

NSE CHARACTERIZATION OF THE ORTHOGONAL GROUP $O_7(3)$

MARYAM JAHANDIDEH AND SARA SHOKROLAHI

ABSTRACT. Let G be a group and $\omega(G)$ be the set of element orders of G. Let $k \in \omega(G)$, $s_k = |\{g \in G | o(g) = k\}|$ and $nse(G) = \{s_k | k \in \omega(G)\}$. In this paper, we prove that if G is a group and $O_7(3)$ is the Orthogonal simple group over GF(3) such that $nse(G) = nse(O_7(3))$, then $G \cong O_7(3)$.

1. Introduction

Let G be a finite group and $\omega(G)$ be the set of element orders of G. If $k \in \omega(G)$, then s_k is the number of elements of order k in G. Let $nse(G) = \{s_k | k \in \omega(G)\}$. If n is a positive integer, the set of all the prime divisors of n is denoted by $\pi(n)$. The number of the Sylow p-subgroups P_p of G is denoted by n_p or $n_p(G)$. We set $\pi(G) = \pi(|G|)$. To see notations concerning the finite simple group, we refer to reader [1]. A finite group G is called a simple K_n - group, if G is a simple group and $|\pi(G)| = n$. In 1987, J. G. Thompson posed the following problem related to algebraic number fields [13].

Thompson's Problem. Let $T(G) = \{(k, s_k) | k \in \omega(G), s_k \in nse(G)\}$. Suppose that T(G) = T(H) for some finite groups H. If G is a finite solvable group, is it true that H is necessarily solvable?

A finite group G is characterizable by order and nse; if H is a finite group and |G| = |H| and nse(G) = nse(H), then $G \cong H$. However, some groups are characterized by only the set nse(G). The aim of this paper is to prove that the Orthogonal group $O_7(3)$ is characterizable by nse. The following theorems have been appeared so far:

- (1) Theorem[11, 12]. Let G be a group and S be a simple K_i -group, where i = 3, 4. $G \cong H$ if and only if |G| = |H| and nse(G) = nse(H).
- (2) Theorem [4, 5]. The two groups A_{12} and A_{13} are characterizable by order and nse.
- (3) Theorem [7]. All sporadic simple groups are characterizable by nse and order.
- (4) Theorem[10]. $L_2(2^m)$ with $2^m + 1$ prime or $2^m 1$ prime, is characterizable by nse and order.

 $[\]operatorname{MSC}(2010)$: Primary: 20D05; Secondary: 20D06 ; 20D20.

Keywords: Element order, Thompson's problem, Number of elements of the same order.

- (5) Theorem [12, 8]. $L_2(q)$, where $q \in \{7, 8, 9, 11, 13\}$ are characterizable by only the nse.
- (6) Theorem [6]. $G_2(5)$ is characterizable by nse.

Main Theorem. Let G be a group such that $nse(G) = nse(O_7(3))$, where $O_7(3)$ is the Orthogonal group over GF(3). Then $G \cong O_7(3)$.

We will give some lemmas which will be used to prove the main theorem.

Lemma 1.1. [2]: Let G be a finite group and n be a positive integer dividing |G|. If $L_n(G) = \{g \in G | g^n = 1\}$, then $n ||L_n(G)|$.

Lemma 1.2. [9]: Let G be a finite group and $p \in \pi(G)$ be an odd number. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$ with (p, m) = 1. If P is not cyclic, then the number of elements of order n is always a multiple of p^s .

Lemma 1.3. [12]: Let G be a group containing more than two elements. If the maximum number s of elements of the same order in G is finite, then G is finite and $|G| \leq s(s^2 - 1)$.

Lemma 1.4. [3]: Let G be a finite solvable group and |G| = mn, where $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, (m,n) = 1. Let $\pi = \{p_1, \ldots, p_r\}$ and h_m be the number of Hall π -subgroups of G. Then $h_m = q_1^{\beta_1} \cdots q_s^{\beta_s}$ satisfies the following conditions for all $i \in \{1, 2, \ldots, s\}$:

- (1) $q_i^{\beta_i} \equiv 1 \pmod{p_j}$ for some p_j ;
- (2) The order of some chief factor of G is divided by $q_i^{\beta_i}$.

Lemma 1.5. [14]: Let G be a simple K_4 -group. Then G is isomorphic to one of the following groups:

- (1) A_7 , A_8 , A_9 and A_{10} ;
- (2) M_{11} , M_{12} or J_2 ;
- (3) one of the following:
 - (i) $L_2(r)$, where r is a prime and $r^2 1 = 2^a \cdot 3^b \cdot v^c$ with $a, b, c \ge 1$, and v is a prime number greater than 3.
 - (ii) $L_2(2^m)$, where $2^m 1 = u, 2^m + 1 = 3t^b$, with $m \ge 2, u, t$ are primes, $t > 3, b \ge 1$.
 - (ii) $L_2(3^m)$, where $3^m + 1 = 4t, 3^m 1 = 2u^c$ or $3^m + 1 = 4t^b, 3^m 1 = 2u, m \ge 2$, u and t are odd primes, $b \ge 1, c \ge 1$.
 - (iv) One of the following 28 simple groups: $L_2(16), L_2(25), L_2(49), L_2(81), L_3(4), L_3(5), L_3(7), L_3(8), L_3(17), L_4(3), S_4(4), S_4(5), S_4(7), S_4(9), S_6(2), O_8^+(2), G_2(3), U_3(4), U_3(5), U_3(7), U_3(8), U_3(9), U_4(3), U_5(2), Sz(8), Sz(32), {}^{2}D_4(2) \text{ or } {}^{2}F_4(2).$

Lemma 1.6. [5]: Every simple K_5 -group is isomorphic to one of the following simple groups: (1) $L_2(q)$ with $|\pi(q^2 - 1)| = 4$;

- (2) $L_3(q)$ with $|\pi(q^2-1)(q^3-1)| = 4;$
- (3) $U_3(q)$ with q satisfies $|\pi(q^2-1)(q^3+1)| = 4;$
- (4) $O_5(q)$ with $|\pi(q^4 1)| = 4;$

(5) $Sz(2^{2m+1})$ with $|\pi(2^{2m+1}-1)(2^{4m+1}+1)| = 4$

- (6) R(q), where q is an odd power of 3, $|\pi(q^2-1)| = 3$ and $|\pi(q^2-q+1)| = 1$;
- (7) The following 30 simple groups: $A_{11}, A_{12}, M_{22}, J_3, HS, He, McL, L_4(4), L_4(5), L_4(7), L_5(2), L_5(3), L_6(2), O_7(3), O_9(2), PSP_8(2), U_4(4), U_4(5), U_4(7), U_4(9), U_5(3), U_6(2), O_8^+(3), O_8^-(2), {}^{3}D_4(3), G_2(4), G_2(5), G_2(7) \text{ or } G_2(9).$

M. Jahandideh

Lemma 1.7. [1]: Let G be a simple K_n -group with n = 4, 5 and 13||G| and $|G||2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$. Then G is one of the following groups: $L_2(13), L_2(25), L_2(27), L_2(64), L_3(9), L_4(3), G_2(3), S_2(8), S_6(3)$ and $O_7(3)$.

2. Main Result

The main theorem is proved by representing some lemmas.

Lemma 2.1. If s_n is the number of elements of order n in a group G, then $s_n = k\varphi(n)$ such that k is the number of cyclic subgroups of order n in G.

Proof. It is straightforward.

Lemma 2.2. If n > 2, then $\varphi(n)$ is even.

Proof. It is straightforward.

Lemma 2.3. If $m \in \omega(G)$, then $\varphi(m)|s_m$ and $m|\sum_{d|m} s_d$.

Proof. It follows from Lemma1.1.

Theorem 2.4. Let G be a group such that $nse(G) = nse(O_7(3))$, where $O_7(3)$ is the Orthogonal group over GF(3). Then $G \cong O_7(3)$.

Proof. Since $nse(G) = nse(O_7(3))$, it can be concluded that G is finite group. We have:

573168960, 382112640, 343901376, 732382560, 705438720, 305690112,

297198720, 229267584, 327525120.

According to Lemma 1.1, $\pi(G) \subseteq \{2, 3, 5, 7, 13, 23, 317, 401, 1009\}.$

In this argument, first we show that $\pi(G) = \{2, 3, 5, 7, 13\}$. According to Lemma2.2, $s_2 = 354159$ and $2 \in \pi(G)$. Since s_{23} , s_{317} , s_{401} and s_{1009} are not equal to none of nse(G) values, hence 23, 317, 401 and $1009 \notin \pi(G)$, so $\pi(G) \subseteq \{2, 3, 5, 7, 13\}$. We have the following:

(1) If $2^a \in \omega(G)$, then $2^{a-1} | s_{2^a}$ and $1 \le a \le 11$;

(2) If $3^a \in \omega(G)$, then $2 \cdot 3^{a-1} | s_{3^a}$ and $1 \le a \le 11$;

(3) If $5^a \in \omega(G)$, then $4 \cdot 5^{a-1} | s_{5^a}$ and $1 \le a \le 2$;

(4) If $7^a \in \omega(G)$, then $6 \cdot 7^{a-1} | s_{7^a}$ and $1 \le a \le 3$;

(5) If $13^a \in \omega(G)$, then $12 \cdot 13^{a-1} | s_{13^a}$ and $1 \le a \le 3$.

To show that $\pi(G) = \{2, 3, 5, 7, 13\}$, we investigate several cases.

Case(1) $\pi(G) = \{2\}.$

If $\pi(G) = \{2\}$, then $\omega(G) \subseteq \{1, 2, 2^2, \dots, 2^{11}\}$ and $4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n$, such that k_1, k_2, \dots, k_{14} and n are nonnegative integers. But this equation $0 < \sum_{i=1}^{14} k_i \leq 12 - 10 = 2$ has no solution in integers.

Case(2) $\pi(G) = \{2, 3\}.$

In this case, $|G| = 2^n \cdot 3^m$ such that $1 \le n \le 11$. If $3^3 \in \omega(G)$, then $exp(P_3)$ can be 3, 9 and 27. If $exp(P_3) = 3$, then by Lemma 2.3, $|P_3||1 + s_3(s_3 = 5307848)$ and $|P_3||3^8$. If $|P_3| = 3$, then $n_3 = s_3/\varphi(3) = 5307848/2 = 2653924$ and $[G : N_G(P_3)] = 2653924$. So, $13 \in \pi(G)$. If $|P_3| = 9$, then $|G| = 2^n \cdot 3^2$ such that $0 \le n \le 11$.

Also, calculations show that:

 $4585351680 + 5307848 k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n \cdot 3^2$, such that k_1, k_2, \dots, k_{14} and n are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \leq 36$. Since $4585351680 \leq 2^n \cdot 3^2 \leq 36 \cdot 732382560$, then n > 11. Similarly, it is shown that $|P_3| \neq 3^3, \dots, 3^7$. Now, it is assumed that $|P_3| = 3^8$ and $|G| = 2^n \cdot 3^8, 1 \leq n \leq 11$.

We have:

 $4585351680 + 5307848 k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n \cdot 3^2,$

such that k_1, k_2, \dots, k_{14} and n are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \leq 108$. But, 4585351680 $\leq 2^n \cdot 3^8 \leq 108 \cdot 732382560$ and n > 11. If $exp(P_3) = 3^2$, then according to Lemma1.1 $|P_3||1+s_3+s_9$. There are several cases for s_9 . Namely, 38211264, 275871960, 327525120, 573168960, 382112640, 343901376, 732382560, 705438720, 305690112, 297198720 and 229267584. We have $n_3 = [G : N_G(P_3)] = s_9/\varphi(9)$, it is obtained 5, 7 or $13 \in \pi(G)$. If $exp(P_3) = 3^3$, then $|P_3||1+s_3+s_9+s_{27}$ and s_{27} is one of the following numbers: 41395536, 38211264, 327525120, 573168960, 382112640, 343901376, 732382560, 705438720, 305690112, 297198720, 573168960, 382112640, 343901376, 732382560, 705438720, 305690112, 297198720 and 229267584. Since $n_3 = [G : N_G(P_3)] = s_{27}/\varphi(27)$, it results that 5, 7, 13, 23, 37, 107, 331 or 2299753 $\in \pi(G)$. Hence, $3^3 \notin \omega(G)$ and $exp(P_3) = 3, 3^2$. If $exp(P_3) = 3, 3^2$, then similar as above, we have a contradiction and $\pi(G) \neq \{2,3\}$.

Case (3) $\pi(G) = \{2, 5\}.$

If $5^2 \in \omega(G)$, then $s_5 = 38211264$ or 229267584 and $exp(P_5) = 5, 5^2$.

If $exp(P_5) = 5$, then $|P_5||1 + s_5$ and $|P_5| = 5$. Since $n_5 = [G : N_G(P_5)] = s_5/\varphi(5)$, is concluded 3, 7 and $13 \in \pi(G)$. If $exp(P_5) = 5^2$, by Lemma 2.3 $|P_5||1 + s_5 + s_{25}(s_{25} = 275871960, 573168960, 732382560)$

M. Jahandideh

and $|P_5||5^2$. It is obvious $|P_5| \neq 5$ and we suppose that $|P_5| = 25$. If $|P_5| = 25$, then 3, 7, 13 or 23 $\in \pi(G)$.

Therefore $5^2 \notin \omega(G)$ and $|G| = 2^n \cdot 5$ such that $1 \leq n \leq 11$. Hence, $4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n \cdot 5$, such that

 k_1, k_2, \dots, k_{14} and *n* are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \le 24$. But, $4585351680 \le 2^n \cdot 5 \le 24 \cdot 732382560$ and n > 11.

Case (4) $\pi(G) = \{2, 7\}.$

We have $7|1 + s_7$ and $s_7 = 327525120$. If $7^2 \in \omega(G)$, then $s_{7^2} = 41395536$ or 732382560. Since $|P_7||1 + s_7 + s_{7^2}$, is derived $|P_7||7^2$. If $|P_7| = 7$, then $7k + 1 = n_7 = s_7/\varphi(7) = 5458520$ and 3, 5, $13 \in \pi(G)$. If $|P_7| = 7^2$, then $n_7 = s_{7^2}/\varphi(7^2) = [G : N_G(P_7)] = 985608, 17437680$ and 3, 5, 13, $5449 \in \pi(G)$. Therefore, $7^2 \notin \omega(G)$ and $|G| = 2^n \cdot 7$ such that $1 \le n \le 11$. Hence, $4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n \cdot 7$, such that

 k_1, k_2, \dots, k_{14} and *n* are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \le 24$. But, $4585351680 \le 2^n \cdot 7 \le 24 \cdot 732382560$ and n > 11.

Case (5) $\pi(G) = \{2, 13\}.$

We have $13|1+s_{13}$ and $s_{13} = 705438720$. If $13^2 \in \omega(G)$, then $s_{13^2} = 343901376$. Since $|P_{13}||1+s_{13}+s_{13^2}$, is derived $|P_{13}||13^2$. If $|P_{13}| = 13$, then $13k+1 = n_{13} = s_{13}/\varphi(13) = 58786550$ and $3, 5, 39191 \in \pi(G)$. If $|P_{13}| = 13^2$, then $n_{13} = s_{13^2}/\varphi(13^2) = [G : N_G(P_{13})] = 2204496$ and $3, 5 \in \pi(G)$. Therefore, $13^2 \notin \omega(G)$ and $|G| = 2^n \cdot 13$ such that $1 \le n \le 11$. Hence, $4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + 382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + 327525120k_{14} = 2^n \cdot 13$, such that

 k_1, k_2, \dots, k_{14} and *n* are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \le 24$. But, $4585351680 \le 2^n \cdot 13 \le 24 \cdot 732382560$ and n > 11.

Case (6) $\pi(G) = \{2, 3, 5\}.$

In this case, $|G| = 2^n \cdot 3^m \cdot 5$ and $1 \le n, m \le 11$. We have:

$$\begin{split} &4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + \\ &382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + \\ &327525120k_{14} = 2^n \cdot 3^m \cdot 5, \text{ such that} \end{split}$$

 k_1, k_2, \dots, k_{14} and n, m are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \leq 288$. But, $4585351680 \leq 2^n \cdot 3^m \cdot 5 \leq 288 \cdot 732382560$ and n, m > 11.

If $\pi(G) = \{2, 3, 7\}$, then due to the values of $nse \ 3 \cdot 7 \notin \omega(G)$ and $|P_3||s_7 = 2^8 \cdot 3^9 \cdot 5 \cdot 13$ and so $|P_3||3^9$. Similar to case (6), we have a contradiction.

Case (7) $\pi(G) = \{2, 3, 13\}.$

First, we obtain $2 \cdot 13 \notin \omega(G)$ if $2, 13 \in \pi(G)$. If $2 \cdot 13 \in \omega(G)$, set P and Q are Sylow 13-subgroup of G and are conjugate in G. Also $C_G(P)$ and $C_G(Q)$ are conjugate in G. Therefore we have $s_{2 \cdot 13} =$ $\varphi(2 \cdot 13) \cdot n_{13} \cdot k$ where k is the number of cyclic subgroups of order 2 in $C_G(P)$. Since $n_{13} = s_{13}/\varphi(13)$, $s_{13}|s_{26}$ and so $s_{13} = s_{26} = 705438720$. According to Lemma2.3 $26|1 + s_2 + s_{13} + s_{26}$, a contradiction. Hence $2 \cdot 13 \notin \omega(G)$, it follows that the Sylow 2-subgroup of G acts fixed point freely on the set of elements of order 13, $|P_2||s_{13} = 2^{10} \cdot 3^9 \cdot 5 \cdot 7$ and so $|P_2||2^{10}$. If $3 \cdot 13 \in \omega(G)$, then by Lemma2.3 $3 \cdot 13|1 + s_3 + s_{13} + s_{39}$. Hence $3 \cdot 13 \notin \omega(G)$, it follows that the Sylow 3-subgroup of G acts fixed point freely on the set of elements of order 13, $|P_3||s_{13} = 2^{10} \cdot 3^9 \cdot 5 \cdot 7$ and so $|P_3||3^9$. In this case, $\pi(G) = \{2, 3, 13\}$ and $|G| = 2^n \cdot 3^m \cdot 13$ and $1 \le n \le 10, 1 \le m \le 9$.

So,

$$\begin{split} &4585351680 + 5307848k_1 + 41395536k_2 + 38211264k_3 + 275871960k_4 + 327525120k_5 + 573168960k_6 + \\ &382112640k_7 + 343901376k_8 + 732382560k_9 + 705438720k_{10} + 305690112k_{11} + 297198720k_{12} + 229267584k_{13} + \\ &327525120k_{14} = 2^n \cdot 3^m \cdot 13, \end{split}$$

such that

 k_1, k_2, \dots, k_{14} and n, m are nonnegative integers and $0 < \sum_{i=1}^{14} k_i \leq 220$. But, 4585351680 $\leq 2^n \cdot 3^m \cdot 13 \leq 220 \cdot 732382560$ and n > 10, m > 9.

In the remaining cases, in the same way, we obtain a contradiction. Therefore, $\pi(G) = \{2, 3, 5, 7, 13\}$ and $|G| = 2^n \cdot 3^m \cdot 5 \cdot 7 \cdot 13$ such that $1 \le n \le 10$, $1 \le m \le 9$.

Also we know $2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13 = 4585351680 = \sum_{s_k \in nse(G)} s_k \leq |G| = 2^n \cdot 3^m \cdot 5 \cdot 7 \cdot 13 \leq 2^{10} \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$. So, we can assume that $|G| = 2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$ or $|G| = 2^{10} \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$. The second step is $G \cong O_7(3)$. We show that there is no group such that $|G| = 2^{10} \cdot 3^9 \cdot 5 \cdot 7 \cdot 13$ and $nse(G) = nse(O_7(3))$. If G is a solvable group, then $n_{13} = s_{13}/\varphi(13) = 2^8 \cdot 3^8 \cdot 5 \cdot 7$ and by Lemma1.4 $3 \equiv 1(mod13)$. So, there is a contradiction, and G is not solvable. Hence, G has a normal series $1 \triangleleft K \triangleleft L \triangleleft G$ such that L/K is isomorphic to a simple K_i -group with i = 3, 4, 5 and $169 \nmid |G|$. If L/K is isomorphic to a simple K_3 -group, from $[4, 14], L/K \cong A_5, L_3(2), A_6, L_2(8), L_3(3), U_3(3)$ and $U_4(2)$. By $[1] n_2(L/K) = n_2(A_5) = 15$, according to $[11], n_2(G) = 15t, 2 \nmid t$ and $n_2 = s_2 = 354159 = 15t$. There is no solution for t, and for the other groups, we can similarly rule it out.

If L/K is isomorphic to a simple K_n -group with n = 4, 5, then by Lemma1.4, L/K is isomorphic to

$$L_2(13), L_2(25), L_2(27), L_2(64), L_3(9), L_4(3), G_2(3), Sz(8), S_6(3)$$

and $O_7(3)$.

If $L/K \cong L_2(13)$, then $14 = n_{13}(L/K) = n_{13}(L_2(13))$ and $n_{13}(G) = 14t$ such that $13 \nmid t$ for some integer t. Hence, $s_{13} = 12 \cdot 14$ and $t = 4199040 = 2^7 \cdot 3^8 \cdot 5$. We have $2^7 \cdot 3^8 \cdot 5 ||K|| 2^7 \cdot 3^8 \cdot 5$ so, $|K| = 2^7 \cdot 3^8 \cdot 5$ and $N_K(P_{13}) = 1$. Therefore $K \times P_{13}$ is a Frobenius group and $|P_{13}|||Aut(K)|$, a contradiction.

If $L/K \cong S_6(3)$, then $s_2(L/K) = s_2(S_6(3)) = 196911$ and $s_2(G) = 196911t$. Thus $s_2(G) = 196911t = 354159$, a contradiction. Similarly, for the other groups $L_2(25), L_2(27), L_2(64), L_3(9), L_4(3), G_2(3)$ and $S_2(8)$, we can obtain a contradiction. The last case is $L/K \cong O_7(3)$. If $\overline{G} = G/K$ and $\overline{L} = L/K$, then

$$\overline{L} \cong \overline{L}(C_{\overline{G}}(\overline{\overline{L}}))/(C_{\overline{G}}(\overline{\overline{L}})) \leq (\overline{G}/(C_{\overline{G}}(\overline{\overline{L}})) = (N_{\overline{G}}(\overline{\overline{L}}))/(C_{\overline{G}}(\overline{\overline{L}})) \leq Aut(\overline{L}).$$

We define that $M = \{xk | xk \in C_{\overline{G}}(\overline{\overline{L}})\}$. We have: $G/M \cong \overline{G}/C_{\overline{G}}(\overline{\overline{L}})$ and $O_7(3) \leq G/M \leq Aut(O_7(3))$. Also, $G/M \cong O_7(3)$ or $G/M \cong 2 \cdot O_7(3)$. If $G/M \cong O_7(3)$, then according to assumptions |M| = 2and M = Z(G). Hence, G has an element of order $2 \cdot 13$, which is a contradiction. If $G/M \cong 2 \cdot O_7(3)$, M = 1 and G has a pure normal subgroup H such that $H \cong O_7(3)$, $nse(G) = nse(O_7(3))$. We know $n_{13}(O_7(3)) = 2^8 \cdot 3^8 \cdot 5 \cdot 7$ so, $n_{13}(O_7(3)) < n_{13}(G)$. According to assumptions $n_{13}(G) = 2^{10} \cdot 3^9 \cdot 5 \cdot 7$ and $s_{13}(G) = 651174204 \notin nse(G)$. Therefore, $|G| = 2^9 \cdot 3^9 \cdot 5 \cdot 7 \cdot 13 = |O_7(3)|$ and according to this argument $G \cong O_7(3)$.

Acknowledgments

The author acknowledges the financial support provided by Mahshahr Branch, Islamic Azad University, Iran, to perform research entitled:" Characterization of the Orthogonal $O_7(3)$ by set of numbers of the same order elements".

References

- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985.
- [2] G. Frobenius, Verallgemeinerung des sylowschen satze, Berliner Sitz, (1895) 981–993.
- [3] M. Jr. Hall, The theory of groups, The Macmillan Co., New York, N. Y., 1959.
- [4] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 10 (1968) 383–388.
- [5] A. Jafarzadeh and A. Iranmanesh, On simple K_n -groups for n = 5, 6, In Groups St. Andrews 2005 in Oxford, 2, Cambridge Univ. Press, Cambridge, (2007) 517–526.
- [6] M. Jahandideh and M. R. Darafsheh, Characterization of the Chevalley group $G_2(5)$ by the set of numbers of the same order elements, Int. J. Group Theory., **11** (2022) 7–16.
- [7] A. R. Khalili Asboei, S. S. S. Amiri, A. Iranmanesh and A. Tehranian, A characterization of sporadic simple groups by NSE and order, J. Algebra Appl., 12 (2013) 125–158.
- [8] M. Khatami, B. Khosravi and Z. Akhlaghi, A new characterization for some linear groups, *Monatsh. Math.*, 163 (2011) 39–50.
- [9] G. A. Miller, Addition to a theorem due to Frobenius, Bull. Amer. Math. Soc., 11 (1904) 6-7.
- [10] C. Shao and Q. Jiang, A new characterization of some linear groups by nse, J. Algebra Appl., 13 (2014) pp. 9.
- [11] C. Shao, W. Shi and W. Q. Jiang, Characterization of simple K₄-groups, Front. Math. China, **3** (2008) 355–370.
- [12] R. Shen, C. Shao, Q. Jiang, W. Shi and V. Mazurov, A new characterization of A₅, Monatsh. Math., 160 (2010) 337–341.
- [13] W. J. Shi, A new characterization of the sporadic simple groups, Group theory (Singapore, 1987), 531–540, de Gruyter, Berlin, 1989.
- [14] W. J. Shi, On simple K₄-group, Chin. Sci. Bul., **36** (1991) 1281–1283.

Maryam Jahandideh and Sara Shokrolahi

Department of Mathematics, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran Email: m.jahandided@mhriau.ac.ir

M. Jahandideh