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Resistance to BRAF and MAPK inhibitors is a signi�cant challenge in melanoma treatment, driven by

adaptive and acquired mechanisms that allow tumour cells to evade therapy. Here, we examined

early signalling responses to single and combined BRAF and MAPK inhibition in a BRAFV600E,

drug-sensitive melanoma cell line and a drug-resistant ARID1A-knockout (KO) derivative. ARID1A,

frequently mutated in melanoma, is associated with resistance and immune evasion. Using an

innovative systems biology approach that integrates transcriptomics, proteomics,

phosphoproteomics, and functional kinomics through matrix factorization and network analysis,

we identi�ed key signalling alterations and resistance mechanisms.

We found that ARID1A-KO cells exhibited transcriptional rewiring, sustaining MAPK1/3 and JNK

activity post-treatment, bypassing feedback sensitivity observed in parental cells. This rewiring

suppressed PRKD1 activation, increased JUN activity—a central resistance network node—and

disrupted PKC dynamics through elevated basal RTKs (e.g., EGFR, ROS1) and Ephrin receptor activity

post-treatment. ARID1A mutations also reduced HLA-related protein expression and enriched

extracellular matrix components, potentially limiting immune in�ltration and reducing
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immunotherapy e�cacy. Our graph-theoretical multi-omics approach uncovered novel resistance-

associated signalling pathways, identifying PRKD1, JUN, and NCK1 as critical nodes. While receptor

activation redundancies complicate single-target therapies, they also present opportunities for

combination strategies.

This study highlights ARID1A’s role in reshaping signalling and immune interactions, o�ering new

insights into melanoma resistance mechanisms. By identifying actionable targets, including JUN

and immune pathways, we provide a foundation for developing integrated therapeutic strategies to

overcome resistance in BRAF/MAPK inhibitor-treated melanoma.

One sentence summary: This study reveals how ARID1A-mediated transcriptional rewiring drives

resistance to MAPK inhibitors in melanoma by altering signalling pathways, immune interactions,

and receptor dynamics, highlighting potential targets for combinatorial therapies.
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Corresponding author: Evangelia Petsalaki, petsalaki@ebi.ac.uk

Introduction

Melanoma is an aggressive form of skin cancer arising from melanocytes. It is largely driven by

aberrant cellular signalling processes, speci�cally in the mitogen-activated protein kinase (MAPK)

pathway, with nearly 40-50% of all melanomas harbouring mutations in the central MAPK pathway

kinase BRAF[1]. The second most common mutation accounting for approximately 30% of all

melanomas is in neuroblastoma RAS viral oncogene homolog (NRAS), an upstream kinase regulator of

the MAPK pathway. Mutated BRAF, which in 80% of all BRAF mutations is BRAFV600E, is

constitutively active and phosphorylates MEK proteins (MEK1 and MEK2), which in turn activate the

downstream MAP kinases and aberrant cell proliferation. Melanoma cells harbouring mutated BRAF

typically exhibit a dependency on the BRAF protein and the components of the MAPK pathway[2].

BRAF inhibitors alone produce highly e�ective outcomes initially; however, these e�ects are short-

lived, as resistance mechanisms frequently emerge, leading to the reactivation of the MAPK pathway

and the development of adverse cutaneous e�ects[3]. Combination therapies were developed to

counter this by also inhibiting MEK, which led to longer progression-free survival (PFS)[4].

Pharmacological inhibitors designed to target the mutated BRAF, such as vemurafenib and
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dabrafenib, in combination with MEK inhibitors, particularly trametinib, have become standard

treatments in clinical settings for melanoma, speci�cally for patients with activating BRAF

mutations[5].

Despite their e�ectiveness, the response duration to these treatments are still short-lived, and

resistance develops in the majority of patients[6]. Studies suggest that around 50% of patients treated

with BRAF or MEK inhibitors experience disease relapse and progression within 6 to 7 months of

initiating treatment[7]. Resistance to BRAF inhibitors in around 80% of the cases involves genetic and

epigenetic changes, leading to the reactivation of the MAPK pathway through the ‘re-wiring’ of

cellular signalling processes[6][8][9][10][11][12][13][14]. Other mechanisms include reactivation of PI3K-

mTOR pathway through inactivation of PTEN phosphatase or via stromal cells within the tumour

microenvironment that secrete growth factors to activate receptor tyrosine kinases (RTKs) of both

PI3K and MAPK pathways[15][16][17]. Additionally, it has also been shown that cells can develop

resistance without acquiring new mutations but rather by temporary and reversible adaptations to

selective pressure[18][19]. Studies have described the existence of persister cells, i.e., cells that continue

to grow in culture for a long time even if the oncogenic BRAF is inhibited in culture[20]. How adaptive

changes in cells relate to acquired resistance is still not fully understood, with some studies

suggesting that cells that have undergone adaptive resistance might have low accuracy of DNA

replication and low e�cacy of DNA damage responses compared to drug-naïve cells leading to the

accumulation of resistance mutations[18][21]. A clear understanding of both how intracellular

signalling is immediately rewired upon perturbation and how more stable resistance is achieved over

the long term is necessary to design future therapies that are more e�cacious and longer lasting.

As an alternative to targeted therapy, immunotherapy approaches alleviate the inhibition of the

immune system by blocking inhibitory receptors allowing immune cells to eliminate cancer cells[22].

In melanoma, inhibitory checkpoint blockers, particularly anti-programmed cell-death protein 1

(PD-1) and anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), have demonstrated durable

responses in a subset of patients. While these responses tend to be more enduring, the overall

response rate to immunotherapy is relatively modest, estimated at 40-50% of patients[23].

Consequently, current recommendations advocate for the use of both targeted therapies and

immunotherapies as the �rst-line treatment for metastatic melanoma[23][24].
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Targeted therapy in melanoma is based on the dependency of the cells on the mutated pathway. These

include hotspot mutations in genes such as BRAF, NRAS, KIT, GNAQ and others. However, there is one

frequently mutated gene in melanoma; the one encoding the AT-Rich Interaction Domain 1A (ARID1A)

protein, which stands out as it is mutated without a distinct hotspot, which tends to be a pattern for

tumour suppressor genes[25]. ARID1A is a key component of the switching/sucrose nonfermentable

(SWI/SNF) complex. This complex is known for its pivotal role in chromatin remodelling and

in�uencing tumour epigenetics. Approximately 11.5% of melanoma patients exhibit mutations in the

ARID1A gene[26]. Mutations in ARID1A are associated with elevated programmed cell death-ligand 1

(PD-L1) expression, a heightened tumour mutational burden (TMB), decreased in�ltration of immune

cells into the tumour microenvironment (TME), and compromised mismatch repair (MMR)[27][28][29]

[30]. Notably, a number of genome-wide loss-of-function CRISPR screens have also identi�ed ARID1A

as a critical factor in conferring resistance to BRAF/MEK inhibitors like vemurafenib, and

selumetinib[31][32]. Despite these signi�cant �ndings, the clinical signi�cance of ARID1A mutations,

particularly in the context of melanoma, remains ambiguous. As ARID1A has been implicated not only

in resistance to targeted therapies for melanoma but also for modulating the therapeutic responses to

immune checkpoint blockade, its study lends to better understanding of interplay between these

mechanisms in developing resistance.

Here, we present an integrative multi-omics study to compare the response of drug sensitive ARID1A

WT (wild-type) vs resistant ARID1A KO (knockout) melanoma cell lines to both single and

combination drug perturbation. We devised a computational strategy that combined data integration

using multi-omics factor analysis (MOFA[33]), with a network propagation-based method,

phuEGO[34], to extract the predominantly a�ected signalling networks post-short-term treatment of

both resistant and sensitive melanoma cell lines with BRAF inhibitors alone or in combination. This

allowed us to interpret the data in a uni�ed framework providing new insights into the signalling

processes activated in response to single/combination drug treatment of both sensitive and resistant

melanoma cells.
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Results

Multi-omics data integration identi�es molecular signatures associated with drug

response and ARID1A KO

ARID1A has been previously identi�ed as a hit in genome-wide screens that have been carried out to

identify candidates that confer resistance to MAPK inhibitor (selumetinib) or BRAF inhibitor

(vemurafenib)[31][32]. We performed two additional genome-wide screens using A375 cells to identify

genes required for resistance of these cells to another MAPK inhibitor (trametinib) and identi�ed

ARID1A in both replicates together with other genes that are often required for drug resistance in

BRAFV600E mutant melanoma cells (e.g., NF1/2, KIRREL, MED12, TAF5/6L) suggesting that ARID1A

plays a role in resistance to melanoma cells with BRAFV600E mutation in response to MAPK or BRAF

inhibitor drugs (Fig. 1A, Table S1). We then used sgRNAs to target ARID1A and MED12, a previously

characterised gene responsible for drug resistance to vemurafenib and treated the cells with

trametinib for 6 hours. After this time point, we measured the level of phosphorylation of pMEK and

pERK using a Luminex assay[35]  and noted an increase in both pERK and pMEK phosphorylation in

both mutants compared to ‘empty’ sgRNA transduced cell lines. Unlike in the ‘empty’ transduced cell

line, the level of pERK in both mutants remained unchanged when the cells were treated with

trametinib suggesting that these cells were non-responsive to MAPK inhibition (Fig. 1B).
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Figure 1. Overview of study design. A. ARID1A KO confers a survival advantage in a pooled genome-wide

CRISPR/Cas9 screens of A375 cells treated with trametinib (MEKi). B. ARID1A KO cells do not show reduced

phosphorylation of ERK upon treatment with trametinib C. Schematic presentation of the method

employed to integrate and reconstruct signalling networks from melanoma multi-omics data. Up and

down indicate positive and negative weights in the factors. D. Factor weight loadings (y axis) for the

di�erent samples (colours for drug treatment and shapes for genetic conditions).
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To study the di�erences between signalling responses and gene regulation to single and combination

drug treatment in sensitive versus resistant ARID1A-knockout (KO) cell lines, we acquired an early

passage parental A375 cell line and a matched ARID1A KO line (Fig. S1A and B). This cell line exhibited

increased resistance to both vemurafenib and trametinib treatment (Fig. S1C). To comprehensively

characterise the signalling network rewiring underpinning the resistance of ARID1A KO to BRAF/MEK

inhibition, we collected multi-omics data from parental and ARID1A KO cells in the presence or

absence of drugs. Speci�cally, we collected mass spectrometry-based proteomics, phosphoproteomics

as well as transcriptomics data upon no treatment or treatment with either trametinib, or

vemurafenib, or both drugs for 6 hours (Materials and Methods; Fig. 1C). We used 6 hours as a time

point, as this provided a single steady-state measurement post-treatment of drugs and our pilot

measurement of phosphosites on 17-plex luminex assay showed that the e�ect of MAPK inhibitor on

suppression of phosphorylation of key signalling proteins was intact at this time point (Fig. S1D).

From the mass spectrometry we quanti�ed 8,139 proteins and 3,207 phosphosites after integration of

our di�erent experimental runs (Materials and Methods; Table S2 and S3). Using RNAseq we

quanti�ed the transcription of 14,376 genes (Table S4). All datasets were reproducible (Fig. S2A-C).

Among the 715 proteins, 372 phosphopeptides and 7,557 genes that were (signi�cantly) di�erentially

abundant (FDR adjusted p value < 0.01) between WT vs ARID1A KO experiments (Fig. S3; Tables S2-4),

only 13 were common to all datasets demonstrating the orthogonal nature of the di�erent omics

layers (Fig. S3B).

We next used multi-omics factor analysis (MOFA[33]) to identify latent factors that explain the

variation of all modes of data in a prior knowledge-agnostic manner (Fig. 1C). Our analysis revealed 3

factors describing the adaptive response to drug treatments (Factors 1 and 2) and the sustained

resistance response illustrating the e�ect of the loss of ARID1A (Factor 3) (Fig. 1D). The low-

dimensional representation of the data illustrated that the di�erences between the isolated drug

treatments (vemurafenib and trametinib) were marginal at the level of the omics data (Fig. S2A; Table

S5) compared to the drug combination treatment.

Variance decomposition showed that the drug associated factors explain the majority of variance in

both protein and phosphosite, and mRNA abundance (Fig. S4). Factor 2 (describing the di�erences

that characterise combination therapy), explains no variance in the transcriptome (0%), but the

majority of the variation is found in the phosphoproteomic data (32.5%) and to a lesser extent the

proteomic data (28.5%). Factor 3 (which is associated with the ARID1A KO) appears to describe

qeios.com doi.org/10.32388/LCFHDG 7

https://www.qeios.com/
https://doi.org/10.32388/LCFHDG


variance in the transcriptome (12.7%) and proteome (4.3%) and to a much lesser extent the

phosphoproteome (0.5%; Fig. S4).

To understand the functional implications on the signalling processes represented by the factors

identi�ed above, we sought to place the identi�ed genes within the context of their functional

environment, i.e., their interaction networks. To this end, we adapted phuEGO[34], a network

propagation-based method, to extract active signatures from phosphoproteomic datasets (Materials

and Methods), for use with the factor loadings taken from MOFA. PhuEGO combines network

propagation with ego network decomposition allowing the identi�cation of small networks that

comprise the most functionally and topologically similar nodes to the input ones. This allowed us to

generate minimal networks from the factor-speci�c loadings covering the proteins driving the

di�erences between drug responses and the ARID1A KO, as a function of phosphoproteomic,

transcriptomic and proteomic weights (Fig. 1C). This was performed on upregulated and

downregulated and then merged to produce 3 networks (Data S1).

Drug-agnostic changes associated with treatment involve negative feedback of RTKs and

MAPK

As mentioned above, the changes observed in factor 1 refer to those agnostics to the speci�c

treatment, i.e., regardless of whether BRAF, MEK1/2 or both were inhibited. The most central nodes of

the network included several receptors, kinases and transcription factors, with EGF, FYN, IGF1R, TEK,

MAPK1 and MAPK3 followed by PRKD1, JUN, PTK2 and INSR being characteristic examples (Fig. 2A

and Fig. S5A). Pathway enrichment analysis of the factor 1-associated network �nds pathways related

to ‘Melanoma’ and various terms related to MAPK signalling, including the term ‘DUSP regulation of

MAPK pathway’ (Fig. 2B and C).

qeios.com doi.org/10.32388/LCFHDG 8

https://www.qeios.com/
https://doi.org/10.32388/LCFHDG


Figure 2. Overview of molecular signature associated with drug response regardless of type of drug

(Factor 1). A. Nodes ordered (x axis) by their centrality (y axis) in the phuEGO-derived network that are

associated with drug-agnostic responses. B. Processes signi�cantly (y axis) enriched (x axis) in the drug-

agnostic phuEGO-derived network. C. Subset of drug-agnostic phuEGO-derived network highlighting

optimised to the 50 most central nodes and their interactions. D. Heatmap demonstrating the changes in

proteomics and transcriptomics abundances for negative regulators of the RTK/MAPK pathways. E.

Heatmap demonstrating the changes in proteomics and transcriptomics abundances, and functional

kinomics measurements for multiple kinases found as regulated or relevant in the network derived from

Factor 1.

In agreement with other studies[36], we observed the decrease in abundance of the known negative

feedback regulators of MAPK (DUSP1/2/4), shown to interact with MAPK3 (ERK1) (Fig. 2D and Fig.

S5B). In both SPRY1/2/4 and SPRED1/2, we detected a decrease in both RNA abundance and protein

abundance (Fig. 2D and Fig. S5B; Table S3 and S4). The decrease of these negative regulators of RTK

and MAPK signalling seems able to relieve downstream inhibition, leading to increased growth factor

signalling and ameliorating the e�ect of MAPK inhibition by vemurafenib or trametinib.

As protein/transcriptome abundance does not correlate well with kinase activity and we only found a

few phosphosites modulated, we also collected functional kinomics data using the PamChip

technology[37], which provides an estimate of multiplex kinase activities in a cell lysate over an array

of immobilized target-peptides (Fig. S5C; Table S6). The magnitude of changes in the activity of
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kinases, in this dataset, correlates strongly with the centrality of the kinases within our network, with

MAPK1 and PRKD1 being the most central kinases quanti�ed in our network (Fig. S5D). Among them,

we found a strong reduction in the MAP kinase activities upon drug treatment (Fig. 2E), even though

this was not mirrored by changes in their respective abundance. We also found several other activated

kinases, including PRKD1, FYN and IGFR1, which were shown to be central in our network, as well as

ABL2, FLT1 and FGFR2. EGFR presented only a very small increase in activity, which contrasts with its

reduction in both transcriptomic and proteomics abundance. Taken together, these results indicate

rewiring of RTK-driven signalling following drug perturbation.

Combination therapy invokes phosphorylation patterns associated with DNA damage

repair

Factor 2 illustrates changes that are associated with response to drug combination treatment (Fig. 1D)

and are mostly derived from the phosphoproteomics data (Fig. S4). Drug combination treatments

targeting both BRAF and MEK are currently the standard of care for patients with metastatic and non-

resectable melanoma, and have shown longer remission of the disease in patients[38]. Our functional

kinomics data indicate that there is practically no di�erence in the e�ect on MAP kinases between the

combination treatment and single treatment with vemurafenib (Fig. 2E). We also did not observe a

di�erence in killing e�ciency of combination treatment compared to mono-treatment for this cell

line (Fig. S1C). We, therefore, decided to zoom into this factor to shed light on the phosphoproteomic

di�erences observed for this level.

Applying phuEGO to the weights from Factor 2, maps the unique protein networks that are a�ected by

combination therapy (Fig. 1C; Fig. S6A). We detect transmembrane receptors, speci�cally ERBB2,

INSR and EGFR, being central in the network, and surrounded by di�erentially phosphorylated

proteins (Fig. 3A and B, and Fig. S6A). TMEM30A, a protein involved in cell migration, is the second

most central node followed by SRC. AKT1, an alternate growth regulator from MAPK, is also highly

central (Fig. 3A and B, and Fig. S6B). The corresponding combination therapy-speci�c downregulated

network is centred around the transcription factor MYC and the DNA damage response protein

TP53BP1 (Fig. S6B). Also present are the RAF1 and KRAS signal transducers. MAP3K7 (TAK1) is also

observed, as it has negative weights due to reduced phosphorylation (Fig. 3B; Fig. S6C) following

combined inhibition of MAP2K1 and BRAF.
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Figure 3. Overview of molecular signature associated speci�cally with combination drug response

(Factor 2). A. Nodes ordered (x axis) by their centrality (y axis) in the phuEGO-derived network that are

associated with drug-agnostic responses. B. Subset of combination treatment phuEGO-derived network

highlighting the 30 most central nodes and their interactions. C. Highlighted phosphosite changes in the

combination treatment showing the change in abundance (y axis) after treatment with drugs (x axis). D.

Processes signi�cantly (y axis) enriched (x axis) in the downregulated network upon combination

treatment.

Despite phosphoproteomics being the main driver for this factor, there was little change in kinase

activities, when looking at the functional kinomics data, compared to changes with the single-drug

perturbations (Fig. S6C). Looking at the phosphosites that drive the variance captured by Factor 2, we

�nd several phosphoproteins involved in DNA repair-related functions (Fig. 3C and Table S5). For

example, RIF1 is known to be a key regulator of TP53BP1 able to promote non homologous end joining

(NHEJ) DNA repair of double strand DNA breaks[39]. We found several phosphosites being regulated in

both proteins. While there are no functional annotations for these sites, RIF1 - S2196, which is

downregulated in the combination treatment compared to no or single-drug treatment (Fig. 3C) is
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very close to S2205, which is known to inhibit protein’s function[40]  and is predicted to be

phosphorylated by JNK1,3 or P38δ or γ, among other kinases, all of which are downregulated in our

functional kinomics dataset compared to no drug treatment[41]. SSRP1, which is also known to be

involved in DNA repair processes[42], shows decreased phosphorylation in S659 (Fig. 3C). ULK1-S556,

which is known to be phosphorylated by ATM[43]  and to be inducing autophagy[44], shows strong

upregulation in the combination treatment compared to all other conditions (Fig. 3C). SIRT1-S47 is

not one of the phosphosites driving factor 2, however it is one of the signi�cantly downregulated

peptides in combination treatment versus untreated control, and is known to promote epithelial-to-

mesenchymal transition (EMT) through autophagic degradation of E-cadherin[45]. LEO1 - S630 is

involved in the maintenance of embryonic stem cell pluripotency[46][47]  and is also downregulated.

Finally, we observe phosphoregulation of SRRM2, a component of spliceosome, at 3 phosphosites,

with 2 of them being downregulated and one upregulated (Fig. 3C).

Zooming out and to look at the processes involved in this network, we performed functional

enrichment analysis on both up- and downregulated networks. In the upregulated network (Fig. S6D),

we see signi�cantly enriched terms corresponding to RTK-driven signalling (ERBB signalling

pathway, ERBB2 signalling pathway and cMET signalling pathway). We also observe terms associated

with PI3K/Akt signalling and mTOR signalling (‘PI3K events in ERBB2 signalling’ and ‘mTOR

signalling pathway’). In the downregulated network, we see terms consistent with the expected

inhibition of MAPK signalling, such as ‘MAPK signalling pathway’. We also pinpoint terms associated

with DNA damage repair (‘ATM-mediated phosphorylation of repair proteins’ and ‘Recruitment of

repair and signalling proteins to double-strand breaks’), as well as processes associated with the

immune system and associated signalling (TNF-alpha, Interferons, Interleukins, Prolactin and

Growth hormone; Fig. 3D).

The basal transcriptional state of cells following ARID1A KO in�uences response to drug

treatment

Even though the ARID1A-KO cell line is resistant to MEK/BRAF inhibition (Fig. 4A), the general

networks associated with drug response appear to be very similar at the transcriptome and proteome

levels (Fig. 1D; Fig. S7A and S7B). At the multiplex kinase activity level, however, we observe distinct

di�erences, such as MAPK1/3’s insensitivity to drug treatment, switching activity of PRKD1 and FYN in

response to treatments and overall increase in activity of the Ephrin receptor family (Fig. 4A). If both
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conditions respond to drug treatment using the same molecular machinery (as represented by the

‘omics’), how can there be di�erent responses and non-responsiveness to drug treatment at the

signalling level? Looking at the initial state of the ARID1A KO cell lines, we observed di�erences in the

initial abundances of several receptor tyrosine kinases (RTKs). These include receptors also increasing

in the response to drug therapy, including ROS1 and ITGA4 (Fig. 4B). Other receptors are increasing in

abundance, including EGFR (Fig. 4C) and CD44, while NGFR and IL6R are decreasing in abundance.

Oncogenic transcription factors JUN and MYC are increasing in abundance, and so are their

corresponding regulons (Fig. S7C), indicating an increase in activity and oncogenesis following

ARID1A KO.
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Figure 4. Summary of changes induced by ARID1A KO and their interaction with drug response. A. Kinase

activity of selected kinases on ARID1A KO and WT at a basal level and post-combination drug treatment. B.

Heatmap demonstrating the changes in proteomic and transcriptomic abundances for selected kinases at a

baseline state for ARID1A targeted compared to parental A375 cell line. C. Expression of EGFR as

determined by �ow cytometry on the surface of ARID1A KO or parental A375 cell line. D. Scatter plot

showing probability distribution from the network propagation from receptors that are upregulated in

response to combination therapy (y axis) and receptors that are upregulated in response to ARID1A KO (x

axis). E. Scatter plot showing probability distribution from the network propagation from Ephrin receptors

activated following treatment of combination therapy in ARID1A KO cells. X axis refers to signi�cance (-

log10(P)) and the y axis shows the probability distribution of speci�c nodes. F. Network showing how

paths from receptors converge on JUN via FYN and PRKD1 following network propagation from EGFR and

ROS1. G. Kinase activity assay showing the median kinase activity (y axis) of selected kinases (x axis)

following combination drug treatment in parental A375 (ARID1A WT) cell lines (bottom) and ARID1A KO

A375 cell lines (top).

qeios.com doi.org/10.32388/LCFHDG 14

https://www.qeios.com/
https://doi.org/10.32388/LCFHDG


To explore the relevance of this transcriptional reprogramming and how it can rewire responses to

therapy, we simulated cross-talks from ARID1A KO-induced changes in receptors and therapy-

induced receptor changes. We combined networks derived from Factor 1 (representing drug-agnostic

changes in signalling) and Factor 3 (representing ARID1A KO induced changes in signalling) into a

network that describes the interaction between these two processes (Fig. S8A). The resultant network

was signi�cantly enriched for the terms ‘MAPK signalling pathway’, ‘Immune system’, ‘Melanoma’,

‘Focal adhesion’ and ‘FGF signalling pathway’ (Fig. S8B). To study cross-talks, we performed a

Markov Random Walk[48]  to simulate signal propagation from receptors with increased abundance

(Material and Methods). This was done separately for those receptors upregulated in ARID1A KO

versus receptors increased in combined trametinib and vemurafenib treatment, to identify where the

two signals converge, and which proteins are common in both processes. This analysis reveals that the

random walk converges on several critical proteins, including the transcription factor JUN, as well as

the proteins PRKD1, FYN, PTPN6 and PRKCD (Fig. 4D).

We also performed the same random-walk analysis on the members of the Ephrin receptor family that

were strongly activated after drug treatment in ARID1A KO cells, but not in the parental cell line (Fig.

4A and E, and Fig. S5C). This �agged other receptors, as well as the tyrosine kinase adaptor protein

NCK1, the phosphatase DUSP18 and the kinases PTK2, FYN and DAPK. Absolute levels of the mRNA and

protein reveal that NCK1 is no longer responsive to drug therapy as it was in the parental cell line,

whereas the levels of DUSP18 become responsive to drug therapy in ARID1A KO, but not in the parental

cell line. Conversely, the extent of the changes of the abundances of the kinases FYN and DAPK1 do not

di�er much between genetic conditions. However, their baseline abundance is a�ected in both cases

(Fig. S8C).

By calculating maximum �ow through the network from these important receptors to MAPK1/3 and

JUN/PRKD1, we can assess the routes via which these proteins can interact with each other within our

‘omics’-derived networks (Fig. S9A and B; Materials and Methods). A schematic ‘circuit’ showing the

simpli�ed pathways of these networks is shown in Figure 4F. This shows the intermediary role of

PRKD1, FYN and PTPN6 in mediating EGFR/ROS1 signalling towards JUN. According to our functional

kinomics data, both kinases FYN and PRKD1 are no longer highly active following drug treatment in

ARID1A KO cell lines (Fig. 4G).
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ARID1A KO suppresses HLA proteins in both in vitro and in vivo contexts

Given the role of ARID1A in gene regulation, we then looked speci�cally at the enrichment of

transcriptional regulons in the context of drug treatment in ARID1A KO background cells to identify

the di�erential activity of transcription factors. We see an increase in basal levels of JUN and MYC

activities following ARID1A KO, consistent with our previous �ndings (Fig. S7C). Strikingly, in ARID1A

KO, we also observe a signi�cant decrease in the expression of the regulons of RFX5, RFXAP and

RFXANK, which form the RFX complex to regulate the transcription of MHC class-II genes and NFYC

which is also involved in the regulation of the same genes[49]  (Fig. 5A). In ARID1A KO context, we

identify a consistent increase in expression of genes that are repressed by RFX5 (COL1A2) and a

signi�cant decrease in expression of those genes that are activated by RFX5 (MHC class-II and CD74)

(Fig. 5B). While MHC class-II family members, which present antigens to CD4+ T-helper cells, are

typically restricted to professional APCs (antigen-presenting cells), such as dendritic cells and B cells,

A375 cells have been shown to express MHC class-II molecules[50]. To validate our �nding, we tested

if the expression of MHC class-II proteins on the surface of ARID1A KO A375 cell lines were altered.

Remarkably, we found that the expression of HLA-DQ and HLA-DR was signi�cantly decreased in

ARID1A KO cells (Fig. 5C). Of note, among the upregulated transcription factor (TF) activities in

ARID1A cells, we were able to recognize TFs in mediating the regulation of extracellular matrices, with

TWISTs and SMADs being characteristic examples (Fig. 5A and B).
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Figure 5. Overview of molecular signature associated speci�cally with combination drug response

(Factor 2). A. Transcription factor activity changes (x axis) in ARID1A-targeted A375 cell line compared to

parental line. B. Log-fold changes for regulons (x axis) of four key transcriptional regulators (CIITA, JUN,

RFX5, and TWIST1) that were identi�ed to have signi�cantly di�erential (y axis) activity at a basal state

for the ARID1A KO cell line compared to the parental (ARID1A WT) A375 cell line. C. Cell surface expression

of two MHC class-II antigens (HLA-DQ and HLA-DR) on parental and ARID1A KO cell lines. D. Top

transcription factors and regulators (e.g., CIITA) with di�erential activity (y axis) in ARID1A-mutant

versus non-mutant melanoma patients from TCGA. E. Heatmap demonstrating the changes in proteomic

and transcriptomic abundances (rows) for selected genes/proteins (columns) at a baseline state for

ARID1A-targeted (KO) compared to parental (WT) A375 cell line.

Using the TCGA database[1], we explored whether these same patterns could be identi�ed in patient

data. We strati�ed 472 melanoma patients into ARID1A a�ected and una�ected groups by �nding

patients with either mutations or deletions in the ARID1A gene (see Materials and Methods). This
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identi�ed 80 patients with genetic aberrations in ARID1A and 392 patients without such aberrations

(Fig. S10). By studying the gene expression of members of the regulons of transcription factors, we

found that these patients have signi�cantly lower predicted activities of the MHC class-II regulators

RFXAP, RFX5 and CIITA (adjusted p value < 0.001) (Fig. 5D). Furthermore, we �nd a signi�cantly

elevated activity of the transcription factor SP7, a protein regulating the expression of collagens and

metalloproteins. Studying individual gene expression, we reveal that both ARID1A-a�ected patients

and ARID1A KO cells have increased expression of collagens and laminins, which can contribute to

increased ECM sti�ness[51], as well as a decrease in HLA proteins (Fig. 5E).

Discussion

Resistance to MAPK inhibitors poses a major challenge in melanoma treatment, driven by adaptive

and acquired mechanisms that enable tumour cells to evade therapy. While prior studies often focus

on either adaptive responses or acquired resistance in narrow contexts, we examined early signalling

changes after drug treatment and compared them to responses in melanoma cells with acquired

resistance. Using ARID1A, a resistance-associated gene frequently mutated in melanoma, we explored

short-term cellular responses in distinct genetic contexts. ARID1A’s role in resistance and immune

evasion underscores its therapeutic relevance, making it a compelling focus for this study.

In our study, we adopted an integrative approach to uncover network-level insights into how

signalling responses change under drug pressure in cells with two distinct genetic states. By analyzing

transcriptomics, proteomics, and signalling datasets, we addressed the limitations of single-metric

approaches. Transcriptomics data o�ers broader coverage, while proteomics and phosphoproteomics

are more a�ected by technical and biological noise[52]. To integrate these datasets e�ectively, we

combined integrative matrix factorization[33] with a network-centric method that we had previously

developed[34], enabling robust interpretation of complex data. This approach highlighted di�erences

in signalling pathways in�uenced by drug treatment and genetic alterations.

We focused our study on early cellular responses to drug treatment, selecting the 6-hour time point as

it maintains the pathway inhibition intact and allows the observation of critical cellular changes, such

as reduction in the abundance of dual-speci�city phosphatases (DUSPs) and other MAPK cascade

negative regulators[20]. This loss in phosphatases increases cell signalling activity by impairing signal

termination from RTKs. We con�rmed this feedback sensitivity by observing downregulation of DUSP,
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SPRY and SPRED genes within 6 hours of drug treatment, alongside heightened RTK (EGFR, IGFR,

FGFR) kinase activity, despite minimal changes in their gene or protein expression levels.

We used our functional kinomics dataset as an independent and orthogonal way to validate signalling

pathways inferred from our multi-omics integration approach. We found that the key nodes in our

factor 1-derived network were also the ones whose activity changed the most (mainly for

serine/threonine kinases), with a notable decrease in MAPK1/3 activity (the drug target). One striking

change both at gene expression level and kinase activity level was that for PRKD1. PRKD1 is a member

of the PKD serine/threonine kinase family that can be activated downstream of RTKs and, also, in

response to increase in cellular reactive oxygen species (ROS). It has been long known to be a

suppressor of epidermal growth factor (EGF)-dependent JNK activation[53]  by directly complexing

with JNK[54]. Upon PKD phosphorylation by PKC, it complexes with JNK and inhibits its ability to

phosphorylate c-Jun at a critical serine-63 position. PRKD1 is frequently mutated and highly

expressed in melanoma relative to other cancers, with pro-proliferative or anti-proliferative e�ects

being dependent on context[55]. We noted an increase in both expression and activity of PRKD1 upon

treatment with drugs. This was consistent with decrease in JNK phosphorylation indicating decreased

JNK/c-Jun axis activity. In mutant-BRAF melanoma, the JNK/c-Jun signalling pathway is associated

with apoptosis[19] and pathway activity increases in cells that are quiescent and resistant to apoptosis.

Combination therapy is used in clinics targeting two separate entities in the dependent MAPK pathway

and has been shown to provide longer e�cacy. A paradoxical activation of the MAPK pathway in BRAF

non-mutant cells when BRAF alone is targeted has been described before, which further justi�es

targeting both BRAF and downstream MAPK components (MAP2K1/2)[56]. At a signalling level, we

detected small but speci�c changes in the phosphorylation of proteins related to DNA repair pathways,

such as RIF1, and to EMT, such as SIRT1 and LEO1, although we could not account for these changes to

phenotypic variation, as in our experimental design with BRAF-mutant melanoma, we did not observe

a signi�cant di�erence in killing rates with mono or combination therapies. Given our observations,

more research is needed to establish whether such changes have indeed a role in promoting EMT and

a�ecting immunogenicity of melanoma cells upon combination treatment.

We noted that ARID1A KO and parental cells showed similar mRNA and protein expression responses

to drug treatment, including intact feedback mechanisms like DUSP downregulation. However,

signalling outcomes di�ered: ARID1A KO cells maintained MAPK1/3 and JNK activity, indicating

resistance to MAPK pathway inhibition. In parental A375 cells, PRKD1 was activated by drug
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treatment, while in ARID1A KO cells, its activation was suppressed, likely due to transcriptional

rewiring. We propose that this relieved JNK inhibition, leading to increased JUN activity, a key node in

the resistant network. JUN upregulation is a common response in BRAF inhibitor-treated

melanomas[19], and dual targeting of JUN and BRAF has shown synergy in overcoming resistance[57].

In our multi-omics network analysis, we identi�ed two di�erent types of signalling behaviour at the

receptor level in ARID1A KO cells, which could contribute to this inability to respond to MAPK pathway

inhibition. This included di�erences at a basal expression level of RTKs (EGFR, ROS1) but also at a

signalling e�ect, post drug perturbation level, speci�cally driven by Ephrin receptors. Studies have

demonstrated that elevated expression of receptor tyrosine kinases (RTKs), such as EGFR, can

overwhelm the mechanisms responsible for receptor endocytosis and degradation. As a result, the

receptor remains chronically active rather than exhibiting transient activation in the presence of a

ligand[58][59]. Recent work using mechanistic modelling shows that when oncogenic BRAF is fully

inhibited, MAPK pathways can be turned on in a RAS dependent manner, which, in turn, is stimulated

by receptor tyrosine kinase (RTKs)[14]. We propose that the basal increase in RTKs (EGFR, ROS1) in

ARID1A KO cells and the increased activity from Ephrin receptors post drug treatment could

monopolise cellular signalling, leading to changes in PKC dynamics and attenuate PRKD1 response

upon treatment with MAPK inhibitors, which leads to higher baseline JUN activity. This is consistent

with our observation that subunits of PKC (PRKCB and PRKCZ) themselves are already at a higher

phosphorylation status in the ARID1A KO cell line.

How mutations in ARID1A in�uence tumour-immune interactions has been a �eld of study for

multiple cancer types. Previous studies have shown that ARID1A mutations disrupt interferon (IFN)

signalling, which diminishes cytotoxic T-cell in�ltration, leading to compromised e�ectiveness of

immunotherapy models[30]. Notably, our analysis of ARID1A-targeted cells and patients with ARID1A

mutations revealed signi�cant de�ciencies in the basal expression of HLA-related proteins, which are

regulated by IFN signalling[60]. Apart from loss in MHC class II expression, we also observed

enrichment of ECM component expression in these mutant cells. Intriguingly, the same classes of

proteins (collagens, laminins, MMPs) have been previously reported to be di�erentially upregulated in

anti-PD1 treatment resistant MC-38 cell lines in mice compared to their treatment-sensitive

counterparts[61][62], suggesting that this basal signature of ARID1A could reduce the e�cacy of T cell

in�ltration and yield immunotherapy less e�cacious.
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Like previous studies[36], we observe the key importance of receptors in rewiring downstream

signalling towards resistance. However, in our data, we detect no evidence that ARID1A perturbs any of

the negative feedback mechanisms by Gerosa et al.[36]. However, in our system-level characterisation,

we see widespread increases in multiple receptors, including EGFR, ROS1, FGFR1 and ITGA4. This

suggests a mechanistic redundancy that makes selecting a single ‘silver-bullet’ protein to target

infeasible as cellular signalling has multiple routes to restore lost signalling. We used network-centric

methods to propagate from these receptors within our network, to reveal new proteins with

uncharacterised associations to MAPK resistance, including FYN, PRKD1 and NCK1. NCK1 is an adaptor

protein closely associated with Ephrin signalling (through which it was �agged in this analysis). We

�nd that its abundance is distinctly a�ected by drug response in the parental A375 cell lines, versus

ARID1A KO cells. In WT A375 cells, its (NCK1) gene abundance drastically drops following drug

treatment, whereas when ARID1A is knocked out, it remains unresponsive. In non-oncogenic

contexts, NCK1 is a known activator of both JUN (through JNK[63]) and MAPK (through RAS[64]). In

this data, we �nd both these families of kinases to be unresponsive upon ARID1A KO, suggesting a

functional interaction between these two events consistent with prior literature.

In this study, we used innovative graph-theoretical techniques to integrate multi-omics data using

networks. Prior research has arrived on a similar method, showing the utility and potential of using

MOFA to construct networks from integrated multi-omics datasets[65]. By combining factor analysis

with di�usion-based network construction, our study uniquely incorporates phosphoproteomics,

transcriptomics and protein abundance data to derive unbiased, multi-omics networks that reveal

perturbed pathways in melanoma drug resistance. Unlike methods relying solely on annotated

pathways, this approach allows the data to drive the discovery process, while still enabling functional

annotation through enrichment analysis. Additionally, the inclusion of kinomics activity data

validates the identi�ed network nodes by linking them to the most perturbed kinases following drug

treatment. Our methodology captures the orthogonal e�ects of drug treatments and genetic rewiring,

while uncovering shared protein-protein interactions that describe the interplay between the two

processes, o�ering a robust framework for extracting biologically relevant insights from noisy

datasets and prioritising hypotheses for further investigation.

In summary, this study provides a comprehensive systems-level analysis of the early cellular

responses to MAPK pathway inhibition in melanoma, revealing distinct adaptive and resistance

mechanisms. By leveraging innovative graph-theoretical and multi-omics integration techniques, we
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demonstrated that ARID1A-mediated transcriptional rewiring signi�cantly alters the cellular

signalling landscape, driving resistance to MAPK inhibitors. Our �ndings highlight key di�erences

between parental and ARID1A KO melanoma cells, particularly in signalling pathways involving

PRKD1, JUN and receptor tyrosine kinases (e.g., EGFR, ROS1). These di�erences underpin the enhanced

resistance observed in ARID1A KO cells. Additionally, the integration of functional kinomics with

multi-omics datasets enabled the identi�cation of critical nodes within drug-resistant signalling

networks. Notably, we observed a mechanistic redundancy in receptor activation that complicates

single-target therapies but presents opportunities for combination strategies targeting JUN or

immune pathways. These insights advance our understanding of melanoma resistance mechanisms

and lay the groundwork for more e�ective therapeutic interventions, including the potential

integration of immunotherapies tailored to speci�c genetic and signalling contexts.

Materials and Methods

Cell culture

Parental and ARID1A-targeted A375 lines were grown in DMEM-F12 (Gibco, Cat. No: 11320033) with

10% FBS (Gibco, Cat. No: 10500-064) and 1% Penicillin-Streptomycin-Neomycin (Sigma, Cat. No:

P4083) at 37°C with 5% CO2. Cells were grown in a monolayer, and the culture medium was changed

every 3 d. The cells were passaged once they reached ∼80% con�uence.

Whole genome CRISPR screen in the presence of trametinib

A genome-wide screen to identify genes conferring resistance to trametinib was performed using a

human genome-wide library (Yusa V1), which targets ∼18,000 genes with ∼91,000 gRNAs using a

detailed protocol described with reagents and product codes previously[66]. In short, two sets of Cas9

expressing A375 cells (80 million starting population for each set) were transduced at a MOI of 0.3

with the genome-wide lentiviral library. A day post infection, cells were treated with 2 μg/mL

puromycin to remove any non-transduced cells. Live cells on day 7 were split into 2 populations; one

was treated with 1 nM trametinib and the control set was left untreated. All live cells post-treatment,

and 30 million control untreated cells, were collected after 2 weeks, genomic DNA was extracted,

gRNAs were ampli�ed and libraries were generated. The MAGeCK software[67]  was used to identify

genes that were enriched in the live population compared to the control population.
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Luminex assay

For the Luminex assay, roughly 20,000 cells were seeded on 96-well plates overnight in 100 μL

serum-starved medium (Cell culture media without FBS). In the next morning, culture media

containing serum (standard cell culture media) and supplemented with drugs or growth factors (as

relevant) were added to the cells. After 6 hours, the plate with cells was placed on ice and cells washed

with 100 μL of cold PBS. Next, 60 μL lysis mix was added to the cells and the plate was shaken for 20

minutes at +4 °C and 650 rpm. The lysis mix was prepared by mixing Lysis bu�er (Protavio, Cat. No:

PR-ASSB), Protease Inhibitors (1 tablet to 50 mL of Lysis bu�er, Roche, Cat. No: 11873580001) and 2

mM PMSF (Sigma, Cat. No: 93482). Cell lysates were then frozen at -20 °C and phosphorylation was

measured utilising the multiplex assay service provided by Protavio[68]  (Athens, Greece). We

developed a phospho-plex platform for semi-quantitative analysis of the phosphorylation status of 17

phosphoproteins (Table S7), which displays a good signal to noise ratio to be measured in the in vitro

assays (Table S8).

The assay is based on the xMAP technology developed by Luminex Corporation. A mix of 17 capture

antibodies coupled to Luminex magnetic beads (Bead mix) was prepared. Each antibody is coupled to a

di�erent magnetic bead region. Beads can be uniquely identi�ed and di�erentiated by the Luminex

instrumentation due to their unique color classi�cation. A ‘detection’ mix consisting of 17 biotinylated

secondary antibodies speci�c for recognizing the analytes of the panel was also prepared. Detection

antibodies are biotinylated, in order to be recognized by a streptavidin-phycoerythrin (SAPE)

substrate used to produce the �nal detection signal.

Each sample is incubated with the bead mix in a well of a 96-well microtiter plate to allow binding of

the analyte. Any unbound material is removed by washing using a magnetic separator. The formed

antibody-analyte complex is incubated with the secondary detection antibody mix. Any unbound

detection antibody is removed by a washing step and the formed complex of capture antibody-

analyte-detection antibody is labelled with SAPE (MOSS Inc., Pasadena, Maryland, USA, Cat. No:

SAPE-001). The �uorescent emission of R-phycoerythrin and the distinct microsphere �uorescent

signatures are measured simultaneously by the Luminex® instrument.

Generation of ARID1A KO cell line

ARID1A-targeted cell lines were purchased from Synthego. Sequencing across the cut locus revealed a

single nucleotide insertion, which led to a frame-shift mutation (Fig. S1A). The KO e�ciency as
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determined by TIDE was ∼98% (Fig. S1B)[69].

Sample preparation for phosphoproteomics and functional kinomics analysis

Cells were seeded overnight at 0.5 x 106 cells/well density in 6-well plates. Before harvesting, cells

were treated with vemurafenib (APExBio, Cat. No: A3004) (1 mM) and trametinib (APExBIO, Cat. No:

A3018) (10 nM), separately or in combination, for 6 hours. Approximately 106 cells were used as the

starting material. Cells were washed twice with ice-cold PBS, scrapped with a cell scraper, and then

centrifuged at 1000 × g for 3 min. The supernatant was removed, and the cell pellets were frozen in

liquid nitrogen. For functional kinomics data generation, the same protocol was used except that 2 x

106 cells/T25 �asks were seeded overnight and all cells were collected post-treatment.

Kinome activity pro�ling through functional kinomics

Protein Tyrosine Kinase (PTK) and Serine/Threonine Kinase (STK) activity pro�les were assessed

using PamChip® peptide microarrays (Pamgene International BV, BJ’s-Hertogenbosch, The

Netherlands), which measure the ability of active kinases in a protein lysate to phosphorylate speci�c

peptides imprinted on multiple peptide arrays. A typical PTK PamChip® microarray contains 196

immobilized peptides, while a STK PamChip® microarray contains 140 peptides covalently attached

to a porous material. Peptides harbor phosphorylation sites derived from literature or computational

predictions that are associated with one or more upstream kinases. Phosphorylation is detected by

(phospho-)speci�c primary antibodies and the signal is quanti�ed by FITC-conjugated secondary

antibodies. Detection is performed in multiple cycles at di�erent exposure times and is monitored by a

CCD camera. Protein lysates were prepared from untreated and drug-treated A375 melanoma cell lines

of both genotypes, using M-PER mammalian extraction bu�er (Thermo Fisher Scienti�c, Waltham,

MA, USA), containing Phosphatase Inhibitor Cocktail and Halt Protease Inhibitor Cocktail EDTA-free

(1:100 each; Thermo Fisher Scienti�c, Waltham, MA, USA), and quanti�ed by the Bradford assay. A

total of 5 μg and 1 μg of protein lysates per array from each biological sample were used to pro�le

tyrosine and serine/threonine kinase activity, respectively, according to PamGene’s standard

protocols. Image analysis, peptide quality control (QC), signal quantitation, data normalization and

visualization, as well as upstream kinase prediction were performed using Bionavigator v.6.3 software

(PamGene, ‘s-Hertogenbosch, The Netherlands), according to manufacturer’s instructions. Three

qeios.com doi.org/10.32388/LCFHDG 24

https://www.qeios.com/
https://doi.org/10.32388/LCFHDG


independent biological replicates were used for each condition (parental (wild-type, WT), ARID1A KO,

untreated or drug-treated A375 melanoma cells).

Transcriptomics data generation

Cells were seeded at 0.5 x 106 cells/well density in 6-well plates and left overnight. Before harvesting,

cells were treated with Vemurafenib and Trametinib, separately or in combination, for 6 hours.

Approximately 106 cells were used as the starting material. Cells were washed twice with ice-cold PBS,

scrapped with a cell scraper, and then centrifuged at 1000 × g for 3 min. For RNA isolation, the RNeasy

Mini Kit (Qiagen, Cat. No. 74104) was used per manufacturer instructions, along with QIAshredder

columns for the homogenisation of cell lysates and DNase I treatment using DNase I kit (Thermo

Fisher, Cat. No. ENO525). Following RNA extraction, the integrity of the isolated RNA was assessed

using the Agilent 4200 TapeStation system (Agilent) according to manufacturer’s instructions, using

2 μL of a 1:150 dilution in H2O of each puri�ed total RNA sample. Samples were tested further for cDNA

synthesis using PrimeScript 1st strand cDNA synthesis kit (Takara Bio, Cat. No. 6110A) followed by RT-

PCR on β-Actin using 2 μL of cDNA product.

Transcriptomics data processing

We performed normalisation of the raw counts using the voom function from the limma package[70].

We selected only genes with a count-per-million (CPM) greater than 2 in at least one sample, to retain

for downstream analysis. We computed scaling factors to convert observed library sizes into e�ective

library sizes using the library edgeR[71]. We used these normalised counts as inputs to MOFA[33]. For

visualisation purposes we used the package limma to predict stable results and to calculate

signi�cance provided for the presented volcano plots and LFCs (Fig. S3A and Tables S1-3).

For transcription factor activity inference, we used the Python (version 3.8.18) package decoupleR.

Di�erential expression was computed using the Wald test, and log-fold changes (LFCs) were extracted

using the pydeseq2 library. The CollecTRI gene regulatory network, focusing on human

transcriptional regulation, was retrieved using the decoupler library. We employed the Univariate

Linear Model (ULM) implemented in decoupler to infer transcription factor (TF) activities from

di�erential expression data[72].
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Proteomics/phosphoproteomics data generation

Sample preparation

300 μL of a detergent-based bu�er (1% sodium deoxycholate (SDC), 10 mM tris(2-

carboxyethyl)phosphine (TCEP), 10 mM Tris, and 40 mM chloroacetamide) with cOmplete mini

EDTA-free protease inhibitor cocktail (Roche Cat. No. 04693132001) was added to the cell lysates,

boiled for 5 min at 95 °C, and sonicated using the Bioruptor for 20 cycles of 30 sec on : 30 sec o�.

Protein quanti�cation was carried out using the Bradford assay and an aliquot corresponding to 200

ug was retained for each sample. 50 mM ammonium bicarbonate was added, and digestion was

allowed to proceed overnight at 37 °C using trypsin (Sigma T6567) and LysC (Wako, 125-05061) at 1 :

50 and 1 : 75 enzyme : substrate ratios, respectively. The digestion was quenched with 10% formic acid

and the resulting peptides were cleaned-up in an automated fashion using the AssayMap Bravo

platform (Agilent Technologies) with a corresponding AssayMap C18 reverse-phase column, followed

by vacuum drying. To generate a reference channel to be used for all experiments, a pool of all samples

combined was digested.

Dried peptides were re-solubilised in TMT resuspension bu�er (87.5% HEPES, 12.5% ACN) and 11-

plex TMT labels (Thermo Fisher A34808) were prepared according to manufacturer’s instructions.

TMT labels were added to samples and labelling was allowed to occur during 2 hours at RT (room

temperature), after which the reaction was quenched using 5% hydroxylamine in HEPES, for 15

minutes at RT. The various channels were combined for each experiment and the acetonitrile content

was reduced by evaporation. The samples were then cleaned using a SepPak 1cc cartridge and dried

completely before solubilising in HpH bu�er A (10 mM NH4OH, pH 10.8). HpH fractions were collected

every minute over a 100 min gradient. Fractions between minutes 10 and 70 were concatenated into 20

fractions, and an aliquot of each was set aside for vacuum drying and full proteome analysis. The

remainder of the concatenated fractions were vacuum dried followed by re-solubilization in 80%

ACN/ 0.1% TFA for phosphopeptide enrichment. The enrichment was carried out in an automated

fashion using the AssayMap Bravo platform (Agilent Technologies) with corresponding AssayMap

Fe(III)-NTA cartridges, and eluates were dried by vacuum centrifugation and resolubilised in 1% FA,

of which ∼1 μg was injected on column.
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MS analysis

All spectra were acquired on an Orbitrap Exploris mass spectrometer (Thermo Fisher Scienti�c

BRE725535) coupled to an Ultimate 3000 liquid chromatography system. Peptides were trapped on a

300 µm i.d. x 5mm C18 PepMap 100, 5 µm, 100 Å trap column (Thermo Scienti�c P/N 160434) and then

separated on a 50 cm (75 um ID) in-house packed column using Poroshell 120 EC-C18 2.7-Micron

(ZORBAX Chromatographic Packing, Agilent). Samples were eluted over a linear gradient ranging from

9 - 45% 80% ACN / 0.1% FA over 65 min, 45 - 99% 80% ACN / 0.1% FA for 3 min, followed by

maintaining at 99% 80% ACN / 0.1% FA for 5 min at a �ow rate of 300 nL/min. Phosphopeptide-

enriched samples were eluted over a linear gradient ranging from 9 - 34% 80% ACN / 0.1% FA over 95

min, 45 - 99% 80% ACN / 0.1% FA for 3 min, followed by maintaining at 99% 80% ACN / 0.1% FA for 5

min at a �ow rate of 300 nL/min. MS1 scans were carried out at a resolution of 60000, with standard

AGC target and automatic IT. The intensity threshold was set to 5.0e4, charge states 2-6 were

included, and dynamic exclusion was used for a duration of 14 sec. For the MS2 scans, a window of 1.2

m/z was applied, with HCD collision energy set to 30%, an orbitrap resolution of 45000, and standard

AGC target and automatic maximum injection time determination.

Raw data processing

All raw �les were processed using ProteomeDiscoverer (Thermo) version 2.4.1.15 and obtained data

were searched against the SwissProt Homo Sapiens proteome (April 2021 release), using the Mascot

proteomic search engine with the following settings: a maximum of 2 missed cleavages, precursor

mass tolerance of 10 ppm and fragment mass tolerance of 0.8 Da. Oxidation (M) and Phosphorylation

(STY) were selected as dynamic modi�cations with carbamidomethyl (C)- and TMT-tags (K and N-

terminal) being selected as static modi�cations.

Phosphoproteomics data processing

Data processing and analysis were conducted in R (version 4.2.0)[73]. We took raw peptide abundances

and protein abundances from Proteome Explorer, and we normalised both by sample loading

normalisation. The normalised data was processed to extract phosphosite information for peptides,

including amino acid residue and position. UniProt IDs and phosphosite information were parsed

using the EnsDb.Hsapiens.v86 annotation R package[74].
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The data is sparse, so missing values were imputed across replicates within a single condition using

the function scImpute from the R library PhosR[75]. We performed this if there are 3 or more

quanti�ed values of that variable within a given condition (drug treatments and ARID1A KO). Data was

median centred and scaled, and batch e�ects from the di�erent TMT-11 plex runs were handled by the

R package ComBat[76]. Only samples with quanti�ed values above a threshold of 50 were retained for

further analysis. Log2 transformations were applied to facilitate downstream statistical modelling.

To decouple the e�ects of total protein abundance on phosphorylation, a regression-based method

was employed to estimate the “net” phosphorylation level (as implemented in[77]). This approach

calculates residuals from a linear model where log-transformed phosphoprotein abundance is

regressed against the corresponding total protein abundance for each sample (phosphopeptide

abundance ∼ protein abundance). The resulting residuals represent phosphorylation changes

independent of total protein levels. The processed data was aggregated based on unique phosphosite

identi�ers, with any duplicate entries being combined.

Multi-omics factor analysis

To input the multi-omics data into Multi Omics Factor Analysis (MOFA)[33], we used ANOVA to select

for the most highly variable phosphopeptides and proteins. The criteria for phosphopeptides

signi�cance were an FDR adjusted ANOVA p-value < 0.1 and an absolute mean abundance change > 0.5.

These were then standardised by z-score transformation. The criteria for protein and mRNA

abundance were more strict (those with p-values < 0.001 and absolute values > 1). This helps in

reducing noise by focusing on biologically relevant features.

A MOFA object was created using the integrated, long-format dataset, comprising phosphoproteomic,

proteomic, and mRNA expression views. Default data, model and training options were con�gured

using the R package MOFA2[78]. The number of latent factors was set to 3, re�ecting the number of

sources of variation in the data (Fig. 1 and Fig. S4). After training, sample metadata (e.g., drug

treatment and genetic background) were integrated into the MOFA object, enabling strati�ed analysis

based on biological conditions. The feature loadings for Factor 1 were multiplied by -1, such that in all

factors negative loadings represent features that correspond to control samples (untreated, non-

combination therapy or WT in factors 1, 2 and 3, respectively).
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Network Propagation using phuEGO

To explore the functional interactions between proteins identi�ed from the MOFA factors, we

employed phuEGO, a tool designed for signalling network construction[34]. The goal was to identify

potential regulatory hubs and pathways that are in�uenced by the key proteins associated with the

latent factors across all omics views in our dataset. Latent factor weights were extracted for each

omics view (i.e., phosphoproteomics, proteomics and mRNA expression) using the get-weights

function from the MOFA2 package. For each protein, the phosphosite with the highest absolute weight

was selected and then the results of each condition were aggregated across each view, so we had a

protein-level weight. We extracted proteins exhibiting the most extreme weights for each factor by

selecting the top or bottom 5% quantiles. Using these proteins as seeds, we ran phuEGO with

parameters Fisher-threshold = 0.1, Fisher-background = intact, Random-walk damping = 0.95, RWR-

threshold = 0.01 and KDE-cuto� = [0.5]. This generated a network for each factor found in the multi-

omics data.

Prize collecting Steiner-Forest analyses

To identify key functional genes within the larger factor networks, we employed the Prize-Collecting

Steiner-Forest (PCSF) algorithm with randomised edge costs. The randomised method enhances the

robustness of the resulting sub-network by running the algorithm multiple times, while adding

random noise to the edge costs[79]. We selected the top 50 central genes as terminal nodes based on

their PageRank centrality, which has been proven to produce biologically meaningful results[80][81]

[82][83]. These nodes were then weighted as prizes and then the PCSF algorithm was run with 4,000

iterations, with up to 5% random noise added to edge costs.

Random walk of receptors upregulated in ARID1A KO cancer cells

We implemented an algorithm for analysing receptor-mediated pathways using network propagation

(via random walks), with a focus on perturbations caused by ARID1A-knockout (KO) and combination

drug treatments. We used the union of graphs for Factor 1 (showing drug agnostic responses) and

Factor 3 (showing ARID1A KO-induced responses) to visualise the interaction between these two

processes. For both ARID1A KO and combination drug treatments, we extract receptor LFC (log-fold

change) data and split them into upregulated and downregulated receptors. We processed LFC

datasets from di�erential expression analysis by �ltering receptors (as de�ned by Omnipath) that are
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signi�cantly a�ected (adjusted p-value < 0.01). Receptors were identi�ed using the OmnipathR

package. These LFCs are normalised by dividing each element by the sum of the vector (to prepare for

random walks). We then perform a random walk on a graph with a given starting vector of

probabilities derived from the LFCs above. The random walk is corrected for hubs and used to compute

a stationary distribution that indicates the relative importance of a node for each condition.

To study the e�ect of increases in Ephrin receptor activation on our network, we take the union

network prior to PageRank/PCSF pre-processing and perform random walk with restart on the

receptor kinase activity, determined by the functional kinomics, target-peptide, phospho-tyrosine

data. We identi�ed receptor proteins in the kinomics phospho-tyrosine data using the OmnipathR

package. We �ltered this data to retain kinases that had statistically signi�cant changes in activity

(e.g., higher than a threshold of ±1 median kinase activity). Starting from an initial set of deregulated

receptors (normalised from the previous step), we performed random walks over the network to

estimate the stationary distribution of each node. To assess the signi�cance of observed distributions,

we conducted permutation tests by generating 10,000 random networks that preserved the degree

distribution of the original network. We compared the original and randomised distributions to

calculate p-values.

Maximum �ow of receptors to nodes of interest

We selected the nodes that were the most prominent in the heat di�usion from both combination

therapy and ARID1A KO (cytosolic proteins, JUN, PRKD1, PTPN6 and FYN) and performed heat

di�usion individually from each upregulated receptors in both conditions to detect which receptors

were responsible for their �agging (Fig. S9A). To identify pathways in the network that are

responsible for the highlighted network propagations between these receptors (ROS1, FGFR1 and

EGFR) and their targets, we computed the maximum �ow between a speci�ed source and sink node

from the combined graph, where edge capacities were de�ned by semantic similarity. This was done

using the R package, igraph[84].

We extracted the �ow values from the maximum �ow result and identi�ed edges with �ow values

exceeding the 95th percentile. For visualisation, a sub-graph was induced from the original graph,

retaining only the nodes connected by high-�ow edges. We identi�ed the connected components in

the sub-graph and selected the component containing both the source and sink nodes. This sub-graph
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represents the largest connected high-�ow region within the network between modulated receptors

and nodes of interest.

Clinical analysis of ARID1A gene-perturbed patients

Melanoma RNA-seq data and corresponding mutation information were retrieved from TCGA (The

Cancer Genome Atlas)[85]  using the TCGAretriever package. We extracted mRNA expression data

(FPKM values) for melanoma patients using the fetch_all_tcgadata() function. We obtained ARID1A

mutation and CNV (copy number variation) status to identify samples with ARID1A alterations. We

then categorised samples as having ARID1A mutations, deletions, or neither (wild-type, WT). To

determine transcription factor activity, we employed the decoupleR package, using the Univariate

Linear Model (ULM) as described above.

We also performed di�erential expression analysis to identify dysregulated genes in ARID1A-mutant

versus WT melanoma patients using the limma package. We �ltered out low-expression genes

(minimum count = 10) using the �lterByExpr using the edgeR package. We log-transformed the data

and normalised them via engagement of the voom function to stabilise the variance. We then �tted a

linear model to identify the di�erentially expressed genes and identi�ed signi�cant genes on the

adjusted p-values (FDR < 0.01).

Enrichment analyses

EnrichR (available https://maayanlab.cloud/Enrichr/) was used to perform enrichment analysis of the

members of the network using the BioPlanet 2019 database.

Data visualisation

All analyses were performed in R or Python, with the code being available upon request. The MOFA

analysis was conducted using the MOFA2 package, with additional processing and visualisation

supported by dplyr, purrr, stringr, ggplot2, PhosR and EnsDb.Hsapiens.v86.

The ggraph package was used to visualise the receptor networks and the results of the network

propagation analysis[86].
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