
16 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Sel�sh Routing on Transportation
Networks With Supply and Demand
Constraints

Tommaso Toso1, Paolo Frasca1, Alain Y. Kibangou1,2

1. Centre National de la Recherche Scienti�que, Rabat, Morocco; 2. Univ. of Johannesburg (Auckland Park Campus), South Africa

Traditional non-atomic sel�sh routing games present some limitations in properly modeling road

tra�c. This paper introduces a novel type of non-atomic sel�sh routing game leveraging concepts

from Daganzo’s cell transmission model (CTM). Each network link is characterized by a supply and

demand mechanism that enforces capacity constraints based on current density, providing a more

accurate representation of real-world tra�c phenomena. We characterize the Wardrop equilibria

and social optima of this game and identify a previously unrecognized ine�ciency in sel�sh routing:

partially transferring Wardrop equilibria, where only part of the exogenous �ow traverses the

network.

I. Introduction

Non-atomic sel�sh routing games model the interactions of self-interested players in a network. Each

player, associated with an origin-destination (OD) pair, aims to traverse the network from their origin

to their destination. The cost of each link in the network depends on the number of players using that

link. With full information about the network state, each player seeks to minimize their traversal cost.

However, since players act uncoordinatedly and disregard the impact of their actions on others, the

resulting equilibrium con�gurations are ine�cient from a total cost perspective. These equilibria are

known as Wardrop equilibria [1][2]. A major concern in the analysis of sel�sh routing is the ine�ciency

of Wardrop equilibria. Various metrics have been developed to assess this ine�ciency, with the Price

of Anarchy (PoA) being one of the most commonly used [2].

Non-atomic sel�sh routing games have numerous applications, notably in transportation networks,

when users have access to information about the state of the network. This situation is more and more
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relevant in today’s information-rich world. Nowadays, many motorists rely on real-time navigation

systems to optimize their routes, signi�cantly in�uencing tra�c �ow  [3]. Given the increasing

awareness and responsiveness of users to tra�c congestion, a game-theoretic approach like non-

atomic sel�sh routing games is suitable for modeling contemporary tra�c �ow behavior.

Despite their usefulness in understanding tra�c �ow behavior and the impact of real-time routing

systems  [3][4][5], traditional non-atomic sel�sh routing games have limitations when applied to

tra�c networks. First, network links lack capacity constraints, which are essential for capturing

typical congestion phenomena. Additionally, link costs are generally modeled as increasing functions

of �ow, which is inconsistent with established models of the physics of tra�c, in which the

relationship between tra�c �ow and travel time is non-monotonic [6][7].

To address these limitations, this paper proposes a novel type of non-atomic sel�sh routing game,

leveraging concepts from Daganzo’s cell transmission model (CTM)  [8][9]. By considering both link

�ow and density, we characterize each network link with a supply and demand mechanism that

enforces capacity constraints. This mechanism limits the �ow through a link based on its current

density, allowing us to identify congested sections. Moreover, travel times on each link are directly

dependent on its density, aligning with tra�c modeling principles. This combined approach provides

a more accurate representation of real-world tra�c network phenomena. Thanks to this new model,

we are able to identify a potential drawback of sel�sh routing that extends beyond classical PoA

analysis and was not recognized in the literature: partially transferring Wardrop equilibria, that is,

Wardrop equilibria that allow only part of the exogenous �ow to enter and traverse the network.

A. Contribution

We claim three contributions in this paper. First, we propose a novel type of sel�sh routing games on

parallel networks, which is more suitable for modeling road networks based on the CTM. In this

model, links are treated as cells with capacity constraints that depend on the density within the cell,

and link travel times are increasing functions of density rather than �ow. Second, we characterize the

Wardrop equilibria (WE) and the social optima (SO) of this game and prove their essential uniqueness.

Third, we introduce the concept of partially transferring WE and demonstrate that under certain

conditions, the unique WE of the game can be partially transferring, even when the exogenous

demand on the network is less than the min-cut capacity. This provides further evidence of the

ine�ciency of sel�sh routing.
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B. Related work

The literature already includes some recent works addressing capacity constraints and congested

tra�c regimes, such as those proposed in  [7][10][11]. In  [7], the authors propose a static tra�c

assignment model using density-based travel time functions. In  [10], the authors analyze a

Stackelberg routing game on a parallel network, where a central authority can control a fraction of the

total tra�c demand to improve the total cost on the network, thus improving e�ciency. In  [11], a

mixed-autonomy tra�c model is developed, proposing an optimal strategy to provide �nancial

incentives for autonomous vehicles to steer tra�c toward e�cient equilibria. However, these models

di�er from ours as they do not involve any supply and demand mechanism.

The maximum throughput that can be successfully transferred through the network equals its min-

cut capacity  [12][13]. The problem of identifying routing policies that prompt fully transferring �ow

allocations has received signi�cant attention in the last years, mostly through dynamical models [14]

[15][16][17][18]. In particular, in [17] the authors study the behavior of a dynamical network �ow model

governed by distributed local routing policies allowed to depend on the network state. These policies

are characterized by routing decisions at each non-destination node being made independently based

only on the state of incoming and outgoing links, without considering the state of other nodes in the

network. Nonetheless, capacity constraints are only applied at the exits of the links, allowing any

amount of �ow to enter a link. It is shown that if the exogenous �ow which the network is subject to

does not exceed the min-cut capacity, then the class of monotone distributed routing policies ensures

that the system globally asymptotically converges to a state where the �ow is fully transferred.

In  [19][20], the authors propose a dynamical network �ow model encompassing the CTM with �xed

routing policies (not necessarily fully transferring) at non-destination nodes. The main results

concern convergence to equilibria. In  [19], the authors develop a ramp metering control strategy for

maximizing the transferred �ow.

C. Paper organization

Section II delves into the details of the proposed network structure. Here, we describe the mechanism

for supply and demand on each link, de�ne what constitutes valid tra�c assignments, and introduce

factors in�uencing travel time based on link density. Section  III establishes a non-atomic sel�sh

routing game on the network. We comprehensively analyze the Wardrop equilibria and social optima
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of this game, identifying necessary and su�cient conditions for the occurrence of partially

transferring Wardrop equilibria. In Section  IV, we provide an example showing that the problem of

partial demand transfer occurs also in more complex network topologies. Finally, Section V concludes

the paper with some closing remarks.

II. Network modeling

We consider a parallel network consisting of a single OD pair and   distinct non-intersecting routes

connecting them. Each route   is composed of   links. The network is subject to a constant positive

exogenous �ow of vehicles    that distributes among its routes. In the following, we describe the

functioning of each network link in relation to the tra�c density within it.

A. Characterization of the network links

Given a link  , let   (veh/km) and   (veh/h) indicate its density, corresponding to the number of

vehicles per unit of length, and its �ow, corresponding to the number of vehicles per unit of time. Let 

 (veh/km),   (veh/h),   (km/h) and   (km) be positive �nite constants representing the jam density

(maximum attainable density), the capacity (maximum attainable �ow), the free-�ow speed and the

length of the link. Now, associate with each link supply and demand functions  , depending

on the link density. Supply and demand functions are inspired by Daganzo’s fundamental

diagram [6] and take the following form:

Both functions are continuous and piece-wise linear. The supply function is non-increasing with

density, re�ecting the fact that as more vehicles occupy the link, the fewer additional vehicles the link

can accommodate. In contrast, the demand function is non-decreasing, meaning that as more

vehicles are on the link, the higher the number of vehicles aiming to leave it. If we de�ne the critical

density of a link as  , then  , so as to guarantee

When  , we say that the link is in free-�ow or free-�ow regime, whereas if  , the link is

said to be congested or in congested regime.
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In the following section, we characterize the feasible density and �ow vectors for a network whose

links exhibit such a supply and demand mechanism.

Figure 1. From left to right: supply function as in (1), demand function as in (2), Daganzo’s fundamental

diagram of tra�c.

B. Tra�c assignments

De�nition 1. A vector   such that    is called a routing vector. Each

element of   is called routing ratio.

The supply and demand functions determine the exchange �ow at the interface between contiguous

cells. Let    be the density and �ow vectors, respectively. Consider a

route   and two of its consecutive links,   and  . Then, the in�ow from link   to link   is

The in�ow of the �rst link of a route is

Finally, since the �nal link of each route is not connected to any other link,

With abuse of notation, we will indicate the density and �ow vectors associated with route    as 

.

Given a routing vector, we are interested in identifying all the density vectors associated with it.

R = ( , … , ) ∈R1 RN R
N
≥0 = 1∑

N
i=1 Ri
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(x) = ( ).fnp dnp xnp (5)
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∈ , ∈xp R
np
≥0 fp R

+1np
≥0
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Figure 2. Structure of route  .

De�nition 2. Given a routing vector  , a consistent density vector   is a density vector satisfying to

Let   be the set of all consistent density vectors associated with  .

Consistent density vectors are density vectors such that the in�ow and the out�ow of each link

correspond and this �ow is equal for all the links of the route.

De�nition 3. A tra�c assignment is a pair  , where    is routing vector and    is a consistent

density vector of it.

Depending on the routing vector, the associated consistent density vectors might be characterized by

some congested links or not.

De�nition 4. The capacity of route  ,  , is the capacity of the route’s lowest capacity link:

Given an exogenous �ow   and a routing vector  , consider the following sets:

The set    consists of the routes assigned a fraction of exogenous �ow smaller than their capacity.

The set   consists of the routes assigned a fraction of exogenous �ow equal to their capacity. Finally,

The set   consists of the routes assigned a fraction of exogenous �ow exceeding their capacity. Then,

let us discuss about the shape of the consistent density vectors for a given routing vector.

To ease the discussion, we assume that each route has a unique link of minimum capacity.

p

R xR
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Assumption 1. Route   has a unique minimum capacity link  ,  .

This assumption, while introducing a loss of generality, does not undermine the relevance of the

�ndings. Instead, it allows us to focus on speci�c aspects of the problem and draw conclusions that are

still applicable to a wide range of scenarios.

Proposition 1. Let Assumption 1 hold. Then,  , there exists a unique consistent density vector for

route   which is as follows:

Instead,  , there exists a unique consistent density vector for route   which is as follows:

Finally,  , a consistent density vector on   is any vector such that, given  :

Remark 1. It follows from (1) and (2) that, for any link  ,

This means that if  , then all links of route   are in free-�ow regime. Contrarily, if  , then

the �rst   links of route   are in congested regime. Finally, if  , depending on the value of  ,

the route might present links with congested regime or not, extending backward from the least

capacity link to the origin.

Proof. The proof is split into three parts, each for one of the sets  ,   and  .
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1. Consider a route  . Suppose that  . Then, from (6),  .

This implies that

Suppose that  . Then, it is straightforward that (9) is the only possible

density vector with this form satisfying to (6). Suppose now that there exists    such that 

. Since

it must be that

so that

From (6), the last inequality implies that  . The same argument can

be applied inductively to the subsequent route links, up to the �nal link of the route.

Nevertheless, since  , then  , which in turn implies that out�ow of

link    is equal to  . As this violates (6), we proved that there exists no consistent density

vector where some links are in congested regime. Hence, the consistent density vector is unique

and as in (9). Using the same argument, it follows that any density vector such that   is

not a consistent density vector.

2. Consider a route  . Clearly, since  , only part of    can be accommodated.

Suppose that  . This imposes that all links preceding  , which have higher capacity, must

be in congested regime so as to guarantee that the �ow transferred from a link to the following is 

:

. Then, the density on    must be equal to  . As for the links from 

  to  , one can apply the same argument as in 1. to the sub-route they form. Again,

similarly to 1, density vectors such that   are not consistent density vectors, as they do not

ful�l to (6). Finally, density vectors such that    cannot be consistent, as this implies 

, which contradicts (6).

Consider a route  . Since  , all the in�ow can be accommodated. It is easy to verify

that all density vectors of the form as in (11) satisfy (6) and entirely accommodate  . All

consistent density vectors cannot take any di�erent form. For the same argument in 1 and 2,

links from   to   cannot be in a congested regime. As for the links preceding  , from (3),
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any congested link must be followed by a congested link that limits the incoming �ow from its

predecessor to be equal to  . Finally, also in this case density vectors such that   are not

consistent density vectors, as they do not ful�l to (6). 

Figure 3. Congestion patterns for routes in  ,  , 

. Green links are in free-�ow regime, red links are

congested.

Proposition 1 prescribes that when a routing vector   violates the capacity constraints of some routes,

i.e.,  , then the unique consistent density vector associated with it is characterized by congested

links. As implied by equation (11), these tra�c assignments transfer only a fraction of the exogenous

�ow directed to that route. We call such tra�c assignments partially transferring. On the other hand,

tra�c assignments such that   are called fully transferring. Given an exogenous �ow   exceeding the

min-cut capacity of the network, which in our case simply corresponds to the sum of all route

capacities, clearly all of its tra�c assignments are partially transferring. Therefore, we turn our

attention to exogenous �ows that do not exceed the min-cut capacity of  .

Assumption 2. The exogenous �ow   is no greater than the min-cut capacity of  :

z̄̄̄p <f0p z̄̄̄p

□
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Φ G
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Although any    satisfying to Assumption 2 admits a fully transferring tra�c assignment, such

exogenous �ows still admit partially transferring tra�c assignments, in general.

Figure 4. A two-route network. Route   consists of three links, whereas

Route   of four.

Example 1 (Partially transferring tra�c assignment). Consider the network in Figure 4, and assume it

is characterized as follows:

Suppose that the network is subject to a constant exogenous �ow  , which satis�es

Assumption 2. Consider the three following routing vectors:

When    is assigned according to  , then both routes belong to  , and the unique consistent

density vector is

Hence, the tra�c assignment   is unique and fully transferring.

When   is assigned according to  , then route   belongs to  , whereas route   to  . The unique

consistent density vector associated with this routing vector is

Φ ≤ .∑
p=1

N
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The assignment   is clearly partially transferring, and the amount of �ow that does not get

transferred equals   veh/h.

Finally, when    is assigned according to  , then route   belongs to  , whereas route   to  . In

this case, there exist multiple consistent density vectors, which take one of the two following form:

In this case, all possible tra�c assignments   are fully transferring. 

C. Link travel times

Figure 5. Link travel time as a function of the link density (left) and the relationship

between link travel time and link �ow (right).

Consistently with the fundamental diagram of tra�c, we model travel times as in [10]:

where    is the length of link  . From the shape of the travel time functions, for a link  , when 

, then  . Thus, when the link is in free-�ow, its travel time is

constant and equal to the free-�ow travel time  . On the contrary, when 

,   and it is increasing in  .
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The travel time of each route    is simply de�ned as the sum of the link travel times of all route

links:

For a given routing vector, the travel time of a route  , depending on which among the sets  ,   and 

 it belongs to, will be as follows:

if  , then the route attains the lowest possible value of travel time, the free-�ow route travel

time:

if  , then the route attains the following value of travel time:

if  , then the route can attain any value of travel time between   and  , precisely

Before moving to the next section, it proves convenient to de�ne the following quantities. Given a

route  , with abuse of notation, let    be the function that, given 

, returns a unique consistent density vector   of the form (11) such that

III. Non-atomic routing game (NRG)

Let us indicate the NRG as  . Each vehicle chooses its route to minimize its travel time according

to the link travel time functions  . We assume that the routes are ordered by increasing free-�ow

travel time, and, to ease the discussion, the travel times   are assumed to be distinct.

Assumption 3. The free-�ow travel times   and the travel times   are all distinct, and routes are

ordered by increasing free-�ow travel times:
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A. Wardrop equilibria

Now, we formalize the notion of Wardrop equilibrium in our setting.

De�nition 5 (Wardrop equilibrium). A Wardrop equilibrium (WE) of the NRG    is a tra�c

assignment   such that

The following result states characterizes the WE of the NRG  , and establishes whether they are

fully or partially transferring. In order to state it, let us de�ne

The index   represents how many of the most e�cient routes, i.e., routes with smallest travel time, it

takes to fully accommodate the exogenous �ow  , while the set   consists of those routes such that

their free-�ow travel time exceeds  , for some   among the �rst   most e�cient routes.

Theorem 1 (Characterization of the WEs). Consider the NRG   and suppose that Assumption 1, 2 and 3

hold. Then, if  , the game admits a unique fully transferring WE  , such that

and all used routes share the same travel time  .

If  , let   and let

Then,

if  , then the game admits a unique partially transferring WE  , such that

and all used routes share the same travel time  ;

(G, Φ)

( , )RW xW

> 0 ⇒ ( ) ≤ ( ), ∀q = 1, … ,N.RW
p τp xW τq xW (16)

(G, Φ)

k := min{p ∈ {1, … ,N} Φ − ≤ 0} ,
∣

∣

∣
∣ ∑

j=1

k

z̄̄̄j

U := {p ∈ {1, … ,k} ≤ ,  for some j ≤ k} .∣∣τ
S
p τ Fj

k

Φ U

τ Sp p k

(G, Φ)

U = ∅ ( , )RW xW

Φ =RW
p

=xWp

=xW
k

,
⎧

⎩
⎨
⎪

⎪

,z̄̄̄p

Φ − ,∑
z−1
p=1 z̄̄̄p

0,

p = 1, … ,k − 1

p = k

p = k + 1, … ,N

( ),p = 1, … ,k − 1,τ−1
p τ F

k

, … , ,
⎛

⎝

Φ −∑
k−1
p=1 z̄̄̄p

v1k

Φ −∑
k−1
p=1 z̄̄̄p

vnk

⎞

⎠

(17)

τ F
k

U ≠ ∅ u := minU

j := min{p = u + 1, … ,k| ≥ }.τ Fp τ Su

>τ Fj τ Su ( , )RW xW

Φ =RW
p

=xWp

,

⎧

⎩
⎨
⎪

⎪

,z̄̄̄p

Φ − ,∑
j−1
p=1,p≠u

z̄̄̄p

0,

p ∈ {1, … , j − 1} ∖ u

p = u

p = j, … ,N

( ),p = 1, … , j − 1,τ−1
p τ Su

(18)

τ Su

qeios.com doi.org/10.32388/LC6Q1Y 13

https://www.qeios.com/
https://doi.org/10.32388/LC6Q1Y


if  , then   reads

If  , then   is partially transferring, and all used routes hare the same travel time  .

If  , then   is fully transferring if and only if  , and all used routes hare the same

travel time  .

Before proving the theorem, we provide the reader with some intermediate results.

Lemma 1. Suppose   is a WE of  . If  , then  .

Proof. By contradiction, assume that    for some  . Then, for any consistent density

vector   of  ,  , which contradicts (16). 

Lemma 2. Suppose   is a WE of  . Then,  .

Proof. By contradiction, suppose that  . By Lemma 1, it should be that 

, which contradicts the de�nition of  . 

We are now ready to provide the proof of Theorem 1.

Proof. Lemmata 1 and 2 imply that any WE of the game has support of the form  . We

split the proof into three parts: the �rst part is dedicated to characterize the WE of   when  ,

the second one addresses the case   and  , and the third one the case   and  .

1. : in this case, there cannot be any routes such that  , as this would imply that 

contradicting the Wardrop condition (16). This also implies that  , as if 

, with  , them by de�nition of  , there should exist   such that 

. By combining these facts with Lemma  1, it becomes straightforward that the only

possible tra�c assignment    satisfying to the Wardrop condition (16) is that in (17).

Clearly, the tra�c assignment in (17) is fully transferring.

=τ Fj τ Su ( , )RW xW

Φ =RW
p

Φ ∈RW
u

=xWp

=xWj

,

⎧

⎩

⎨

⎪⎪⎪

⎪⎪⎪

,z̄̄̄p

Φ ,RW
u

Φ(1 − ),∑
j−1
i=1 R

W
j

0,

p ∈ {1, … , j − 1} ∖ u

p = u

p = j

p = j + 1, … ,N

[Φ − , Φ − ] ,∑
p=1,p≠u

j

z̄̄̄p ∑
p=1,p≠u

j−1

z̄̄̄p

( ),p = 1, … , j − 1,τ−1
p τ Su

, … , .
⎛

⎝

Φ(1 − )∑
j−1
i=1 R

W
j

v1j

Φ(1 − )∑
j−1
i=1 R

W
j

vnj

⎞

⎠

(19)

j < k ( , )RW xW =τ Fj τ Su

j = k ( , )RW xW Φ =RW
u z̄̄̄u

=τ F
k

τ Su

( , )RW xW (G, Φ) > 0RW
p Φ ≥ , ∀q < pRW

q z̄̄̄q

Φ <RW
q z̄̄̄q q < p

xW RW ( ) = < ≤ ( )τq xW τ Fq τ Fp τq xW □

( , )RW xW (G, Φ) supp( ) ⊆ {1, … ,k}RW

max supp( ) > kRW

Φ ≥ , ∀q < max supp( )RW
q z̄̄̄q RW k □

{1, … ,p},p ≤ k

(G, Φ) U = ∅

U ≠ ∅ >τ Fj τ Su U ≠ ∅ =τ Fj τ Su

U = ∅ Φ >RW
q z̄̄̄q

( ) = > , ∀q < k,τq xWq τ Sq τ F
k

supp( ) = {1.,k}RW

supp( ) = {1.,p}RW p < k k q ∈ {1.,p}

Φ >RW
q z̄̄̄q

( , )RW xW
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2. ,  : we start by observing that  , as all routes   have

free-�ow travel time greater than  . Observe also that there cannot be any routes such that 

. In fact, as    and all maximum route travel time are

distinct, it holds that 

Thus,  , would imply

violating the Wardrop condition (16). These facts, combined with Lemma 1, imply that the only

possible tra�c assignment   satisfying to the Wardrop condition (16) is that in (18).

3. ,  : analogously to the previous case,  , as all routes 

  have free-�ow travel time greater than  , and there cannot be any routes

such that  , as it would result in contradicting the Wardrop condition

(16). By combining these facts with Lemma 1, it follows that all tra�c assignments 

  that take the form in (19) satisfy to the Wardrop condition (16). As all such routing

vectors satisfy to   and  , they attain the maximum travel time on route   and

the free-�ow travel time on route  . Among these tra�c assignments, it is straightforward to see

that the only one which is fully transferring is the one associated with the case   and such

that  . 

Theorem 1 highlights a potential drawback of sel�sh routing: partially transferring Wardrop equilibria.

Even when the network is subject to an exogenous �ow smaller than its min-cut capacity, users’

sel�sh behavior can lead to tra�c assignments that only partially transfer the exogenous demand. In

a sense, we might think of this as sel�sh routing reducing the e�ective capacity of the network, as

vehicles would never use routes that are sub-optimal in terms of travel time. Because all users aim for

the shortest travel time routes and share the same queue before entering the network, the exogenous

�ow may be accommodated only partly, leading to congestion at the origin. In the following, we

characterize the exact amount of exogenous �ow loss due to partial demand transfer.

Corollary 1. Consider a partially transferring WE  . Let us indicate    the amount of non-

transferred exogenous �ow. Then:

if   takes the form in (18), then

if   takes the form in (19), then:

U ≠ ∅ >τ Fj τ Su supp( ) ⊆ {1., j − 1}RW q ∈ {j. ,k}

τ Su

Φ > , q ∈ {1., j − 1} ∖ uRW
q z̄̄̄q u = minU

= .τ Su minp τ
S
p

Φ > , q ∈ {1., j − 1} ∖ uRW
q z̄̄̄q

( ) = > ,τq xWq τ Sq τ Su

( , )RW xW

U ≠ ∅ =τ Fz τ Su supp( ) ⊆ {1, . . . , j}RW

q ∈ {j + 1, . . . ,k} τ Su

Φ > ,  q ∈ {1, . . . , j} ∖ uRW
q z̄̄̄q

( , )RW xW

Φ ≥RW
u z̄̄̄u Φ ≤RW

j z̄̄̄j u

j

j = k

Φ =RW
u z̄̄̄u □

( , )RW xW Ψ

( , )RW xW

Ψ = Φ − ;∑
j−1
p=1 z̄̄̄p (20)

( , )RW xW
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if  , then

if  , then

Example 2. Consider the network in Figure 4 with capacities, jam densities and speeds as in (12).

Suppose also that link lengths are as follows:

Suppose that  , so that Assumption 1 is satis�ed. In this case,   and  , so the unique

WE   is

Now, assume that  , which still satis�es to Assumption 1. In this other case,  , but 

, since

As a result, the unique WE of the game is the following partially transferring tra�c assignment:

The amount of non-transferred �ow   amounts to  .

Wardrop equilibria are said to be essentially unique when they all share the same minimum travel time.

Theorem 1 implies that the game   exhibits essential uniqueness. Speci�cally, when  , the

WE is unique. When  , if  , the WE is unique; however, if  , the WE is not unique,

but all WEs have the same travel time.

Remark 2. Assumptions 1 and 3 were made to simplify the analysis of the Wardrop Equilibria (WEs) of 

. Assumption 1 certainly limits the generality of the model. Without Assumption 1, routes can be

characterized by multiple minimal capacity links. In this more general case, routes would have

multiple bottlenecks, and the categories of valid density vectors for routes in sets    and    would

become richer, encompassing a wider variety of congestion patterns. On the other hand, Assumption 3

imposes minimal limitations on the set of parameters. We underscore that these two assumptions

allow for capturing the problem of partial demand transfer and are not the cause of it. As we will show

j < k

Ψ ∈ [Φ − , Φ − ] ;∑
j
p=1 z̄̄̄p ∑

j−1
p=1 z̄̄̄p (21)

j = k

Ψ ∈ [0, Φ − ] ;∑
k−1
p=1 z̄̄̄p (22)

L = (1, 1, 0.5, 2, 2, 2, 2).

Φ = 1000 k = 1 U = ∅

( , )RW xW

= (1, 0), = (25, 25, 25, 0, 0, 0, 0).RW xW

Φ = 1500 k = 2

U = {1}

= 11.25 min < 12 min = .τ S1 τ F2

= (1, 0), = (87.5, 87.5, 25, 0, 0, 0, 0).RW xW

Ψ 500

(G, Φ) U = ∅

U ≠ ∅ >τ Fj τ Su =τ Fj τ Su

(G, Φ)

PC PS
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in one of the next sections with an example, this issue also presents in networks where these two

assumptions do not hold.

Remark 3 (Comparison with[10]). As mentioned in Section  I-B, a non-atomic sel�sh routing game

relying on a description of the tra�c state based both on density and �ow, accounting for capacity

constraints and congested tra�c regimes has already been proposed in[10], but that model does not

include a supply and demand mechanism. This leads to two important di�erences. First, our model

exhibits essential uniqueness, whereas that model does not. Second, in some cases, that model does

not admit a WE for certain values of exogenous �ow, even when the latter is less than the min-cut

capacity of the network. In contrast, our model admits a WE for any possible exogenous �ow.

B. Social optimum

In general, a social optimum is an assignment minimizing some system cost. Here, we provide a

de�nition of social optimum that accounts for both the minimization of the total travel time over the

network and the full transfer of the exogenous �ow  .

De�nition 6. Given an exogenous �ow   satisfying to Assumptions 1 and 2, a social optimum (SO) of

the game   is a tra�c assignment   such that

We prove that, in our setting, there exists a unique SO.

Proposition 2. Suppose that Assumption 1 is satis�ed. Then, the NRG   admits a unique SO  ,

whose expression is as follows:

Φ

Φ

(G, Φ) ( , )RO xO

( , )RO xO

s.t.

= arg Φ (x) (23)min
z,x

∑
p=1

N

Rpτp

x ∈ C(R),

Φ ≤ ,Rp z̄̄̄p

= 1.∑
p=1

N

Rp

(G, Φ) ( , )RO xO

ΦRO

xOp

xO
k

= ( , … , , Φ − , 0, … , 0) ,z̄̄̄1 z̄̄̄k−1 ∑
p=1

k−1

z̄̄̄p

= ( , … , ) , p = 1, … ,k − 1,
z̄̄̄p

v1p

z̄̄̄p

vnp

= , … , .
⎛

⎝

Φ −∑
k−1
p=1 z̄̄̄p

v1k

Φ −∑
k−1
p=1 z̄̄̄p

vnk

⎞

⎠

(24)
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Proof. Suppose that    is a social optimum of the NRG and suppose that  . It is

straightforward that every link of route    is in free-�ow. In fact, since  ,  , which

means    admits a consistent �ow vector such that all links are in free-�ow. Hence,    cannot

present saturated links, as otherwise would not be minimizing the cost in (23). Then, (23) reduces to

It follows immediately that the unique SO is the one using the �rst   routes as in (24). 

One of the measure most commonly used to quantify the ine�ciency of WEs in routing games is the

Price of Anarchy (PoA) [2]. The PoA of a WE corresponds to the total travel time realized by the WE and

the minimum total travel time achievable, the one realized by the SO:

In our model the PoA turns out not to be the most appropriate measure of ine�ciency. In fact, for

partially transferring WEs, the PoA loses its signi�cance, as the WE is transferring a �ow less than

that transferred by the SO. In this case, a WE might even realize a total travel time smaller than the SO,

but this comes from the fact that the WE is transferring less �ow. On the other hand, when 

 is fully transferring, the PoA is well-de�ned and takes the following form:

Another interesting fact to remark is that if the WE of the NRG is fully transferring, then the WE and

the SO share the same routing vector, i.e.,    (see (17) and (24)). As this might sound

contradictory, let us discuss it more in detail.

Example 3. Consider the network in Figure 4 with capacities, jam densities and speeds as in (12) and

link lengths

as in (2). Assume that  , so that Assumption 1 is satis�ed. The WE in this case is unique and

corresponds to

( , )RO xO > 0RO
p

p Φ ≤RO
p z̄̄̄p p ∈ F ∪ S

RO
p RO

p

( , ) =RO xO argmin
z,x

s.t.

Φ∑N
p=1 Rpτ Fp

= , p = 1, … ,N,xp ( )
ΦRp

vlp

np

=lp 1p

Φ ≤ .Rp z̄̄̄p

= 1.∑N
p=1 Rp

k □

PoA( , ) = .RW xW
Φ ( )∑

N
p=1 RW

p τp xW

Φ ( )∑
N
p=1 RO

p τp xO
(25)

( , )RW xW

PoA( , ) = ≥ 1.RW xW
Φ ⋅ τ Fk

⋅ + (Φ − )∑k−1
p=1 z̄̄̄p τ Fp ∑k−1

p=1 z̄̄̄p τ Fk

=RW RO

L = (1.5, 1.5, 1.5, 2, 2, 2, 2).

Φ = 1500
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Indeed, such tra�c assignment implies that the two route travel times satisfy two

On the other hand, the SO corresponds to

In this case,

The SO fully transfer the whole exogenous demand, while also minimizing the total travel time,

keeping all used routes in free-�ow regime. We can provide the following explanation to this

phenomenon. At WE, each user sel�shly chooses their route to minimize their own travel time. This

sel�sh behavior leads to a density vector    as given in (3). Consequently, the �ow at the origin is

split between the two roads in a way that results in the routing vector  . Conversely, at SO, the

objective is to minimize the overall travel time for all users. A central planner determines the optimal

routing vector  , which results in a speci�c density vector  . The density vector   ensures that all

tra�c routes used are in the free-�ow regime, meaning they are not congested.

Therefore, even though the two routing vectors coincide,    can be seen as the routing vector

induced by the Wardrop condition to ensure that the used routes have the same travel time, while 

 is the routing vector that induces an optimal utilization of the network.

IV. Beyond parallel networks

In the previous sections, we analyzed sel�sh routing on parallel networks. This section aims to

provide an example showing that sel�sh routing can cause the same type of issues, such as partial

demand transfer, in more complex network topologies beyond parallel networks.

= ( , ) , = (25, 83.3, 25, 12.5, 12.5, 12.5, 12.5).RW 2

3

1

3
xW

( ) = ( ) = 12 min.τ1 xW τ2 xW (26)

= ( , ) , = (25, 25, 25, 12.5, 12.5, 12.5, 12.5).RO 2

3

1

3
xO

PoA( , ) =RW xW
24

17

xW

RW

RO xO xO

RW

RO
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Figure 6. Wheatstone’s network.

Consider the network in Figure 6 and suppose that the network geometry is the following:

Suppose that the network is subject to an exogenous �ow  . A WE for this network is given by

where the routing vector   represents the fraction of exogenous �ow allocated on each route. From

the expression of  , one can see that both link   and   are in congested regime. The travel times of

the used routes, Route    and Route  , is    h    min, approximately. The travel time of the unused

route, Route  , is   h   min, instead. Then, one can notice that   is a partially transferring.

Indeed, from (1), the supply of link one is exactly   veh/h. As the fraction of exogenous �ow aiming

to use Route    must pass through link  , it is clear that the exogenous �ow cannot be fully

accommodated. Also in this case, users’ sel�sh behavior leads to an ine�cient tra�c pattern that

causes partial demand transfer.

This example demonstrates that partial demand transfer is a fundamental issue of sel�sh routing.

Moreover, its occurrence is not limited to parallel networks but can also arise in more complex

f̄

vl

x̄

L

= (1500, 1500, 800, 1500, 1500),

= 40, ∀l ∈ L,

= (187.5, 187.5, 100, 187.5, 187.5),

= (8, 16, 4, 16, 8).

Φ = 1600

= (0, , ) , = (107.5, 51.41, 20, 0, 37.5),RW 9

16

7

16
xW

RW

xW 1 2

2 3 1 23

1 1 29 ( , )RW xW

800

2 1
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network topologies.

V. Concluding remarks

The main contribution of this paper lies in the analysis of the sel�sh routing model in a network

subject to supply and demand constraints on its links, inspired by Daganzo’s cell transmission model.

This approach e�ectively characterizes the congestion phenomena typical of tra�c networks. Our

analysis highlights that the issues associated with sel�sh routing extend beyond a mere reduction in

tra�c e�ciency in terms of total travel time. We have indeed demonstrated that sel�sh routing can

lead to sub-optimal utilization of the road network’s capacity. Even when the network is subject to an

exogenous �ow less than its min-cut capacity, which can theoretically be fully transferred across the

network, the tra�c distribution caused by the sel�sh behavior of users results in only part of the

tra�c being transferred, leaving part of the exogenous �ow unserved at the network’s origin.

This study opens several avenues for further research. The �rst potential extension involves applying

the model to more complex network topologies beyond the family of parallel networks. This would

signi�cantly enhance the model’s applicability to real-world scenarios. The main challenge in

generalizing to arbitrary networks lies in computing the Wardrop equilibria. In the current setting, we

found that these equilibria can be written in close form, and an algorithm for their computation is

straightforward. Certainly, this is not the case for more complex networks. Therefore, a primary

future objective will be to determine if the calculation of Wardrop equilibria can be framed as an

optimization problem similar to how Wardrop equilibria are calculated in the classical routing games

formulation [21].

A second important extension involves analyzing scenarios where the management of exogenous �ow

at the network’s origin di�ers from what we have considered. Our assumption of a single origin for the

exogenous �ow implies that users feeds into a single queue before entering the network. This implies

that players aiming for di�erent routes will accumulate at this common queue, independent of the

route they aim for. While this situation may correspond to certain real-world scenarios, there are also

cases that fall outside this framework and would be better modeled if each route had its own queue,

i.e., the entry to one road does not depend on the others. In such cases, the travel time for each route

should account for the waiting time in the queue to enter that route. In this case, the problem of

partial demand transfer would probably be mitigated, as excessively long waiting times for one route

would prompt users to consider alternative routes.
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Future work should also aim to encompass heterogeneity, so as to account for users with di�erent

levels of information or preferences, and mixed behaviors, to capture the presence of user classes that

act coordinately.

A further extension of the model involves its dynamization. As the current model is entirely static,

making it unclear whether tra�c dynamics actually converge to these tra�c assignments. To address

this, we need to design dynamic network �ows based on CTM principles, similar to the approaches

used in previous works by [19][20]. However, it is crucial to incorporate routing policies that re�ect the

sel�sh behavior of users.
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