Review of: "Focused ion beam nanolithography resources were mainly based on nanotechnology"

Miranda Jackson¹
1 Indiana University

Potential competing interests: No potential competing interests to declare.

Focused ion beam nanolithography resources were mainly based on nanotechnology due to its stability and ease of use, focused ion beam scanning on the surface of a material removes materials with the desired pattern and with high nanoscale accuracy, and for The conceptual design of focused ion beam nanolithography uses and integrates similar components: sources, extraction and acceleration, optics, scan coils, sample stage, electron detectors, etc. Interestingly, the focused ion beam nanolithography equipment provides the user with all imaging, nanostructural and analysis capabilities of both technologies in a single platform. For this reason, focused ion beam technology has become very popular for performing special tasks such as cross-sectional imaging, preparation of nanodevice layers, nanopatterning of materials, and circuit editing. Focused ion beam nanolithography is capable of directly removing materials without much use of resistors. As a direct nanolithography method, the number of processing steps is minimized compared to other methods. Focused ion beam nanolithography, as a sequential nanolithography technique, is inherently slow and its throughput is much lower than other techniques, and Ga⁺-based liquid metal ion source has become the most widespread type of source in focused ion beam nanolithography equipment. has been However, in recent years, new developments in sources such as gas field ion sources, plasma sources and metal alloy sources are the next step in terms of resolution or power. Since the ion-matter interaction is stronger than the electron-matter interaction, it can create harmful effects on the remaining material and change its physical and chemical properties. Important but key applications for focused ion beam nanolithography technology have been found in the semiconductor industry, in nanotechnology, and in materials science. And the deposition caused by focused ion beam nanolithography requires a gas injection system to produce a local deposition from a precursor material that is delivered in the form of gas, with precursor separation created by appropriate radiation in nanoelectrical devices. The main advantage of this technique is the selective growth of a material in the region of interest in one step. Due to the high resolution of the focused ion beam nanolithography technique, deposits can be grown with high lateral resolution, but with much less damage caused to the substrate due to the low linear motion of electrons compared to ions. In contrast, the growth rate and metal content of the deposits are generally used for focused ion beam nanolithography.

Note: Oligophenylene vanillin (silicon/germanium) structure nano wires and cylinders are used for possible applications in energy, electronics, optics and other fields.
Oligophenylene vanillin nanowires (Si Silicon / Germanium Gi), narrow structures whose diameter is only a few billionths of a meter but thousands or millions of times longer. They exist in various forms—made of metals, semiconductors, insulators, and organic compounds—and are used for applications in the fields of electronics, energy conversion, optics, and chemical sensing. Because of their extreme thinness, Oligophenylene vanillin nanowires with a (Si Silicon / Germanium Gi) structure are essentially one dimensional. Nanowires are quasi-one-dimensional materials, "their two dimensions are on the nanometer scale." This one-dimensionality confers distinct electrical and optical properties. For one thing, this means that the electrons and photons in these nanowires experience "confined quantum effects." However, unlike other materials that produce such quantum effects, such as quantum dots, the length of Oligophenylene vanillin nanowires allows them to communicate with other macroscopic devices and the outside world.

References


2. Martin Harisson. (2023). Review of: "vanillin nanowires by focused ion beam (FIB) nanolithography method (below 1 · · nm - 1 · · nm range)", Qeios. doi:10.32388/zhw4v2.


6. Amanda Rigsby. (2023). Review of: "Graphene in nMOS field-effect transistors is an excellent electrical conductor, and also has outstanding spintronic properties.", Qeios. doi:10.32388/7c60bv.


13. Salem Abukhalil. (2023). Review of: "The nano transistor is one of the most important nano electrical parts that has functions such as circuit amplification". Qeios. doi:10.32388/hkzyig.