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Abstract 

Electricity flows in circuits that bring us power and information. The current flow in 
circuits is defined by the Maxwell equations that are as exact and universal as any in science. 
The Maxwell-Ampere law defines the source of the magnetic field as a current. In a vacuum, like 
that between stars, there are no charges to carry that current. In a vacuum, the source of the 
magnetic field is the displacement current, 𝜀0 𝜕𝐄/𝜕𝑡. Inside matter, the source of the magnetic 
field is the flux of charge added to the displacement current. This total current obeys a version 
of Kirchhoff’s current law that is implied by the mathematics of the Maxwell equations, and 
therefore is as universal and exact as they are. Kirchhoff's laws provide a useful coarse graining 
of the Maxwell equations that avoids calculating the Coulombic interactions of 1023 charges yet 
provide sufficient information to design the integrated circuits of our computers. Kirchhoff's 
laws are exact, as well as coarse grained because they are a mathematical consequence of the 
Maxwell equations, without assumption or further physical content. In a series circuit, the 
coupling in Kirchhoff’s law makes the total current exactly equal everywhere at any time. The 
Maxwell equations provide just the forces needed to move atomic charges so the total currents 
in Kirchhoff’s law are equal for any mechanism of charge movement. Those movements couple 
processes for any physical mechanism of charge movement. In biology, Kirchhoff coupling is an 
important part of membrane transport and enzyme function. For example, it helps the 
membrane enzymes cytochrome c oxidase and ATP-synthase produce ATP, the biological store 
of chemical energy.  
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Introduction 

Electricity flows in circuits. Circuits bring us power and information. Kirchhoff’s law is 
used to analyze circuits more than anything else. Kirchhoff’s current law is used to deal with the 
50 or 60 Hz currents in our power systems. Kirchhoff’s law is usually justified by discussions of 
water flow and derivations are presented as low frequency, long time approximations.  

Kirchhoff’s law is also used, however, at high frequencies and short times. It is used to 
analyze bits of information in our computers of duration ~10−9  seconds [1-12] on a time scale 
where electric current flow is not like the flow of water. Something as important to our 
technology as Kirchhoff’s law should be derived and justified in a more reasonable way, in my 
view. 

A derivation of an extended Kirchhoff’s law valid under a wide range of conditions is easy 
with a small change in the definition of current [13-16] to include the displacement current 
𝜀0 𝜕𝐄 𝜕𝑡⁄  that might be called an aethereal current for historical reasons [17]. The discussion of 

this ‘whole current’ ([18] p. 176) or total current (𝐉𝒕𝒐𝒕𝒂𝒍  of our eq. (4) see [19]1) disappeared 
from textbooks ([20, 21] and innumerable successors) along with the aether itself for reasons 
that are hard to understand today. Of course, the displacement term 𝜀0 𝜕𝐄 𝜕𝑡⁄  has a practical 
significance today, when signals last 10−9 sec. It did not have that significance a century ago 
when it disappeared from textbooks as a component of Kirchhoff’s law. Telegraph signals lasted 
say 10−1seconds.  

𝜀0 𝜕𝐄 𝜕𝑡 ⁄  could not disappear, however, from the Maxwell equations themselves—
specifically the Maxwell Ampere law—if light is to propagate in a vacuum. The displacement 
current  𝜀0 𝜕𝐄 𝜕𝑡 ⁄  flows everywhere, even in the vacuum between stars, everywhere in the 
universe—whether an aetherial [22] or vacuum universe [23]—whether or not it is used in the 
derivation of Kirchhoff’s law in textbooks today. 

Despite this history, almost everyone today thinks of current as the flow 𝐉 of charge 
(with mass), just as the currents in our plumbing and in the ocean are the flow of mass. But 
current of this sort—of charge with mass—is not enough to explain electrodynamics, 
particularly in the vacuum between stars. Current flow 𝐉 of charge (with mass) is only part of the 
source term for the magnetic field, the right-hand side of the Maxwell Ampere law, eq. (2). 
Kirchhoff’s law for current flow 𝐉 of only this type is in fact incompatible with the Maxwell 
Ampere law, as we show later in this paper, near eq. (6). 

 

 
1Vol.1, Article §328, p. 377, eq. (3) defines the ‘total current’ and uses it, including the displacement current, in Ohm’s 
law, as I advocate here. Maxwell also used the phrase displacement current defined as 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡. 
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Theory and Methods 

Electrodynamics is universal. Electrodynamics successfully describes current in matter. It also 
describes light in the vacuum of space. Light cannot propagate between stars without a 
magnetic field and an electric field. Charges do not exist in a vacuum and so cannot flow in 
space between stars.  

The magnetic field in a vacuum is created by the right-hand side of the Maxwell-Ampere 
law. In a vacuum, the entire right-hand side of the Maxwell-Ampere law is the displacement 
term 𝜀0 𝜕𝐄 𝜕𝑡⁄ . The displacement current is the total current that flows in a vacuum to create 
electromagnetic radiation, including light. 

 
1

𝜇0
 𝐜𝐮𝐫𝐥 𝐁 = 𝐉 + 𝜀0𝜕𝐄/𝜕𝑡;       𝐉 is zero in a vacuum (1) 

𝐉 is the flux of charge with mass, however brief, small, or transient. 𝐉 includes the 
polarization charge of dielectrics and charge movements driven by diffusion, convection and 
other forces [24], including chemical reactions [25, 26].  

Ampere’s law (as generalized in the Maxwell equations) implies a natural definition of 
total current 𝐉𝒕𝒐𝒕𝒂𝒍 as the source of 𝐜𝐮𝐫𝐥 𝐁. 

 1

𝜇0
 𝐜𝐮𝐫𝐥 𝐁 = 𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄ ;       𝐉 is zero in a vacuum (2) 

𝐉𝒕𝒐𝒕𝒂𝒍 is the source of 𝐁 because 𝐝𝐢𝐯 𝐁 = 𝟎. 𝐉𝒕𝒐𝒕𝒂𝒍 is a “perfect[ly] incompressible fluid” in 
Kirchhoff’s law eq. (5), as was well understood long ago [27], p. 107. 

Total current flows in matter and vacuum. It contains polarization currents of ideal 
dielectrics and also the universal vacuum displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄ . In a vacuum, 𝐉𝒕𝒐𝒕𝒂𝒍 is 
the displacement current 𝜀0 𝜕𝐄/𝜕𝑡.  

In an ideal dielectric 𝐉𝒕𝒐𝒕𝒂𝒍 contains an additional component included in the dielectric 
current 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡 where 𝜀𝑟 is the dielectric constant (more formally the relative permittivity). 
𝜀𝑟 is a single positive real number in an ideal dielectric. 𝜀𝑟 ≥ 1: the dielectric constant is never 
less than one. 𝜀𝑟 contains the displacement current as an independent component with the 
same value in matter and in vacuum because the displacement current 𝜀0 𝜕𝐄/𝜕𝑡 is a property 
of space—not matter—and is the same everywhere. 

Physics textbooks (e.g., [18, 28]) show how the displacement current arises from special 
relativity as a property of space. As Einstein pointed out (in my paraphrase), electrodynamics 
and relativity are nearly the same thing. In quotation: “The special theory of relativity ... was 
simply a systematic development of the electrodynamics of Clerk Maxwell and Lorentz” (p.57 of 
[29]), to which I might add the name Poincare [17]. The displacement current 𝜀0 𝜕𝐄/𝜕𝑡 is the 
same in matter and in a vacuum because it is a property of space and time and not of matter 
itself, in special relativity. 

Charge has a special place in the universe according to relativity [18, 28, 29]. Charge on a 
particle (in coulombs, like the charge on an electron) is ‘Lorentz invariant’. Unlike distance, time, 
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and (relativistic) mass (that defines momentum, for example), the charge on a particle does not 
vary even when the particle moves close to the speed of light.  

The Maxwell Ampere law implies the conservation of total current, as we shall now 
show using the mathematical definition of conservation. Note that total current 𝐉𝒕𝒐𝒕𝒂𝒍 involves 
properties of space away from a particle as well as the location and motion of the particle. 
Calculations that only deal with particles—and do not deal with 𝜀0 𝜕𝐄 𝜕𝑡⁄  away from particles—
deal with only part of the total current. 

Conservation laws are defined by the divergence operator of vector analysis. The mathematical 
way of saying SOMETHING is conserved is 

𝐝𝐢𝐯  (SOMETHING) = 0  

This mathematical statement of conservation was popularized by a chemist (J.W. Gibbs 
[30]) for a reason. It implies specific differential equations and boundary conditions, so the 
statement is beyond words. It is precise, computable, and can be checked by experiment. 

Vector analysis deals with fields with divergence. It deals with fields with curl, as well. 
The divergence of the curl of anything is zero,  

   𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 (ANYTHING) = 0 (3) 

This identity is not fancy mathematics. It is easy to derive as shown in any textbook that 
includes vector calculus. The identity is taught in the first weeks of graduate physics, and in many 
undergraduate courses as well. A convincing physical explanation of eq. (3) is not known to me. 

We then can derive Kirchhoff’s law for fields using the Maxwell-Ampere law eq.(2) and 
the definition of 𝐉𝒕𝒐𝒕𝒂𝒍. This definition (and this name) was used by Maxwell in his treatment of 

conduction in imperfect dielectrics2.[19]  

 𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐉 + 𝜀0 𝜕𝐄 𝜕𝑡⁄  (4) 

Kirchhoff’s law for fields shows that 𝐉𝒕𝒐𝒕𝒂𝒍 is a perfectly incompressible fluid as was well known 
long ago ([18], p. 176; [16] p. 161 eq 4.18). 

 𝐝𝐢𝐯 𝐉𝒕𝒐𝒕𝒂𝒍 = 𝐝𝐢𝐯 𝐜𝐮𝐫𝐥 𝐁 = 0 (5) 

Eq. (5) can serve as an experimental check of the mathematical identity (3), if one does 
not trust the mathematics. Eq. (5) then can depend on physics, not mathematics using 
measurements of 𝐉𝒕𝒐𝒕𝒂𝒍 and 𝐁.  

 

2 Vol.1, Article §328, p. 377, eq. (3) defines the ‘total current’ and uses it, including the displacement current, in 
Ohm’s law, as I advocate here. Maxwell also used the phrase displacement current defined as 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡. Maxwell 
used the word ‘insulator’ to describe what we today might call an imperfect dielectric. Maxwell only used 
displacement current when dealing with imperfect insulators, as far as I can tell. He seems to not include 
displacement current in his treatment of ‘conductors’. The word ‘conductor’ described what we today might call a 
resistive solid. The distinction between imperfect dielectrics and resistive solids has blurred as measurements have 
increased in resolution in the time since Maxwell.  
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The displacement term 𝜀0 𝜕𝐄 𝜕𝑡⁄  in equations (4) & (5) is not found in textbook 
presentations of Kirchhoff’s law, probably for historical reasons. Displacement current has a 
practical significance today—when signals last 10−9 sec—that it did not have a century ago, when 
telegraph signals lasted say 10−1seconds. The duration of dots and dashes were limited by 
manual human constraints that do not limit the duration of the bits in our computers. 

Any form of Kirchhoff’s law must contain a term for the displacement current 𝜀0 𝜕𝐄 𝜕𝑡⁄  if 
the laws are to apply in a vacuum and account for the propagation of light between stars.[28] The 
textbook form of Kirchhoff’s law that includes only 𝐉 Is incompatible with the Maxwell equations. 

It is not correct to use the textbook form of Kirchhoff’s law that includes only 𝐉 on short time 

scales where 𝜀0 𝜕𝐄 𝜕𝑡⁄  is large. 𝜀0 𝜕𝐄 𝜕𝑡⁄  is large in the semiconductor circuits of our computers 

or in the charge movements of simulations of molecular dynamics. 

The steady state 𝜕𝐄 𝜕𝑡 = 0 ⁄  might seem a useful special case. Indeed, it is. In introductory 
courses on electricity and circuits: the steady-state 𝜕𝐄 𝜕𝑡 = 0 ⁄ provides a simplified gateway to 
Kirchhoff’s law and electric circuit theory and is widely taught for that reason. Kirchhoff’s law for 
the conservation of just the flux 𝐉 eq. (7) seems as natural to beginners as conservation of mass 
of water flow in a pipe.  

But modern applications require more than the steady state, as does mathematics itself 

(eq. (6) and below). The charges in simulations of molecular dynamics move in 10−15 seconds. 
The bits of information in our computers are not in steady state. Beginners cannot understand 
the applications of currents in computer circuits with the steady state approximation they were 
taught. They must move on to deal with the time dependence present in modern applications. 

Even the currents in our power systems involve significant time dependence. The 
hundreds of volts in our power system force significant displacement currents (often 100 
picoamps) to flow from power system to our computer chips. These currents—that couple power 
circuits to signal circuits—interfere with successful function if they are not shielded by proper 
grounds [4, 6, 7, 9, 11, 12, 31].  

Steady-states are misleading. The steady state obscures the underlying physics by hiding the role 
of charge on the boundaries and in the initial condition. To be specific, the steady 
state 𝜀0 𝜕𝐄 𝜕𝑡⁄ = 0 leaves out charges that are the source of the electric field. It is seriously 
misleading for that reason and must be abandoned in all but elementary discussions. 

Simplifications of this sort have been extensively studied in mathematics because—as 
useful as they are interesting—they are easily misused. Approximations that leave out derivatives 
are singular perturbations [32] because they leave out boundary conditions as well as the 
derivative terms. They cannot serve as uniform approximations because they do not describe 
behavior correctly soon after a system starts, or close to boundaries.  

Singular approximations leave out the sources for the physics being studied when sources 
appear in boundary conditions. The charge that is a source of the electric field is not visible in 
steady state analysis, because the steady state analysis does not deal with initial conditions, and 
often boundary conditions, that contain charge. These issues are explored in the context of 
Kirchhoff’s law in detailed worked examples in [14]. We return to this issue later, when we show 
that the continuity equation (9) is not a practical replacement for Kirchhoff’s field equation: 
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numerical issues prevents its easy use in systems where atomic detail is needed. The continuity 
equation is not incorrect. It is just inadequate to deal with the main uses of electricity which are 
in the circuits of our power grids and computers. 

Summary. To be precise, if somewhat unkind: Kirchhoff’s law for fields eq. (5) implies that the 
flux of charges 𝐉 is NOT conserved and so is in conflict with the elementary understanding of 
Kirchhoff’s law present in textbooks. 

The flux 𝐉 of charge is not conserved. Rather, it accumulates and changes the electric field 
(also see the continuity equation (9)) 

 𝐝𝐢𝐯 𝐉 =  −𝜀0 𝜕𝐄 𝜕𝑡⁄  (6) 

The textbook form of Kirchhoff’s sets the right-hand side of eq. (6) to zero and is incorrect, 
if the Maxwell equations are a correct description of electrodynamics.  

The textbook form of Kirchhoff’s law describes conservation of flux 𝐉, not conservation of 
current 𝐉𝒕𝒐𝒕𝒂𝒍. 

      𝐝𝐢𝐯 𝐉 = 0 is incorrect because it is in conflict with the Maxwell equations (7) 

Kirchhoff’s law of circuits arises from Kirchhoff’s law of fields (5) if total current 𝐉𝒕𝒐𝒕𝒂𝒍 is confined 
to branched networks and the components of the network are well behaved, as they are in the 
idealized circuits of engineering texts.  

Kirchhoff’s law of circuits cannot be justified in general because it depends on the 
particulars of each circuit or setup. It is easy to check experimentally, however, whether the 
Kirchhoff law of circuits is correct, i.e., an adequate approximation. The Kirchhoff circuit law is 
correct if (1) total currents 𝐉𝒕𝒐𝒕𝒂𝒍 are equal in series circuits and (2) total currents that are 
measured (in general circuits) add up properly—i.e., are conserved. 

Classical electrostatics and the classical theory of idealized circuits automatically include 
displacement current because both usually include a dielectric constant. Indeed, classical 
equations are often derived from equations for Maxwell’s D field that include the polarization 
currents of dielectrics, as much as authors [33, 34] and textbooks complain about the use of the 
D field [28, 35, 36]. Classical results satisfy Kirchhoff’s laws for fields eq. (5) automatically because 
the displacement currents that are described by the D field are 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡. These displacement 
currents (of dielectrics, capacitors, and matter in general) correctly include the displacement 
current of the vacuum 𝜀0 𝜕𝐄 𝜕𝑡⁄ = 0 because 𝜀𝑟 ≥ 1. 

Idealized circuits cannot be used for practical circuit design [4, 6, 7, 9, 11, 12, 31] until 
capacitors are added to describe displacement currents at more or less every node in the circuit. 
By convention, these are not shown in the diagrams of idealized circuits. Circuits cluttered by 
‘strays’ would be ugly, and less useful than the idealized circuits we are used to. But the capacitors, 
and their displacement currents 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡 must be included if the circuits are to function as 
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desired. The idealized circuits need to be ‘fleshed out’ with what are jarringly3 called ‘stray 
capacitances’ to include the displacement currents 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡 with its component𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡 as 
they must according to Maxwell’s equations and Kirchhoff’s law. Stray capacitances must be 

include if circuits [37] are to function in practice as they are described in theory.  

Stray capacitances are needed, for sure, but they are not enough to design real circuits.  

Real Circuits require more. Any description of real circuits must contain additional information 
beyond the stray capacitances and their displacement currents.[7] Kirchhoff’s laws are necessary 
for the design of real circuits but they are not sufficient to describe or construct real components 
or circuits that actually work. [15] 

Series Circuits are a simple example. Kirchhoff’s laws apply in a particularly simple way to series 
circuits in which the same total current flows through all elements. Series circuits play a 
surprisingly large role in the systems that deliver electric power. They also describe components 
of integrated circuits and ion channels, even some ion transporters, in biological membranes. 

The total currents 𝐉𝒕𝒐𝒕𝒂𝒍 in a series circuit are equal everywhere. Spatial dependence does 
not occur in components in series as every engineer knows. In the language of signals, series 
circuits, Kirchhoff’s current law is a perfect low pass spatial filter. It can even create a signal with 
zero spatial dependence in a noisy environment. Kirchhoff’s current law can create a signal with 
zero spatial dependence from thermal noise found along the length of a resistor.[38] This, even 
though the spatial variance of flux 𝐉 is actually infinite in the classical representations of noise as 
a stochastic process [39, 40] in the number density of charges and 𝐉.  

Kirchhoff’s law acts as a perfect low pass spatial filter for the electric field. It filters the 

infinite spatial variance 𝐉 of (models of) thermal noise into the zero variance 𝐉𝒕𝒐𝒕𝒂𝒍 measured in 

electrical measurements in space, i.e., in measurements of the electric field. The spatial variance 
in the electrical field is constant, namely zero!4  

Kirchhoff’s laws show that total currents are equal in a series circuit for any mechanism of 
flow of charge. The law is silent about the properties or mechanism of 𝐉. This fact is seen most 
vividly if one considers a resistor of salt water (in which current is carried by NaCl in water), in 
series with a metal film resistor (in which current is carried by electrons), and in series with a 
semiconductor resistor in which current is carried by the quasi particles holes and electrons, not 
to be confused with the electrons in the wires that connect the components. In those systems, 
electron current depends on salt concentration because Kirchhoff’s law couples the flow of 
current in one component to that in another, even though the mechanisms of charge movement 
are quite different in the components. Extensive physical discussion is found near Fig.2 in [41]. 

 
3 These capacitances cannot stray far. They always include a universal component that is a property of space—not 
matter—and so cannot wander away. 

4 Noise in real circuits of course almost always has passed through some sort of low pass filter to make the variance 
finite, however large. Circuits with infinite noise are likely to be only occasionally useful, and then as noise 
generators. 
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‘Everything’ interacts with everything else. ‘Everything’ is coupled to everything else 
because of Kirchhoff’s law.  

Kirchhoff’s law shows that the current in all the resistors in this series system of resistors 
depends on the concentration of NaCl, even though NaCl does not exist in the semiconductor, 
metal film, or in the wires for that matter. Nothing is said (in Kirchhoff’s laws) about the 
mechanism of the flow of charge or the relative size of the flux of charge and the displacement 
current. The total currents are equal, but the components of the total current may not be equal 
at all. Both components may vary with location, in the quite dramatic way seen in a significant 
biological molecule, the voltage sensor [42, 43] of the nerve membrane [44]. The displacement 
current varies with location. The flux of charges varies with location. When summed from its 
components, the total current is found not to vary with location—Fig. 4 of [44]—despite the 
dramatic variation of its components. 

Kirchhoff’s law makes a local theory of current flow impossible. The current anywhere 
depends on the current everywhere.  

Stochastic signal theory shows this dependence in its precisely eloquent way. The 
correlation of currents is unity [45]:  

 

 

The coherence function describing elements of an ideal circuit is unity. 

 
𝐶𝑥𝑦(𝑓) =

|𝐻(𝑓)𝐺𝑥𝑥|2

𝐺𝑥𝑥(𝑓)|𝐻(𝑓)|2𝐺𝑥𝑥
 = 1        when   𝐻(𝑓) =  

𝑌(𝑓)

𝑋(𝑓)
  

(8) 

The physical reason for this perfect correlation is revealing. Correlation is perfect because 
the Maxwell equations provide exactly the forces needed to move charges so that Kirchhoff’s 
law is precise and universal, as are the Maxwell equations themselves, which are valid on all 
scales including those of atomic motion and time.  

These correlations are so well known to engineers that it seems unnecessary to discuss 
the underlying physics, even in textbooks. Every engineer knows that currents are equal in a series 
circuit. But what seems obvious to engineers is less obvious to chemists, biochemists and 
biophysicists. They focus on the atomic details ([46], popularized by [47] that control their 
systems. They rarely think of the electric fields that correlate atomic motions, and almost never 
discuss the role of Kirchhoff’s field equations in those motions. Electrodynamic sources of 
correlation are almost never discussed in the literature of chemistry, biochemistry, or biological 
and are rarely discussed in the literature of molecular dynamics.  

We are used to thinking of interactions of atoms as if they are mechanical, when in fact 
the dominant forces are electrical (third paragraph of [28]), summarized by the Kirchhoff form of 
the Maxwell equations eq. (5). The Kirchhoff correlation exists because of mathematics, without 
approximation or additional physical content. The atomic motions seen in simulations are those 
needed to conserve total current according to equation (5).  

𝑋(𝑓) 𝑌(𝑓) 𝐻(𝑓) 



9 

The forces on atoms provided by the electric and magnetic fields of the Maxwell equations 
automatically provide the atomic motions seen in molecular dynamics that are needed to 
conserve total current in Kirchhoff’s laws. To repeat, this is a consequence of mathematics, not 
physics. The conservation of total current is an unavoidable mathematical consequence of the 
Maxwell Ampere equation as shown by the derivation of eq. (5). 

Coupling implied by Kirchhoff’s law occurs in biological systems and electrical technology. 

Coupling occurs in the biological systems where atoms control macroscopic function. It is 
important for physical scientists to be reminded that biological function is controlled by a handful 
of atoms and that fact is exploited in hundreds or thousands of laboratories every day, using site 
directed mutagenesis (for example) to design drugs, molecules, and binding sites on proteins. 

Moving from biology to engineering, we see that Kirchhoff’s law provides a productive 
way to understand circuits in general. Thinking of charges and their interactions in circuits is not 
productive and is not done in circuit design, probably for that reason. The number of pairwise 
interactions of charges is something like 1023 factorial, a number incomprehensibly too large to 
deal with, let alone compute.  

Coarse Graining. The usual way to deal with overwhelmingly large calculations, arising from too 
high resolution, is to find a way to reduce that resolution by averaging or coarse graining the 
calculation.  

Coarse graining is of course possible for calculations using Coulomb’s law, but those 
procedures must produce results compatible with the Maxwell equations or they are not useful. 
The enormous strength of the electric field requires that coarse graining be accurate if it is to be 
useful (third paragraph of [28]; Appendix of [41]). Indeed, Kirchhoff’s law of total current is a form 
of coarse graining, that unlike most forms of coarse graining, is exact, not an approximation. 
Because it is exact, Kirchhoff’s law shows how simple analysis is adequate—indeed, exact—in a 
channel so narrow that ions cannot move past each other.[38] Here the coarse grained (total) 
current is independent of location whereas the knock on, knock off behavior of individual ions is 
too bewilderingly complex to be described in a single way or by an agreed upon mechanism [48-
50]. 

In physics, Kirchhoff’s law implies that the movement of charges in Brownian motion are 
correlated as we have discussed, eq. (8). The usual Langevin description—used nearly everywhere 
since it was introduced by Sutherland [51, 52], Einstein [51], and Langevin—is inadequate 
because it does not compute electrical forces from the charges [53, 54] of the Brownian particles 
[55] and so usually does not include fluctuations of electrical forces, with the notable exception 
of [56]. Electrical correlations have always been included in work in computational electronics 
[25-30] and these automatically satisfy Kirchhoff’s current law.  

The irony is that the Brown of Brownian motion originally studied ‘colloidal’ particles [57] 
that have long been thought to be highly charged. And Einstein studied sucrose p. 55 of [58]. 
(Einstein said ‘sugar’—at least in translation— but almost certainly meant sucrose, perhaps 
because he thought it was uncharged, without net charge, and nonpolar, without significant local 
charge densities. (Einstein was certainly aware that moving charges produce moving fields [29, 
59], and so fluctuating densities of charges, in thermal motion, must produce fluctuating electrical 
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forces). The neglect of electrical fluctuations in [51] must be understood in that light. Sucrose is 
now known to be a polar molecule, with a dielectric constant ~60 measured in ref. [60], nearly 
that of water, presumably arising from the asymmetrical local charge distribution of (many of) its 
highly charged hydroxyl OH groups, even though it has zero net charge.  

In noise analysis, Kirchhoff’s law implies that the total current in a series system is uniform 
in space. The spatial independence of noise in a series system implies that a spatial variable is not 
needed to describe the total current. The simplification seems profound because it reduces 
partial differential equations to ordinary differential equations, reducing the need to describe the 
details of knock on and knock off mechanisms in many cases [61-64] but this special property 
resulting from Kirchhoff’s law has not been exploited in mathematical or numerical analysis to 
the best of my knowledge, with the exception of [65]. 

Of course, some properties of such systems depend on the movements and flux of charges 
as separate chemical species, beyond their electrical current. These movements are much harder 
to understand than the total current because they do not follow a conservation law without 
accumulation. Fortunately, most properties of the circuits of our technology depend only on total 
current. Circuits can be designed by Kirchhoff’s circuit law for total current without considering 
charges at all.[1-12] In biology, circuit representation of signaling in the nervous system, skeletal 
and cardiac muscle work quite well [66] without separate consideration of fluxes. 

In chemistry, Kirchhoff’s laws imply that total current is conserved as electrons change 
orbitals while changing covalent bonds, even as they emit light because Kirchhoff’s law is true on 
the time scale of the Maxwell equations involved in quantum processes.[67-71] Kirchhoff’s law 
imply that reactants and products are coupled by the flow of total current, as well as conservation 
of chemical species. In the chemical networks of biochemistry, Kirchhoff’s circuit law is an 
important constraint not always followed in classical kinetic analysis.[72] It is distinct from the 
conservation of chemical species, or the conservation of charge because it includes displacement 
current. Analysis confined to the steady state is misleading as previously discussed, near eq.(6). 

Kirchhoff coupling in channels and transporters. In biology, Kirchhoff’s law provides the coupling 
that creates the propagating nerve signal from the currents through the conductances of ion 
channels in membranes. Propagation of the action potential signal in nerve—and muscle and the 
heart—is electrical, as the 23 year old Alan Hodgkin showed in 1937 [73, 74]. Chemical coupling 
is not involved despite the views of the leader of English biophysics at the time Nobel Laureate 
A.V. Hill [75]. Hodgkin and Huxley computed the propagating action potential from the properties 
of the conductances measured independently in different experiments in voltage clamp 
conditions [66, 76] in which control amplifiers prevent the formation of a signal. The fluxes 
accompanying the nerve signal were much harder to measure, particularly on the relevant time 
scale in axons (without inactivation, fast and slow) during voltage clamp experiments. [77-79] 

In biology, Kirchhoff’s law helps couple ions in transporters. Kirchhoff’s law guarantees 
that the sum of membrane currents is zero [80] in a closed system, like a mitochondrion or vesicle 
or spherical (or short) cell. A plot of the flux of one species of ion vs. another will be a straight 
line in that case.  
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The coupling of ions in transporters occurs because of the Maxwell equations and the 
equivalent Kirchhoff’s law for total current. The coupling need not depend on chemical 
interactions, any more than the coupling of sodium and potassium conductances in a nerve fiber 
depends on chemical interactions.  

(It is an interesting historical fact that Hodgkin exploited Kirchhoff coupling in his first 
experiments using the voltage clamp (see Fig. 10 of [81] as he explained to me decades later) but 
he did not consider the coupling implied by Kirchhoff’s law when he initiated membrane studies 
of active transport [82-86]. In my opinion, Hodgkin only considered Kirchhoff coupling in the 
propagating action potential because the cable equation automatically produced such coupling 
as it did in the trans-Atlantic cable designed by Kelvin [87, 88]. All in Cambridge UK [89] in the 
1930’s were proud of Kelvin’s leading the world in the 1850’s in this revolutionary technology. The 
idea that electrodynamics was important within proteins was not known to Hodgkin, until 
Warshel introduced the idea, decades later [90, 91] and I brought Warshel’s contribution [91] to 
Hodgkin’s attention in the context of the PNP treatment of open ionic channels [53, 92, 93].) 

In biology, Kirchhoff’s law helps generate ATP, the universal currency of chemical energy. 
Kirchhoff’s law helps couple the flow of electrons, ‘protons’ (as workers call positively charged 
forms of water) and substrates within cytochrome c oxidase [94]. Kirchhoff coupling powers 
ATPsynthase using current flow from the oxidase, no matter what charge moves to carry the 
current.  

Kirchhoff coupling. Kirchhoff’s law couples electrons, substrates and protons, in many places in 
the respiratory chain, and photosynthetic pathways, and in the multitude of other transporters 
in biological membranes. It is universal in physical systems, so it is universal in biology and 
biophysics, as well as electronics. 

Kirchhoff’s law guarantees that flux measurements of such transporters will depend on 
the setup in which they are measured and the boundary conditions at the boundaries. Coupling 
is a central idea in the literature of transporters, oxidative phosphorylation, and photosynthesis, 
as a glance at the literature or textbooks shows. Coupling is defined quantitatively by the plot of 
the flux of one charge carrier vs another, e.g., [53, 82-86]. Coupling depends on the ratio of fluxes, 
and those depend on current flow in circuits defined by Kirchhoff’s law. Kirchhoff coupling is 
unavoidable in transporters, as in all physical systems, although of course there may also be 
chemical coupling.  

In a voltage clamp bilayer setup, Kirchhoff coupling does not exist. The voltage clamp 
prevents it. In finite cells or organelles, like mitochondria, Kirchhoff coupling guarantees that 
every membrane current is coupled to every other, with the sum of membrane currents zero, as 
it was in the special case studied by Hodgkin (Fig. 10 of [81]). Flux ratios measured from the same 
transporters will differ in the two cases, the artificial voltage clamp and the natural organelle.  
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Discussion 

Kirchhoff’s law is responsible for many of the important properties of electricity. Most of 
the technology of electricity depends on circuits and Kirchhoff’s law summarizes the physics of 
circuits. Kirchhoff’s law is the mathematics of circuits actually used by engineers in practical 
designs [1-12] that deliver electrical power and information throughout our civilization. 

Kirchhoff and Continuity Equations. Kirchhoff’s law does not have a particularly prominent place 
in textbooks of electricity and magnetism despite its importance as the mathematics of the 
electrical circuits that dominate our technology, if not our daily lives. Kirchhoff’s law has hardly 
any place in textbooks of electrochemistry or physical chemistry. It is natural to wonder then if 
there might be another way to describe circuits without using Kirchhoff’s law explicitly. Do 
chemists (and mathematicians for that matter) avoid Kirchhoff’s law because they have dealt with 
its role in a different way? 

The continuity equation might appear to be an equivalent representation to Kirchhoff’s 
law. The continuity equation links the buildup of charge density 𝜀0 𝜕𝜌 𝜕𝑡⁄  with flow of charges. 

 𝐝𝐢𝐯 𝐉 =  −𝜀0 𝜕𝜌 𝜕𝑡 ⁄  (9) 

Here 𝜌 is called the density of free charge in systems with an ideal dielectric constant. The 
general meaning of 𝜌 is vividly discussed on p. 500-507 of [35] with particular attention to the 
ambiguously defined polarization current of its dielectric component. Robinson [95] presents 
electrodynamics for polarization currents of more complexity (in time and frequency) than in 
most textbooks.  

But this continuity equation is something of a mirage. Reality emerges from the mirage 
when one tries to use the continuity equation to design something, i.e., circuits.  

Circuits contain macroscopic numbers of charge, say 1023 charges. Computations 
involving 𝜌 made of that many charges are beyond practical description when the interactions of 
charges are described by Coulomb’s law, as they are in simulations with atomic resolution. Such 
computations of circuits are nearly unspeakable, certainly impracticable, because the number of 
interactions far exceeds the 1023 factorial. Coulomb’s law requires the computation of ~1023! 
Interactions for just two charges.  

Physical scientists need to be reminded that handfuls of atoms control much of biology 
and chemistry and so atomic resolution computations are needed to understand that control. 
Modern electronics also depends on atomic details. Circuits of our computers involve structures 
of 3 to 5 nanometers and are more and more dependent on realistic computations at the atomic 
scale of say 0.1 nanometers.  

Charge, Currents, and Circuits. The continuity equation shows what is an unfortunate emphasis 
on charges and field—not currents and circuits— in the teaching and literature of electricity, in 
my view.  

For historical and pedagogical reasons textbooks and teaching focus on charges and their 
motion. The previous discussion shows, however, that no consideration of charges can deal with 
circuits. Currents in circuits are constantly changing their nature, sometimes (and places) they are 
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displacement currents 𝜀0 𝜕𝐄/𝜕𝑡; sometimes, material displacement currents 𝜀𝑟𝜀0 𝜕𝐄/𝜕𝑡; 
sometimes ionic currents; often, electron currents.[61, 63] Charge analysis cannot deal with this. 
Kirchhoff’s law can, if it deals with total current, as we have shown at length. 

Charge analysis is not wrong. It is simply inadequate. It cannot deal with the circuits that 
are the main use of electricity in our world. 

Coarse Graining, revisited. The usual way to deal with overwhelmingly large calculations, arising 
from too high resolution, is to find a way to reduce that resolution by averaging or coarse graining 
the calculation.  

Coarse graining is of course possible for calculations using the continuity equation and 
Coulomb’s law, but those procedures must produce results compatible with the Maxwell 
equations or they are not useful. The enormous strength of the electric field requires that coarse 
graining be accurate if it is to be useful (third paragraph of [28]; Appendix of [41].  

Kirchhoff's laws provide a useful coarse graining of the Maxwell equations that avoids 

calculating the Coulombic interactions of 1023 charges yet provide sufficient information to 
design the integrated circuits of our computers. Kirchhoff's laws are exact, as well as coarse 
grained because they are a mathematical consequence of the Maxwell equations, without 
assumption or further physical content. In a series circuit, the coupling in Kirchhoff’s law makes 
the total current exactly equal everywhere at any time. The Maxwell equations provide just the 
forces needed to move atomic charges so the total currents in Kirchhoff’s law are equal for any 
mechanism of charge movement in a series circuit. Those movements couple processes for any 
physical mechanism of charge movement. A striking example is the way Kirchhoff’s law couples 
the conductance of chemically independent ion channels to make the propagating nerve signal, 
the action potential. 

Conclusion 

Kirchhoff’s law for total current may be the optimal coarse graining of the electric field in 
circuits. Kirchhoff’s law is exact as well as coarse grained, an unusual combination. Indeed, 
Kirchhoff’s law may be so in designing the circuits of our computers precisely because it is exact, 
as well as coarse grained. 
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