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Abstract – The main aim is to present stochastic computer analysis of the Gompertz-Makeham 

mortality law applied frequently in biology to approximate mortality rates in various species 

populations. The exponential time series with three different coefficients defined as the Gaussian 

uncorrelated random variables is analyzed and its first four central probabilistic moments are derived 

analytically from the definition as the functions of expectations and standard deviations of these 

coefficients. They are used further in the visualization of time fluctuations of the expectations, 

coefficients of variation, skewness, and kurtosis of the mortality rate. Computational experiments 

performed in the computer algebra system MAPLE compare all these characteristics for various 

combinations of the input coefficients of variation of the input randomness level. They document that 

probabilistic characteristics of the mortality rate highly depend upon the input probabilistic parameters 

combination, where Gaussian uncertainty within the exponent seems to be the most influential. The 

numerical approach explored in this work may be further extended towards some other probabilistic 

methods like simulation or perturbation-based algorithms, other probability distributions in time series 

coefficients, power or polynomial mortality laws with random coefficients as well as more advanced 

modeling of the mortality rate defined as some stochastic process using probability of transition in 

time.  
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1. Introduction 

Stochastic analysis of mortality in biological populations and durability in engineering 

systems are similar from the mathematical point of view and can be efficiently characterized 

by the specific time series with random coefficients. There are polynomial, power, and 

exponential time series representations available in this research area, cf. Charlesworth (2001) 
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[1],  Jodrá (2009) [2], and van Noortwijk and Pandey (2004) [3] as well as, of course, various 

stochastic processes with the given transition probability function of survival in time 

employed by Gavrilov and Gavrilova (2001) [4],  Gonos, Trougakos and Chondrogianni 

(2007) [5] and Sobczyk (1991) [6]. It should be mentioned that the aging phenomenon 

common for all populations in biology has been numerically studied also in nonlinear models 

in engineering in terms of the corrosion process proposed by Kamiński (2013) [7] or with the 

homogenization method applicable for composite materials designing process, cf. Kamiński 

(2008) [8]. A time series representation is more convenient in computational analysis as it 

may be directly derived from the statistical data widely accessible in biology, medicine, and 

engineering and it results in large time and computer power savings and also with high 

accuracy. It offers a direct analytical derivation of the basic probabilistic characteristics of 

these series when their coefficients have uniquely defined specific probability density 

functions, i.e. Gaussian or lognormal, for instance. Full and unique characterization of 

stochastic aging by its probabilistic characteristics of time fluctuations enables for a reliable 

prediction of the given population probability of survival or, analogously in engineering, 

stochastic time-dependent reliability and durability (prediction) of the analyzed technical 

structure. It should be underlined that computer simulation of the mortality phenomenon and 

progress in some populations by the stochastic process with renewal, although theoretically 

very sound, cannot be directly associated with the experimental data. That is why computer 

analysis of the mortality is provided here with the use of time series with Gaussian 

coefficients and has been implemented into the symbolic algebra system MAPLE – it is 

related to the most popular model in this area called Gompertz-Makeham exponential law, see 

Gompertz (1825) [9], Makeham (1860) [10] and Wrycza (2014) [11]. It is studied including 

uncertainty in both time-dependent and independent components that are fully uncorrelated 

(according to the lack of experimental data). Time fluctuations of the first four central 

probabilistic moments of the mortality rate are analytically derived from the classical integral 

definitions as some functions of the expectations and standard deviations of these Gaussian 

coefficients. Next, these moments are numerically studied in the context of their stochastic 

sensitivity concerning various input uncertainties in the mortality law coefficients. Their 

visualization and detailed discussion enable us to predict whether mortality distribution at the 

given time may remain Gaussian or cannot, which is of paramount importance in survival 

probability estimation for various populations. The paper concludes with a listing of further 

possible extensions of this model towards some other probability distributions in the 

coefficients, other frequently explored analytical representations of the mortality itself as well 
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as related concurrent stochastic computer techniques enabling faster and more accurate 

analysis of these phenomena.  

  

2. Probabilistic analysis  

We assume the mortality law in the following form:  

, (1) 

where A(ω), B(ω), and C(ω) are uncorrelated Gaussian random variables with uniquely given 

first two probabilistic moments – E[A], σ(A), E[B], σ(B) as well as E[C], σ(C), 

correspondingly. Additionally, it is assumed that these variables are fully uncorrelated and 

this algebraic simplification follows a lack of statistical data rather, as all the cross-

correlations can be relatively easily incorporated into this model. We investigate analytically 

the first four probabilistic moments of this mortality process  at the given time 

moment  depending upon the random variable X with the probability density 

function gX via the following classical integral definition of the kth central probabilistic 

moment:   

, 
(2) 

where  is the expectation of this series defined traditionally as  

. 
(3) 

These are in turn:  

• expected values  

, (4) 

• variances 
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(5) 

• third central probabilistic moments  

 

 

 

(6) 

• fourth central probabilistic moments  

 

 

 

 

 

(7) 

 

These equations may be simplified further if only an uncertainty in one of the coefficients A, 

B, or C is excluded, nevertheless, the analytical forms obtained here have elegant and 

relatively simple forms that are easy for further computational implementation, either outside 

a symbolic algebra program. According to the fact that the mortality rate depends linearly 

upon the coefficient C treated here as the Gaussian random variable, the third central 

probabilistic moment  (and skewness at the same time) is free from any 

contribution of the quantity C. Let us note that these equations can be derived alternatively by 

using the complex exponential characteristics function adjacent to the Gaussian random 

variable. Analogous equations related to the power time series with Gaussian random 

coefficients have been derived and analyzed numerically in [7]. All the aforementioned 

moments enable us further to calculate the basic probabilistic coefficients, also in an 

analytical manner (via symbolic computer analysis), and we have in turn   
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, 
(8) 

• skewness 

, (9) 

• as well as kurtosis  

, (10) 

where  

 (11) 

stands classically for the standard deviation.  

 

3. Computational analysis   

Further numerical analysis is focused on the expectations (Figs. 1-3), coefficients of variation 

(Figs. 4-6), skewness (Figs. 7-9), and kurtosis (Figs. 10-12) of the mortality rate determined 

as the function of time and some input coefficient of variation of A, B, and C, separately. All 

the coefficients in the analyzed time series are randomized due to the Gaussian probability 

distribution at the same time, but one of the coefficients of variation of these parameters 

changes additionally in the interval [0.00,0.10]. The input expected values are adopted as 

deterministic input data from the computational sensitivity analysis carried out by Wrycza 

(2014). The following probabilistic data are adopted: E[A]=0.0001 (left series in computer 

visualization and upper bound on time-dependent aging) and 0.00001 (right series and the 

lower bound, correspondingly), E[B]=0.1 and E[C]=0.1 together with their coefficients of 

variation α(A), α(B) and α(C) smaller or equal to 0.10. The surfaces of the expected values 

(Figs. 1-3), coefficients of variations (Figs. 4-6), skewness (Figs. 7-9) as well as kurtosis 

(Figs. 10-12) varying in time are also presented as the functions of input randomness level. 

The first surface is obtained with α(A)=[0.00,0.10] with constant α(B)=α(C)=0.10, the second 

series is computed for α(B)=[0.00,0.10] with constant α(A)=α(C)=0.10, and finally, the third 

one with α(C)=[0.00,0.10] and for the constants α(A)=α(B)=0.10 to verify stochastic 

sensitivity of the mortality rate probabilistic characteristics.  

( )( ) ( )( )
( )[ ]tE
tVart
;
;; 2 wµ

wµwµa =

( )( ) ( )( )
( )( )t
tt
;
;; 3

3

wµs
wµµwµb =

( )( ) ( )( )
( )( )( ) 3
;
;; 4

4 -=
t
tt

wµs
wµµwµk

( )( ) ( )( )tVart ;; wµwµs =



6 
 

 The expected values surfaces contained in Figs. 1-3 document very precisely that 

uncertainty in the exponent constant B plays the major role here, while these expectations are 

almost insensitive to the applied fluctuations in coefficients of variation α(A) and α(C); their 

extreme values are not so large as for other computational studies [7,8], where one may find 

0.20 or even 0.30. This influence of α(B) and the resulting value E[μ] systematically increase 

both together with the aging time. The ratio of the results obtained in the right column and the 

left one equals almost 10, i.e. the ratio of the expected values E[A] applied in these computer 

experiments, what is expected after Eqn. (1). A small difference from 10 illustrates that the 

resulting expected values increase a little bit slower as the parameter E[A] is included also in 

the exponent term, contrary to the deterministic situation. The very specific situation is 

obtained in the right graph in Fig. 3, where α(C)®0 leads to the sudden decrease of mortality 

expectation for the entire time domain. It agrees with the previous deterministic 

computational experiments, where the parameter C has been discovered as the important 

factor at the early stage of the entire aging process. The majority in an uncertainty of the 

parameter B is more apparent in Figs. 4-6, where we detect no fluctuations of α(μ) together 

with any modifications of the coefficients α(A) and α(C) separately. Nevertheless, the extreme 

output coefficient of variation in any case remains the same and is a few times larger than the 

extreme combination of input coefficients α(A), α(B), and α(C) altogether. It means that the 

mortality rate in the exponential Gompertz-Makeham law is highly sensitive to the 

uncertainty in its coefficients, and especially to α(B). This parameter is so important that 

α(B)=0 reduces about ten times the overall value of α(μ) (see Fig. 5). It should be underlined 

also that the randomness in this aging process increases exponentially in time and becomes 

many times larger after the critical age of 60, which usually agrees even with the personal 

observations. Interestingly, the expected value E[A] plays also some role in α(μ) and the ten 

times increase of its amount leads to about a 20% increase in this coefficient of variation – it 

is a very unusual situation compared to some other case studies [6]. This is of course because 

E[A] and α(B) are combined in Eqn. (5) and, as a result, also in Eqn. (8).  
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Fig. 1. Expected values of the mortality as the function of time and α(A) with α(B)=α(C)=0.10; E[A]=0.0001 
(left graph) and E[A]=0.00001 (right graph) 

 
 

Fig. 2. Expected values of the mortality as the function of time and α(B) with α(A)=α(C)=0.10; E[A]=0.0001 
(left graph) and E[A]=0.00001 (right graph) 

 
 

Fig. 3. Expected values of the mortality as the function of time and α(C) with α(A)=α(B)=0.10; E[A]=0.0001 
(left graph) and E[A]=0.00001 (right graph) 

 
Fig. 4. Coefficients of variations of the mortality as the function of time and α(A) with α(B)=α(C)=0.10; 

E[A]=0.0001 (left graph) and E[A]=0.00001 (right graph) 
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Fig. 5. Coefficients of variations of the mortality as the function of time and α(B) with α(A)=α(C)=0.10; 
E[A]=0.0001 (left graph) and E[A]=0.00001 (right graph) 

 
Fig. 6. Coefficients of variations of the mortality as the function of time and α(C) with α(A)=α(B)=0.10; 

E[A]=0.0001 (left graph) and E[A]=0.00001 (right graph) 

 
Fig. 7. Skewness of the mortality as the function of time and α(A) with α(B)=α(C)=0.10; E[A]=0.0001 (left 

graph) and E[A]=0.00001 (right graph) 

 
Fig. 8. Skewness of the mortality as the function of time and α(B) with α(A)=α(C)=0.10; E[A]=0.0001 (left 

graph) and E[A]=0.00001 (right graph) 
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Fig. 9. Skewness of the mortality as the function of time and α(C) with α(A)=α(B)=0.10; E[A]=0.0001 (left 
graph) and E[A]=0.00001 (right graph) 

 
Fig. 10. Kurtosis of the mortality as the function of time and α(A) with α(B)=α(C)=0.10; E[A]=0.0001 (left 

graph) and E[A]=0.00001 (right graph) 

 
Fig. 11. Kurtosis of the mortality as the function of time and α(B) with α(A)=α(C)=0.10; E[A]=0.0001 (left 

graph) and E[A]=0.00001 (right graph) 

 

Fig. 12. Kurtosis of the mortality as the function of time and α(C) with α(A)=α(B)=0.10; E[A]=0.0001 (left 
graph) and E[A]=0.00001 (right graph) 
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Finally, we study skewness (Figs. 7-9) and kurtosis (Figs. 10-12) which are unavailable in the 

literature on this problem. They show whether the final probability distribution of the 

mortality rate may be symmetric or it is not as well as show the concentration of the 

probability tale about the expected value (0 is adjacent here to the Gaussian bell-shaped curve 

and a higher value means of course closer concentration). These coefficients are a little bit 

different than the results contained in Figs. 1-6. Figs. 7-10 document that an uncertainty in the 

parameter A has no influence on the final results at any time of the aging process. Both 

parameters start from zeroes at t=0 and reach the values β(μ)=6 and κ(μ)>100 at the end of the 

time scale, so that μ(t=100) cannot have a distribution that is even similar to the Gaussian one 

(cannot be uniquely defined by its first two moments either). Figs. 8 and 11 confirm the 

majority of the uncertainty in B because α(B)®0 returns β(μ) ®0 together with κ(μ) ®0 at any 

time of this process, while the mortality rate is insensitive to this coefficient at time t=0 even 

in the deterministic case, after Eqn. (1). Both skewness and kurtosis exponentially increase 

together with time and, independently, with the value of α(B). The extreme combination of 

skewness and kurtosis corresponds exactly to Figs. 7 and 10, but right now these parameters 

remain almost zero elsewhere. Numerical results obtained for  and given in 

Figs. 9 and 12 entirely differ from the others. Both skewness and kurtosis equal 0 almost 

everywhere except some very small computational domains, where α(C) and t are close to 0. 

The very large positive and negative variations of β(μ) and κ(μ) result from numerical 

discrepancies rather, however, one needs to remember that α(C) is included also in the 

denominators of Eqns. (9-10) and these denominators are close to 0 at the beginning of both 

parameters variability scales. This phenomenon coincides a little bit with fluctuations in the 

corresponding expected values in Fig. 3 (larger effect on the right graph, more smoother 

transition to 0 on the left graph). The principal conclusion comes from Figs. 7-12 is that the 

mortality rate can have a distribution similar to the Gaussian probability density function 

while randomizing A and C according to the same Gaussian PDF and inserting B as the 

deterministic parameter.  
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4. Concluding remarks    

 

[1] Gaussian uncertainty in all parameters of the Gompertz-Makeham exponential mortality 

law enables an analytical derivation of the basic first four probabilistic characteristics of the 

mortality rate as the functions of the expected values and standard deviations of the constants 

A, B, and C included in this model. It reflects very well the existing statistical evidence 

concerning both mortality in biology and medicine as well as durability verification in various 

areas of modern engineering. The resulting analytical formulas are compact enough to be 

implemented in any computer program, also out of the computer algebra system like MAPLE 

or MATLAB.  

[2] The major uncertainty source is discovered in the parameter B appearing in this law and it 

is done through the relevant stochastic sensitivity verification. This randomness together with 

the uncorrelated uncertainties in A and C may result in the coefficient of variation α(μ) that is 

ten times larger than the input ones. Quite naturally and expectedly, this output uncertainty 

increases exponentially together with aging time and is enormously large after the age of 

almost 60 years. Further, we notice that a coincidence of all the input extreme uncertainties 

results in the probability distribution of the mortality rate that is non-symmetric (β close to 6) 

and has a larger concentration about its expectation than the Gaussian PDF (κ tends to even 

100). Smaller stochastic sensitivity of the mortality to the parameters A and especially C is 

confirmed in the statistical context also.  

[3] Further computational studies in this area may concern some other mortality laws like 

power or polynomial time series with the coefficients having non-Gaussian distributions like 

at least log-normal one that is justified frequently in the engineering systems durability. It 

should be mentioned that several probability distributions exclude the availability of an 

analytical derivation presented above and then one may implement alternatively the 

traditional Monte-Carlo random sampling in discrete time moments or the generalized 

stochastic perturbation technique presented in [7].  
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