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Animating virtual characters with holistic co-speech gestures is a challenging but critical task.

Previous systems have primarily focused on the weak correlation between audio and gestures, leading

to physically unnatural outcomes that degrade the user experience. To address this problem, we

introduce HoleGest, a novel neural network framework based on decoupled diffusion and motion

priors for the automatic generation of high-quality, expressive co-speech gestures. Our system

leverages large-scale human motion datasets to learn a robust prior with low audio dependency and

high motion reliance, enabling stable global motion and detailed finger movements. To improve the

generation efficiency of diffusion-based models, we integrate implicit joint constraints with explicit

geometric and conditional constraints, capturing complex motion distributions between large strides.

This integration significantly enhances generation speed while maintaining high-quality motion.

Furthermore, we design a shared embedding space for gesture-transcription text alignment, enabling

the generation of semantically correct gesture actions. Extensive experiments and user feedback

demonstrate the effectiveness and potential applications of our model, with our method achieving a

level of realism close to the ground truth, providing an immersive user experience. Our code, model,

and demo are are available at https://cyk990422.github.io/HoloGest.github.io/.
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Figure 1. A comparison of three methods: DSG, a diffusion-based co-speech gesture generation method using

DDPM (stiff limbs, slow inference, physically unnatural); EMAGE, an autoregressive generation method using

VAE (motion artifacts, global flipping, physically unnatural); and our proposed generation method (rich

movements, lively fingers, physically natural). The transition from past frames to the current frame (every 10

frames) is represented by the gradient in virtual human color, from light to dark.

1. Introduction

Animating virtual characters with holistic co-speech gestures is a challenging but critical task in various

fields such as entertainment, education, and telecommunication. These gestures play a vital role in

enhancing the naturalness and appeal of virtual characters, as they convey non-verbal information and

improve the overall communication experience. However, generating holistic co-speech gestures that

accurately represent the complex interplay between audio and body motion remains a challenging task,

primarily due to the weak correlation between audio and both global motion trajectory and finger

movements. This weak correlation often leads to physically unnatural outcomes, such as jittering in the

global motion trajectory and poor expressiveness of finger motions, significantly reducing the effect of

virtual characters.

Previous co-speech gesture generation methods can be divided into two categories: VAE-based or VQ-

VAE-based generation systems[1][2]  and diffusion-based generation systems[3][4]. The former maps

weakly correlated gesture-audio pairs to a low-dimensional latent space and learns a continuous

probability distribution, from which new latent vectors are sampled and decoded to obtain co-speech

gestures. However, due to the VAE’s reconstruction loss[5] based on joint-level errors and the ambiguity in

the latent space, the generated gestures often appear overly smooth or unnatural. In contrast, diffusion-

based methods model gesture generation as a gradual diffusion process, where the mapping relationship
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between audio and gestures is gradually established through a series of noise diffusion steps. Compared

to VAE, this method can generate gesture sequences with rich details while maintaining audio synchrony.

However, the high computational density and the resulting time cost limit the further development of

diffusion methods. Furthermore, both approaches lack consideration of prior knowledge in motion,

focusing only on the weakly correlated mapping between audio and upper-body gestures, and neglecting

the physical laws of overall movement, such as continuity, stability, and rationality. Therefore, the

generated holistic gestures may exhibit unnatural sliding, hovering phenomena, and monotonous finger

movement, leading to a lack of overall naturalness and expressiveness, as shown in Figure 1.

To address these challenges, we introduce HoloGest, a novel diffusion-based framework for

automatically synthesizing high-fidelity holistic co-speech gesture sequences from audio. Our system

posits that in holistic co-speech gestures, limb movements are correlated with audio, global trajectories

are related to limbs and independent of audio, and fingers are associated with both arm movements and

audio information. Based on this, we learn a global trajectory diffusion generative prior model guided by

limb movements on a large-scale human motion dataset. Simultaneously, we learn a finger diffusion

generative prior model guided by the arms on a mixed sign language and gesture dataset, leaving audio

and semantic features blank for subsequent fine-tuning. The former provides our system with strong

locomotion prior, overcoming long-standing issues of unnatural sliding and jittering, while the latter

offers more diverse finger movements, assisting in generating more vivid and high-fidelity gesture

results.

Unlike previous methods that model the denoising process of the whole body as a single distribution, our

system decouples the upper limbs, lower body, and fingers into three smaller and simpler subproblems,

breaking down holistic co-speech gestures. During the denoising process, each sub-model focuses more

on the distribution of specific body parts, thereby improving the generation quality of each part.

However, the parallel diffusion denoising processes for the three parts further reduce the generation

efficiency. To break free from this constraint, we employ a semi-implicit constraint[6], modeling large-

stride complex multimodal distributions between adjacent denoising steps to significantly reduce the

required number of denoising steps, thus achieving acceleration.

Predicting gestures from speech is a challenging multimodal mapping task. A single speech segment can

correspond to multiple gestures, making the association between the semantics intended to be conveyed

in speech and gestures non-intuitive. Our system adopts the JEPA strategy[7][8] to learn a gesture-speech

joint embedding space. We first introduce wav2vec2[9] for text transcription, then extract textual features
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and map them with gestures to a shared low-dimensional space based on a variational autoencoder.

Finally, we introduce a predictor layer to further extract semantic features, aligning these abstract

semantic features with the low-dimensional latent variables of gestures in this space. This approach

maintains semantic alignment while generating natural gestures closely related to speech.

To demonstrate the inspirational value of motion priors in our system for the human motion generation

domain, we further fine-tune our framework on the music-to-dance task, addressing the physical

naturalness of generated results and showcasing its powerful generalization capabilities. To the best of

our knowledge, our system represents the first audio-whole body gesture generation model considering

motion priors, capable of generating high-fidelity, diverse, and physically natural holistic co-speech

gesture sequences based on arbitrary user-provided audio (speech or music). We showcase our approach

on multiple publicly available audio-motion datasets, and extensive experimental results indicate that,

compared to VAE systems, our method generates more diverse and higher-quality results, while

maintaining the naturalness of overall motion compared to diffusion systems, significantly reducing

time costs and providing users with a novel experience. The importance of algorithmic design is also

validated through ablation experiments.

2. Related Work

Audio-to-motion Generation. Initial data-driven methods ([2][10]) aimed to learn gesture matching from

human demonstrations but lacked diversity. With the increasing interest in these action reconstruction

methods[11][12][13], the training datasets have gradually become more abundant. Subsequent works ([10]

[14][15][16][17]) improved model diversity and introduced unique, expressive gestures. Some studies ([18][19]

[20]) trained unified models for multiple speakers, embedding styles or applying style transfer

techniques. Other research ([21][22]) utilized motion matching for gesture sequences, despite requiring

complex rules. Audio-driven animation has gained attention, with virtual speaker animation

advancements attributed to high-quality gesture datasets ZeroEGGs[23] and BEATX[24]. Talkshow[14] and

EMAGE[24]  improved user experience by incorporating facial and expression parameters in virtual

speaker generation. However, these methods face unnatural holistic gesture issues, and models lacking

human motion knowledge struggle with physical problems like jittering, foot sliding, and floating,

hindering the field’s development. Some works are limited to the human upper body. HoloGest

innovatively introduces a motion prior model to address these physical unnatural problems in gesture

generation, providing a more engaging user experience.
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Diffusion Generative Models have achieved remarkable results across various domains[25][26][27][28][29],

especially in human motion generation. Motion Diffuse[30]  first applied diffusion models to text-

conditioned human motion generation, offering fine-grained control of body parts. MDM[31]  is a

milestone work using a motion diffusion model to manipulate motion representation based on input text

control conditions. DSG[32] generates well-matched results with speech using an attention mechanism.

However, due to the high dimensionality and interactivity of diffusion models, motion generation based

on the original diffusion model DDPM[33] suffers from time overhead. MLD[26] introduces latent diffusion

to motion generation, reducing computational resources and employing DDIM[34]  to enhance inference

speed. Nevertheless, this two-stage method is non-end-to-end, and DDIM’s noise step stacking and

denoising step discarding result in artifacts. HoloGest addresses these issues by being the first method in

gesture generation to use GAN[35]  for accelerating diffusion model inference speed. By increasing

denoising step size and reducing denoising steps, it maintains high-quality diffusion model advantages

while enabling rapid generation.

3. Method

3.1. System Overview

Our system synthesizes vivid, physically natural, and holistic co-speech gestures using only audio input.

It is built on the human motion diffusion model (MDM) framework, employing the Diffusion Model to

model adjacent denoising step distributions and supervising human geometric constraints for motion

quality. The system structure, shown in Figure  2, comprises two core components: (a) an end-to-end

decoupled diffusion generative model that accepts audio input and denoises human joint sequences in

parallel, and (b) a motion prior optimizer pre-trained on a large-scale human dataset, re-optimizing

global motion and finger actions based on generated joint cues for natural and vivid virtual speakers. We

also transcribe text and utilize the JEPA[36] strategy to extract semantic cues, enhancing result richness.

To address DDPM denoising inefficiency, a semi-implicit denoising process is introduced for faster

generation. In subsequent sections, we detail the system’s key components.

qeios.com doi.org/10.32388/L4S0VW 5

https://www.qeios.com/
https://doi.org/10.32388/L4S0VW


Figure 2. Our system comprises a semantic alignment module and two core components: (a) The semantic

alignment module maps both the transcribed text and gesture sequence into the latent space simultaneously,

further abstracting the semantic latent variables and aligning them with the gesture latent variables in a

higher-level abstract space, serving as independent guiding tokens. (b) The semi-implicit decoupled denoiser,

by introducing GAN and semi-implicit constraints, models the complex denoising distribution between

adjacent large strides, accelerating generation by reducing the number of steps. (c) The motion prior

optimization takes the denoised initial local gesture sequence as a condition, and in conjunction with the

audio guiding signal, generates global motion and finger actions for the second time. This system requires no

additional input and has no time constraints; any pure audio file can generate a set of vivid, natural, and high-

quality holistic co-speech gesture sequences. ’r2l’ represents converting the rotation representation to the

coordinate representation using the SMPL model.

3.2. Decoupled Diffusion Denoiser

Brief overview of MDM. Unlike traditional diffusion model-based methods, MDM[31]  considers the

inherent physical constraints of the three-dimensional human body by predicting the original human

motion representation instead of predicting noise, deviating from the DDPM process in conventional

image generation. Therefore, at each step of the denoising process, MDM reconstructs the original

representation from pure Gaussian noise, and ultimately generate the final result through the iterative

process of noise addition and denoising:
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where   is the control signal.

Decoupled Denoiser Structure. We construct our denoiser framework on MDM, tailoring it for the audio-

to-gesture task with conditions including noise step , seed pose, audio information, and semantic latent

code. The noise step and seed pose are projected to the same dimension via MLP and linear layers,

respectively, and subsequently added together. Audio is encoded using WavLM and time-dimension

interpolated to align with gesture frames.

Although the denoising probability model generates satisfactory gestures, finger motion differs from

limb motion. Limb movements exhibit larger amplitudes and correlate with melody, while finger

movements are smaller, more precise, and semantically matched. Holistic modeling prioritizes body data

matching over finger movements, reducing overall gesture expressiveness.

To address this, we decouple the human body into upper limbs, lower limbs, and fingers, denoising these

parts in parallel. However, the absence of global associations can result in unnatural motion, such as

sudden orientation flips. To alleviate this, we concatenate the three-part features and map them to an

independent conditional token, providing a global constraint for generating coherent results.

3.3. Semi-implicit Matching Constraint

We’ve improved the network structure for better results, but DDPM’s high computational complexity still

limits diffusion generative methods’ potential. This issue arises from DDPM’s assumption that small,

unimodal noise is added at each step, requiring many steps for denoising. Increasing noise step size

disrupts the Gaussian distribution, making a simple    loss inadequate for modeling complex motion

distribution and causing unnatural jittering.

To address this, we incorporate a GAN structure inspired by SiDDMs[6] as an implicit objective to learn the

denoiser. The GAN’s conditional discriminator differentiates between the predicted denoising and

original motion distributions, while the conditional denoiser aims to make them indistinguishable. The

process is described by equation (2).

By examining the implementation of equation (2), it is clear that, during the adversarial stage, the

method indirectly matches the conditional distribution by aligning with the joint distribution:

= ( |c), = + ,x̂0 ϵθt xt xt−1

1 − +αt−1 αt−1
− −−−

√ x̂0

1 − αt x̂0
σtzt (1)

c

L2

(q( | )|| ( | )),min
θ

max
Dadv

∑
t>0

Eq( )xt
Dadv xt−1 xt pθ xt−1 xt (2)
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However, adversarial training is a purely implicit matching process, typically used to constrain

distributions that cannot be explicitly represented. We consider using a simpler marginal distribution to

replace the joint distribution in equation (3). That is, we directly compute the posterior distribution, and

then use the forward process for adversarial learning to model the large-step denoising distribution. The

equation is represented as follows:

Although we have simplified the implicit matching process, making adversarial training more stable, we

have also encountered a new problem. Since the large-step denoising distribution is typically a complex

multimodal distribution, the posterior sampling    result still has a significant difference

from the forward sampling process, preventing our denoiser from successfully reversing from the pure

noise distribution to the original distribution. Based on this, we employ the regularization term,

Auxiliary Forward Diffusion Constraint (AFD), to explicitly constrain the similarity between the

backward sampling results and forward diffusion results at the same time step. Its expression is as

follows:

where    represents the mean of the forward process  , and    represents the

variance table within the interval (0,1]. All models are trained using the AdamW optimizer with a fixed

learning rate l. We apply EMA decay to the optimizer during the training process. The final training

objective is:

where   represents the reconstruction weight of the denoiser, and   represents the weight of the

regularization term.    represents the Mean Squared Error Loss between the denoised    and the

original data  .

(q( , )|| ( , )),min
θ

max
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Eq( )q( | )q( | )x0 xt−1 x0 xt xt−1
Dadv xt−1 xt pθ xt−1 xt (3)

[− log( ( , c, t))]min
θ
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Eq( )q( | )q( | )x0 xt−1 x0 xt xt−1
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+[− log(1 − ( , c, t))],D∅ x̂t−1

(4)
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3.4. Motion Prior Optimizer

Despite the semi-implicit decoupled denoiser’s ability to recover detailed and expressive gesture

sequences, the correlation between audio and motion remains weak. This results in issues like foot

sliding, jittering, and unnatural movements in previous methods. We believe the problem stems from the

fact that not all aspects of co-speech gestures depend on audio. For instance, trajectories may not be

related to audio beats but are closely connected to limb movements. To address these issues, we designed

a motion prior optimizer.

Trajectory Prior Optimizer. In our system, the trajectory is more closely linked to limb posture than to

audio. Therefore, we use limb posture as the guiding condition to recreate the global motion trajectory.

Thanks to large-scale public human motion datasets, our model can acquire extensive motion prior

knowledge. Taking a cue from GLAMR[37], we define the trajectory as a 9-dimensional parameter 

, where the last six dimensions represent global rotation and the first

three dimensions represent displacement increments along the   axes, ensuring smoother results.

The trajectory prior model continues to use the semi-implicit diffusion approach, with the 3D

coordinates of the 21 human joint parts (excluding the root joint) and the time step    as conditional

guidance. These are independently mapped to conditional tokens and input into the Transformer-

Encoder-based denoiser. The denoising process follows equation (6).

Finger Prior Optimizer. We’ve observed that finger movements guided solely by audio or semantic

signals often lack dynamism and expressiveness. We believe finger movements correlate with forearm

movements, such as a person pointing in a certain direction when raising their arm forward. Hence, we

train finger priors on large-scale sign language and gesture datasets. During finger prior training, the

guiding condition only uses the 6D rotation representation of the human forearm, leaving semantic and

audio features empty for subsequent fine-tuning. The finger results are denoised using equation (3).

When fine-tuning on the BEATX dataset, we incorporate the audio signal into the finger prior’s

conditional guidance and link the entire system together for fine-tuning. During inference, the motion

prior model serves as an optimizer, using the body generated by the semi-implicit decoupled denoiser as

a condition, and generates the global trajectory and finger rotations as the final output.

G = (Δx, Δy, Δz, rot6d ∈ )R
6

XY Z

t
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3.5. Semantic Alignment

The existence of many-to-many mapping relationships between audio content and gesture sequences

poses a significant challenge for generating semantically aligned actions accurately. To address this

issue, we learn a joint embedding space for gestures and audio transcriptions, allowing them to align in

an abstract space and reveal the semantic associations between the two modalities. Inspired by I-

JEPA[36], we initially train gesture and transcription encoders separately using a motion VAE structure

and a BERT tokenizer[38]. We parameterize the transcriptions as tokenized word embedding sequences

and linearly map them to a space with the same dimensions as the gesture latent codes  . Finally, we

introduce a Predictor to further abstract semantic features    from the latent space and fine-tune the

encoders using CLIP-style contrastive learning  . Both the motion VAE and Predictor structures

adopt the traditional Transformer architecture. The NT-Xent[39] loss is used in contrastive learning, with

the goal of maximizing the similarity of transcription-gesture matched pairs in the latent space while

minimizing the similarity of non-matched pairs. Formally, the loss function is as follows:

where,    and    are the latent space representations of a matching transcription-gesture pair.    is

similarity score between two latent codes,   is a set containing one positive sample transcription and a

group of negative sample gestures, and    is the temperature parameter used to adjust the sensitivity of

the function. Finally, we freeze the trained semantic alignment module and deploy only the transcription

encoder into the system, ensuring that the final generated results accurately capture the semantic

content.

4. Experiments

In this section, we evaluate the effectiveness of the proposed system in generating holistic co-speech

gestures from audio and compare it with contemporary holistic gesture generation methods to

demonstrate the superiority of our system. Ablation studies further validate the roles of essential

modules and design choices within the system. Generalization experiments showcase the potential value

and application prospects of our proposed method in this domain. Considering the subtle nature of

human gestures for evaluation, we conduct extensive user studies to substantiate the superior

xm

yt

D( , )xm yt

L(t,m) = − log ,
exp(sim( , )/τ)xt ym

exp(sim( , )/τ)∑k∈K xt ym
(7)

xt ym sim

K

τ
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performance of the proposed system. We strongly encourage readers to refer to the accompanying video for

additional qualitative evaluations and application results.

4.1. Experiment Design

Datasets. For the audio-independent global trajectory motion prior module, we train on the 100-

STYLE[40]  and AMASS[41]  datasets. Both are large-scale publicly available Mocap datasets, with the

former containing over 4 million frames of 100 different locomotion styles, and the latter being a large-

scale human motion dataset, both represented with 55 joints in SMPLX[42] format. The trajectory prior is

trained using all datasets. For the finger prior module associated with arm movements, we train on the

SignAvatars[43]  sign language dataset and the audio-removed BEATX[24]  dataset. The former contains

SMPLX representations of multiple sign language videos shared with us by the authors, and the latter is a

publicly available large-scale gesture dataset, uniformly represented in SMPLX format, containing 24

English speakers. When training the finger prior, we mix all speaker data and sign language data for

training. Finally, we train the audio-to-gesture model on the BEATX dataset, and during the fine-tuning

of fingers, we release the audio features and semantic alignment as additional guiding signals to generate

natural and rich finger movements. We evaluate the model’s effectiveness on the BEATX test set.

Evaluation Metrics. To evaluate the effectiveness of our proposed system, in addition to focusing on the

common Frechet Gesture Distance (FGD)[44], Beat Alignment (BA)[24], and Diversity (DIV)[1] metrics, we

also introduce physical naturalness evaluation metrics, including Skating (Skate)[45] and Floating (Float)

[46], and define a Semantic Alignment score (SA) to validate the performance of the semantic alignment

module. The first three are used to evaluate the quality of generated gestures: (1) FGD is a common metric

in generative models, used to evaluate the difference between the distribution of generated movements

and the original training distribution, providing insights into the fidelity and similarity between

generated data and real data. (2) BA is used to evaluate the synchronicity of speech and movement, with

higher values indicating better alignment with the audio beat. (3) DIV measures the L1 distance between

multiple body gestures generated under the same control signal, with larger values indicating greater

diversity.

To evaluate the physicality of holistic co-speech gestures, we use (4) Skate to quantify the displacement

distance of the virtual character’s toes when their feet are in contact with the ground (determined by

setting a toe acceleration threshold). This is crucial for the naturalness and authenticity of overall

motion, as realistic motion results can provide users with an immersive experience. (5) Float is used to
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assess the floating distance of the virtual character along the y-axis. We assume the ground level to be

the lowest point of the sequence plus 0.5 cm, and when the character has at least one foot in contact with

the ground, we calculate the distance between the toes and the ground to quantify the degree of floating.

To evaluate the semantic consistency between speech and generated gestures, we define a new metric

called Semantic Alignment (SA)[20]. It assesses the degree of semantic alignment by calculating the

similarity between the latent gesture representation in the low-dimensional space and the real text

representation in the abstract space. The calculation formula is as follows:

where G represents the gestures generated by the model, and S denotes the hidden states encoded by the

BERT[38] model after tokenizing the transcribed text, serving as a representation of the semantics.

Implementation Details. Our system was trained on PyTorch with a denoiser learning rate of 3e-5 and a

discriminator learning rate of 1.25e-4. The discriminator’s gradient penalty term was set to 0.02, in line

with DDGAN[47], and the CFG weight was set to 3.5. All models were trained on an A100 GPU for a uniform

1.3 million-step iteration, taking a total of 5 days. During evaluation, all methods were tested on a single

V100 GPU for fairness.

4.2. Comparison with Contemporary Methods

We present the quantitative results for speaker 2’s test sequences in the BEATX dataset using the audio-

to-gesture method in Table 1. The purpose is to provide a fair comparison with the values reported in the

original EMAGE paper. For a more comprehensive view of the quantitative experiments, we provide the

quantitative results for the entire dataset in parentheses. Our findings demonstrate that, in comparison

with diffusion-based methods such as DSG[32], FreeTalker[3], and DiffGesture[4], our approach

outperforms them in terms of gesture matching, even with a 20-fold reduction in denoising steps.

Moreover, our method surpasses VAE and VQ-VAE-based approaches like EMAGE[24], TalkShow[14], and

CAMN[1] in terms of beat alignment and diversity.

SA = cos(avg_pool( ( )), avg_pool( (S))),Vg Gpred Vs (8)
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Method

BEATX

FGD SA BA DIV steps

HA2G[2] 12.32 0.13 6.77 8.626 -

DisCo[48] 9.417 0.09 6.439 9.912 -

CaMN[1] 6.644 0.22 6.769 10.86 -

TalkShow[14] 6.209 0.22 6.947 13.47 -

EMAGE[24] 5.512(7.305) 0.17 7.724(7.709) 10.88(10.948) -

DiffGesture(re-train)[4] 12.8 0.07 7.08 11.30 1000

DSG(re-train)[32] 8.811(11.742) 0.08 7.241(7.3368) 11.49(11.121) 1000

FreeTalker(re-train)[3] 7.712 0.19 7.73 10.62 1000

HoloGest(Ours) 5.3407(6.457) 0.66 7.957(8.0281) 14.15(13.525) 50

Table 1. Objective metrics on BEATX. EMAGE provides the FGD evaluation model, where a lower value

indicates a closer approximation to the original motion distribution. The calculation methods for BA and DIV

are consistent with EMAGE. Steps represent the denoising steps in diffusion-based generation methods. The

values in parentheses represent the evaluation results for the entire BEATX dataset.

However, gesture evaluation is subtle, and the FGD metric only reflects the similarity between generated

results and the original distribution, not the actual effect of the virtual speaker or the trajectory and

global rotation of holistic co-speech gestures. While EMAGE has metrics close to our system, it lacks

prior knowledge of the entire motion sequence, leading to discord in its generated results, including

unnatural global flips and severe skating phenomena. Its fingers also lack rich movements due to the

absence of finger priors.

In contrast, our system, which introduces motion priors, generates reliable global movements without

affecting vivid gestures, provides stable locomotion without unnatural flips or severe arm jittering, and

offers users a more natural and harmonious experience. Table  2 presents the physical metrics and

semantic alignment scores, consistent with our observed phenomena.

↓ ↑ ↑ ↑
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Method

BEATX

FGD Skate Float SA

Real 1.7e-4 0.0866 8.8015 0.82

EMAGE 5.51 0.7904 34.6534 0.17

DSG 8.811 0.4192 22.7526 0.08

HoloGest(Ours) 5.34 0.1068 9.6317 0.66

Table 2. Objective Metrics. Skate represents the skating metric when in contact with the ground, with values

closer to Real being better. Float indicates the floating error during ground contact, with values closer to GT

being better.

4.3. Qualitative Comparison

We present the results generated by DSG, EMAGE, and HoloGest on the BEATX test set. As seen in

Figure  3, DSG’s gesture generation lacks expressiveness, showing little movement during flat speech,

resulting in a stiff appearance with unnatural phenomena like sliding and floating. The 1000-step DDPM

sampling strategy also leads to inefficient generation. EMAGE, using VAE for direct regression, is fast but

prone to motion artifacts and global flipping, affecting user experience.

↓ ↓ ↓ ↑
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Figure 3. A comparison of three methods: DSG, a diffusion-based co-speech gesture

generation method using DDPM (stiff limbs, slow inference, physically unnatural); EMAGE,

an autoregressive generation method using VAE (motion artifacts, global flipping, physically

unnatural); and our proposed generation method (rich movements, lively fingers, physically

natural). We test on a sequence of an English-speaking presenter selected from BEATX. Red

annotations indicate defects, while yellow annotations highlight advantages.

In contrast, our model achieves large strides with fewer denoising steps, enhancing generation speed

while maintaining high fidelity, making it suitable for real-time applications. The introduction of motion

priors improves global motion and physical naturalness. Thanks to the semantic alignment module in
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the abstract space, our method is highly expressive, with large, lively upper limb movements and natural,

rich lower limb movements. Our divide-and-conquer approach enhances the richness of finger

movements and the stability of global actions.

4.4. Ablation Study

To validate the importance of each module in the system, we compare various variants obtained from the

complete method:

Baseline, directly decouples three body parts: the upper body, lower body, and fingers, as three parallel

sub-models for denoising distribution modeling, while maintaining the DDPM denoising process,

using only audio features as guiding signals, as done in DSG.

+ SIDD, to alleviate the inefficiency in generation caused by body decoupling, we introduce a semi-

implicit denoising process that directly models the complex large-step denoising distribution,

achieving acceleration by reducing the number of denoising steps.

+ SA, by employing the JEPA strategy, we use semantic features that are aligned with the real gesture

sequences in the abstract space as additional guiding conditions, and independently conditionally

tokenize them, similar to what is done in locomotion.

+ Global, in order to establish connections between the decoupled parts, we associate the features of

the three parts and further map them to a single global token, serving as an additional global

perceptual information.

+ Prior, incorporate global trajectory motion priors and finger priors as pre-trained models for

secondary generation.
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Method

BEATX

steps

FGD Skate Float SA BA DIV

Real 1.7e - 4 0.0866 8.8015 0.91 - - -

DSG 8.811 0.4192 22.7526 0.08 7.241 11.49 1000

EMAGE 5.512 0.7904 34.6534 0.17 7.724 10.88 -

Baseline 7.718 0.3922 19.7831 0.20 7.432 12.83 1000

+ SIDD 7.016 0.5567 25.1263 0.22 7.135 14.12 50

+ SA 6.351 0.5239 17.6612 0.60 7.946 14.26 50

+ Global 5.86 0.3396 19.023 0.66 7.953 14.29 50

+ Prior 5.3407 0.1068 9.6317 0.66 7.957 14.15 50

Table 3. Ablation study results on the module design in the system.

Table 3 shows the ablation study results, with the complete system outperforming all ablation versions.

The diffusion generative model with only decoupled structure shows some improvement compared to

DSG but has a noticeable disadvantage in metrics compared to VAE-based methods. This is due to the lack

of connections between parts, causing uncoordinated overall gestures when directly merged. Introducing

global associations and semi-implicit denoising process alleviates this issue and improves generation

efficiency. The introduction of semantic alignment features significantly enhances the richness of

generated actions. Despite the improvements in metrics and gesture quality, the lack of global motion

prior knowledge still leads to physically unnatural factors like skating and global jitter, impacting user

experience. By introducing global trajectory priors and finger priors as pre-trained models for secondary

generation, we achieve physically plausible results and provide users with a better experience.

4.5. User Study

We used four human perceptual consistency scoring metrics as described in[49]. These metrics evaluate

human likeness (HL), speech-gesture appropriateness (SGA), gesture richness, and whole-body stability.

↓ ↓ ↓ ↑ ↑ ↑
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To assess our method’s visual performance, we conducted a user study on gesture sequences generated

by each method. Evaluation segments varied from 16 to 40 seconds in length, averaging 26.2 seconds. We

engaged 30 participants and used a scoring range of 1 to 5, with labels from ”poor” to ”excellent”. Table 5

shows the average user opinion scores. We compared the results generated by the original DSG, EMAGE,

our system without Prior, and the complete system. As per user feedback 4, our method generates high-

quality co-speech gesture sequences comparable to, or better than, real data, and does so faster than

traditional DDPM diffusion generative methods. Notably, our method takes only 0.88 seconds to generate

a 2-second gesture sequence, compared to approximately 7 seconds using 1000-step DDPM, making it

suitable for real-time applications like human-computer communication.

Method

BEATX

HL SGA R Stable

Real

DSG

EMAGE

HoloGest(Ours)

Table 4. 95% Confidence Interval for User Study Average Score.

5. Conclusions

In this study, we tackled challenges in generating holistic co-speech gestures. By innovating upon

diffusion-based methods with implicit marginal constraints and explicit auxiliary forward diffusion

regularization, our model enabled faster inference and mitigated generation speed inefficiencies.

Additionally, we considered motion prior and introduced a pre-trained model on extensive human

motion data, generating physically accurate gesture sequences and enhancing user experience. Our

approach significantly accelerated HoloGest’s generation while maintaining high fidelity, paving the way

for future real-time synchronous gesture generation tasks.

↑ ↑ ↑ ↑

4.61 ± 0.17 4.72 ± 0.20 4.66
± 0.07

4.89 ± 0.02

3.70 ± 0.12 3.91 ± 0.14 4.27
± 0.15

3.12 ± 0.12

3.44 ± 0.18 4.11 ± 0.14 3.56
± 0.09

2.87 ± 0.22

4.47 ± 0.09 4.51 ± 0.19 4.82
± 0.1

4.71 ± 0.11
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