pooling the output embeddings of all tokens.

Overall, document and word embeddings have revolutionized information retrieval by enabling

semantic understanding and improving retrieval accuracy. They have been deployed in many tasks,

such as:

Semantic Search: Embeddings allow IR systems to retrieve documents that are semantically related

to the query, even if they do not share exact terms. For example, a query about ”french fries” could

retrieve documents about french fries but also about semantically related concepts, such as

”cheeseburgers” or other forms of fries; however, it should not suggest other ”french” items, that

are semantically unrelated to the query.

Ranking and Similarity Scoring: Dense embeddings enable more accurate scoring of document-

query relevance, leveraging metrics such as cosine similarity or neural network-based ranking

models.

Clustering and Classi�cation: Embeddings facilitate document clustering and topic modeling,

grouping semantically similar documents together.

A geometrical representation of the semantic space allows automated systems to have a deeper

understanding of the textual context, improving their performances and the user-experience.

2.5. Large Language Models

Large language models (LLMs) are the meeting point of vector space models and deep neural

networks. As we can see in Fig.  1, during the last years they gained a huge momentum, becoming

progressively more complex as they get more embedded in our daily lives. They are indeed advanced

neural networks designed to process and generate human-like text by learning from large-scale

datasets and leveraging sophisticated architectures such as transformers. The central concept behind

these models is their ability to represent and manipulate information in a high-dimensional

parameter space, denoted mathematically as  , where    is the number of parameters. These

parameters, which can number in the hundreds of billions, encode the weights and biases of the

neural network, allowing it to model complex patterns in natural language.

θ ∈ R
d d
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Figure 1.Left: interest in time of the queries machine learning and llm on Google. We can see how LLMs gain

momentum and approach the level of the machine learning query over time. Right: the evolutionary tree of

LLMs[17].

LLMs, just as any other supervised deep learning model, undergo an initial training phase, and a

second phase of �ne tuning. As Google puts it in its Introduction to LLMs[18], these phases can be

intuitively visualised as the steps required to train a special-service dog, as in Fig. 2. At a �rst stage, it

will be necessary to teach the dogs the basics such as sitting, staying, or responding to commands—

skills that are broadly applicable and form the foundation of their training. This is analogous to the

initial training phase of LLMs, where the model learns general patterns and structures of language

from vast datasets.

In the second phase, �ne-tuning, the focus shifts to teaching the dog speci�c tasks, such as guiding a

visually impaired person or detecting medical conditions. Similarly, �ne-tuning an LLM involves

specializing the model for particular applications, such as answering domain-speci�c questions or

generating content tailored to a speci�c audience.

qeios.com doi.org/10.32388/L03NWT 12

https://www.qeios.com/
https://doi.org/10.32388/L03NWT


Figure 2. An intuitive comparison between the steps required to train a special-

service dog and the training and �ne-tuning phases of a LLM[18].

2.5.1. Training Phase

The training phase optimizes the model parameters    to minimize a loss function  , typically

de�ned over a large corpus of text. For example, in autoregressive models such as GPT, the objective is

to maximize the probability of the next token    given the previous tokens  . This is

expressed as:

where   is the total number of tokens in the dataset. The probability   is typically

computed using the transformer architecture[19], which employs multi-head self-attention

mechanisms:

where  ,  , and   are query, key, and value matrices derived from input embeddings, and   is the

dimensionality of keys. The stacked layers of the transformer allow the model to capture both local

and global dependencies throughout the sequence.

θ L(θ)

ti , , … ,t1 t2 ti−1

L(θ) = − log ( | , , … , ),∑
i=1

N

Pθ ti t1 t2 ti−1

N ( | , , . . . , )Pθ ti t1 t2 ti−1

Attention(Q,K,V ) = softmax( )V ,
QK⊤

dk
−−

√

Q K V dk
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2.5.2. Fine-Tuning Phase

After pretraining, the model can be �ne-tuned for speci�c tasks. This involves further updating 

  using a smaller domain-speci�c dataset  . For example, in supervised �ne-tuning, the loss

function is modi�ed to re�ect the task-speci�c objective:

where   and   are input-output pairs (e.g., questions and answers). Techniques such as Reinforcement

Learning with Human Feedback (RLHF)[20] re�ne the model by optimizing rewards   derived from

human preferences.

2.5.3. Early and Modern LLMs

The evolution of LLMs began with models such as OpenAI’s GPT[21], which introduced unsupervised

pre-training in large corpora followed by �ne-tuning. GPT-2[8] scaled this approach with 1.5 billion

parameters, while GPT-3[22]  expanded to 175 billion parameters, allowing for learning with a few

shots. These advances rely on e�cient parallelization strategies, such as model and data parallelism,

to handle the immense computational demands.

Modern models like GPT-4 and Google’s PaLM 2[23]  push the boundaries further, incorporating

architectural re�nements and enhanced training techniques. For example, these models often employ

techniques such as dropout regularization, layer normalization, and adaptive learning rate schedules

to stabilize training and improve generalization. The size of these models is often measured in

scienti�c notation, with parameter counts reaching   or greater.

3. (De)-Indexing and implications on RTBF

Having established a basic technical background on Information Retrieval models, we can now wrap

them up and relate them to the issue of content indexing (and de-indexing) from the Web. As we saw,

the emergence of neural embeddings has brought signi�cant advancements in the �eld of information

retrieval, particularly in how documents are represented, retrieved, and analyzed. Unlike traditional

models such as bag-of-words, which reduce documents to unordered collections of word frequencies

and fail to capture contextual or semantic meaning, neural embeddings provide a robust

representation of documents within a continuous vector space. This shift enables IR systems to better

θ Dtask

(θ) = − log (y|x),Ltask ∑
(x,y)∈Dtask

Pθ

x y

R(θ)

1011

qeios.com doi.org/10.32388/L03NWT 14

https://www.qeios.com/
https://doi.org/10.32388/L03NWT


understand the content and context of documents, unlocking new possibilities for semantic retrieval

and analysis.

Document embeddings encode the meaning and relationships of words and phrases, allowing for a

deeper and more nuanced representation of textual content. By projecting documents into high-

dimensional spaces, embeddings capture semantic similarities that are not easily discernible using

keyword-based approaches. This capability is particularly valuable in overcoming the limitations of

traditional IR techniques, which often rely on exact keyword matching and struggle with synonyms,

paraphrasing, or variations in language. For example, using document embeddings, a query about

“renewable energy sources” can retrieve documents discussing “solar power” or “wind energy,” even

if the precise terms in the query are absent from the documents.

Another major advantage of document embeddings lies in their ability to compute semantic similarity

between documents by leveraging distance metrics, such as cosine similarity, in the embedding space,

as we previously described. Such a mechanism enables the retrieval of documents that are

semantically related, even when their keywords di�er or are arranged in a nonmatching order. For

example, two documents discussing the same topic but expressed in unique ways can still be identi�ed

as closely related in the embedding space, greatly improving retrieval accuracy and relevance.

Furthermore, neural embeddings exhibit impressive generalization capabilities, particularly when

trained on large corpora. These models can e�ectively apply learned semantic relationships to new,

unseen documents, making them highly scalable for dynamic and ever-growing text collections such

as those found on the Web. This scalability ensures that IR systems can keep pace with the rapid

evolution of content, providing consistent performance and broad coverage even as new topics

emerge.

However, as it often happens, there is no such thing as a free lunch. Controlling and managing the

visibility of information on the Web is a complex task. Completely removing a document is often

technically unfeasible, requiring interventions such as DNS modi�cations or low-level routing policy

changes, which can be circumvented. A more practical solution involves de-indexing speci�c

documents from major search engines. This approach does not physically remove content from the

Web; instead, it reduces the visibility of the targeted documents and disrupts their contextual

relationships in the embedding space. For instance, let’s consider the case of an individual (Mr. John

Smith) who decided to exercise his RTBF by asking major search engines providers to de-index the

content related to a court case in which he was involved. Speci�cally, he will request to take down all
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the documents that are linking him to the matter of the discussion, that we will indicate by the token

”X”. If documents linking ”Smith” and ”X” are de-indexed, their semantic association weakens; on

the other hand, however, other associations, such as between ”Smith” and another token ”Y”, may

grow stronger. This dynamic adjustment of relationships in the embedding space has profound

implications for how information is represented and retrieved: we don’t know if the new association

with ”Y” is, according to Mr. Smith, more or less desirable, and it is not easy to predict the

consequences that such an operation can have on the embedding space at a larger scale. There are

already cases that are, apparently, related to cases of removal of information of individuals from

LLMs. A recent example is the case of David Mayer, a prompt that causes ChatGPT to output an error

message without any further explanation1. The glitch led to various theories among users, including

concerns about privacy and the right to be forgotten. Some speculated that David Mayer himself might

have requested his information be removed from ChatGPT’s responses, though this was later labeled

by Open AI as a misunderstanding of the technical issue at hand2. Even though this case might not be

related to the speci�c issue of knowledge removal, it highlights how software houses should adopt

sophisticated methods to approach the issue, because hard-coded, a-posteriori patches could cause

communication issues among the user base.

These considerations inevitably impact forgetfulness and RTBF, having implications on individuals

and on collective memory. There are several studies that explored, from an empirical and mathematical

point of view, the dynamics of collective memory and attention. For instance, in[24]  the authors

di�erentiate between communicative and cultural memory, testing a bi-exponential decay function for

attention across various cultural domains, implying that the initial collective attention (re�ecting

communicative memory) decreases rapidly, followed by a slower decline (re�ecting cultural memory).

An empirical approach to this topic could indeed be useful to quantify the impact that these new forms

of information retrieval, such as LLM-based search engines, can have on collective memory and RTBF.

While there are clear positive aspects, such as a quick and (hopefully) accurate retrieval and sharing of

information, that are dynamically contextualized based on user interactions, there are also negatives.

Many of them are common also to other modern forms of information retrieval, such as the over-

reliance on the speci�c technology, or a homogenization of knowledge that can happen if LLMs tend

to prioritize popular or widely accepted narratives while sidelining minority perspectives. What’s new,

instead, is the deep complexity of the dynamics of machine forgetting, that could go both ways: either

in an inadvertent forgetting of knowledge (which is partly what happens in the above mentioned
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homogenization process) or in the impossibility of complete forgetting, due to the deep entanglement

of concepts in the embedding space.

Forgetfulness as a problem of machine unlearning

As opposed to a-posteriori de-indexing, we can de�ne the problem of machine unlearning. Machine

unlearning refers to the process of selectively removing the in�uence of speci�c training data points

from an already trained machine learning model. The goal of machine unlearning is to enable a model

to behave as if it had never encountered certain data, thereby addressing privacy concerns and

enhancing model adaptability. An interesting Stanford AI Lab report[25] summarizes the past, present

and future prospects of machine unlearning, describing di�erent approaches that allow for the

removal of irrelevant or outdated information, helping models maintain their performance over time.

While it is not a trivial task, it becomes even more challenging within the context of deep learning

models and LLMs. Indeed it has been shown how they tend to retain knowledge even after attempts at

unlearning, complicating e�orts to remove harmful or unwanted capabilities instilled during

pretraining[26][27].

In this context, Retrieval-Augmented Generation (RAG)[28]  emerges as a potential approach for

balancing the bene�ts of neural embeddings with the need for greater interpretability and control.

RAG systems combine the strengths of semantic retrieval and generative models, enabling them to

deliver accurate, context-aware responses while mitigating some of the risks associated with opaque

embedding spaces. By integrating retrieval and generation into a uni�ed framework, RAG o�ers a

pathway to enhance the precision and relevance of IR systems while maintaining a degree of oversight

and adaptability. Given its characteristics, RAG is being explored as a potential solution that allows for

simulated forgetting without direct interaction with the model itself[29][30]. This approach addresses

some of the signi�cant limitations of traditional LLMs, such as their tendency to produce inaccurate

or outdated information, commonly referred to as ”hallucinations”. By leveraging external data

sources, RAG enables models to generate more accurate and contextually relevant outputs. In general,

a RAG framework consists of several interconnected components that work together to retrieve

relevant information and generate responses:

User Query Input: The process begins when a user submits a query. This input is projected into an

LLM embedding space to capture the semantic meaning of the query.

Retrieval System:
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Document Retrieval: The retrieval system scans external knowledge bases (e.g., databases or

document collections) to fetch relevant text chunks. This can involve traditional keyword-based

methods (sparse retrieval) or modern dense retrieval techniques that utilize embeddings for

similarity search.

Ranking and Filtering: After retrieving potential documents, the system ranks them based on

relevance, typically selecting the top N documents for further processing.

Contextual Embedding Generation: Each retrieved document is also converted into an embedding

to ensure that the generative model can e�ectively incorporate this information during response

generation.

Fusion Mechanism: The retrieved documents are fused with the original query through either early

or late fusion methods. In early fusion, both the query and documents are fed into the generative

model simultaneously; in late fusion, retrieved documents re�ne the model’s output after initial

generation[31].

Response Generation: The LLM generates a coherent response based on the augmented input,

leveraging both its pre-existing knowledge and the newly retrieved information.

A RAG-based framework can facilitate machine unlearning in several ways, for example by updating

in real-time the knowledge base without retraining the entire model. When speci�c data points need

to be forgotten, they can be removed from the external knowledge base. This action e�ectively

simulates unlearning by ensuring that future queries do not retrieve or rely on this data. By managing

an external knowledge base, RAG supports continuous learning while enabling selective forgetting of

harmful or outdated information. RAG’s reliance on an external retrieval system allows for more

e�cient updates, where only the knowledge base needs to be modi�ed rather than the model itself.

These technical considerations intersect with critical ethical and governance questions. The power to

decide which documents are de-indexed, and thus rendered less visible, lies predominantly with a few

dominant actors in the IR ecosystem, even though it is regulated to di�erent extents by central

authorities. This concentration of in�uence could raise concerns about transparency, accountability,

and the potential for abuse. Additionally, the training phase of neural embeddings plays a decisive role

in shaping the semantic relationships encoded in the embedding space. However, as we described, this

phase is inherently opaque, making it challenging to ensure fairness in the resulting IR systems.

As also many authoritative sources envision[32], it is very likely that, considering its interesting

technical challenges and its crucial and multi-faceted implications on society, forgetfulness will be a
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prominent research topic in computer science and, more broadly, in AI-related research in the

upcoming years.
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Footnotes

1 https://shorturl.at/nisj8

2 https://shorturl.at/KREbP
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