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Abstract. Let G be a group and ω(G) be the set of element orders of G. Let k ∈ ω(G), sk = |{g ∈
G|o(g) = k}| and nse(G) = {sk|k ∈ ω(G)}. In this paper, we prove that if G is a group and O7(3) is

the Orthogonal simple group over GF (3) such that nse(G) = nse(O7(3)), then G ∼= O7(3).

1. Introduction

Let G be a finite group and ω(G) be the set of element orders of G. If k ∈ ω(G), then sk is the

number of elements of order k in G. Let nse(G) = {sk|k ∈ ω(G)}. If n is a positive integer, the

set of all the prime divisors of n is denoted by π(n). The number of the Sylow p-subgroups Pp of

G is denoted by np or np(G). We set π(G) = π(|G|). To see notations concerning the finite simple

group, we refer to reader [1]. A finite group G is called a simple Kn- group, if G is a simple group and

|π(G)| = n. In 1987, J. G. Thompson posed the following problem related to algebraic number fields

[13].

Thompson’s Problem. Let T (G) = {(k, sk)|k ∈ ω(G), sk ∈ nse(G)}. Suppose that T (G) = T (H)

for some finite groups H. If G is a finite solvable group, is it true that H is necessarily solvable?

A finite group G is characterizable by order and nse; if H is a finite group and |G| = |H| and
nse(G) = nse(H), then G ∼= H. However, some groups are characterized by only the set nse(G). The

aim of this paper is to prove that the Orthogonal group O7(3) is characterizable by nse. The following

theorems have been appeared so far:

(1) Theorem[11, 12]. Let G be a group and S be a simple Ki -group, where i = 3, 4. G ∼= H if

and only if |G| = |H| and nse(G) = nse(H).

(2) Theorem[4, 5]. The two groups A12 and A13 are characterizable by order and nse.

(3) Theorem[7]. All sporadic simple groups are characterizable by nse and order.

(4) Theorem[10]. L2(2
m) with 2m +1 prime or 2m − 1 prime, is characterizable by nse and order.
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(5) Theorem[12, 8]. L2(q), where q ∈ {7, 8, 9, 11, 13} are characterizable by only the nse.

(6) Theorem[6]. G2(5) is characterizable by nse.

Main Theorem. Let G be a group such that nse(G) = nse(O7(3)), where O7(3) is the

Orthogonal group over GF (3). Then G ∼= O7(3).

We will give some lemmas which will be used to prove the main theorem.

Lemma 1.1. [2]: Let G be a finite group and n be a positive integer dividing |G|. If Ln(G) =

{g ∈ G|gn = 1}, then n||Ln(G)|.

Lemma 1.2. [9]: Let G be a finite group and p ∈ π(G) be an odd number. Suppose that P is

a Sylow p-subgroup of G and n = psm with (p,m) = 1. If P is not cyclic, then the number of

elements of order n is always a multiple of ps.

Lemma 1.3. [12]: Let G be a group containing more than two elements. If the maximum

number s of elements of the same order in G is finite, then G is finite and |G| ≤ s(s2 − 1).

Lemma 1.4. [3]: Let G be a finite solvable group and |G| = mn, where m = p1
α1 · · · prαr ,

(m,n) = 1. Let π = {p1, . . . , pr} and hm be the number of Hall π-subgroups of G. Then

hm = q1
β1 · · · qsβs satisfies the following conditions for all i ∈ {1, 2, . . . , s}:

(1) qi
βi ≡ 1(mod pj) for some pj;

(2) The order of some chief factor of G is divided by qβi
i .

Lemma 1.5. [14]: Let G be a simple K4-group. Then G is isomorphic to one of the following

groups:

(1) A7, A8, A9 and A10;

(2) M11, M12 or J2;

(3) one of the following:

(i) L2(r), where r is a prime and r2 − 1 = 2a · 3b · vc with a, b, c ≥ 1, and v is a prime

number greater than 3.

(ii) L2(2
m), where 2m − 1 = u, 2m + 1 = 3tb, with m ≥ 2, u, t are primes,t > 3, b ≥ 1.

(ii) L2(3
m), where 3m + 1 = 4t, 3m − 1 = 2uc or 3m + 1 = 4tb, 3m − 1 = 2u,m ≥ 2 , u

and t are odd primes, b ≥ 1, c ≥ 1.

(iv) One of the following 28 simple groups:

L2(16), L2(25), L2(49), L2(81), L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4),

S4(5), S4(7), S4(9), S6(2), O8
+(2), G2(3), U3(4),U3(5), U3(7), U3(8), U3(9), U4(3),

U5(2), Sz(8), Sz(32),
2D4(2) or

2F4(2).

Lemma 1.6. [5]: Every simple K5-group is isomorphic to one of the following simple groups:

(1) L2(q) with |π(q2 − 1)| = 4;

(2) L3(q) with |π(q2 − 1)(q3 − 1)| = 4;

(3) U3(q) with q satisfies |π(q2 − 1)(q3 + 1)| = 4;

(4) O5(q) with |π(q4 − 1)| = 4;
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(5) Sz(22m+1) with |π(22m+1 − 1)(24m+1 + 1)| = 4

(6) R(q), where q is an odd power of 3, |π(q2 − 1)| = 3 and |π(q2 − q + 1)| = 1;

(7) The following 30 simple groups:

A11, A12, M22, J3, HS, He, McL, L4(4), L4(5), L4(7), L5(2), L5(3), L6(2), O7(3),

O9(2), PSP8(2), U4(4), U4(5), U4(7), U4(9), U5(3), U6(2), O8
+(3), O8

−(2), 3D4(3),

G2(4), G2(5), G2(7) or G2(9).

Lemma 1.7. [1]: Let G be a simple Kn-group with n = 4, 5 and 13||G| and |G||29 ·39 ·5 ·7 ·13.
Then G is one of the following groups: L2(13),L2(25), L2(27), L2(64), L3(9), L4(3), G2(3),

Sz(8), S6(3) and O7(3).

2. Main Result

The main theorem is proved by representing some lemmas.

Lemma 2.1. If sn is the number of elements of order n in a group G, then sn = kφ(n) such that k

is the number of cyclic subgroups of order n in G.

Proof. It is straightforward. □

Lemma 2.2. If n > 2, then φ(n) is even.

Proof. It is straightforward. □

Lemma 2.3. If m ∈ ω(G), then φ(m)|sm and m|
∑

d|m sd.

Proof. It follows from Lemma1.1. □

Theorem 2.4. Let G be a group such that nse(G) = nse(O7(3)), where O7(3) is the Orthogonal group

over GF (3). Then G ∼= O7(3).

Proof. Since nse(G) = nse(O7(3)), it can be concluded that G is finite group. We have:

nse(O7(3)) = {1, 354159, 5307848, 41395536, 38211264, 275871960, 327525120,

573168960, 382112640, 343901376, 732382560, 705438720, 305690112,

297198720, 229267584, 327525120}.

According to Lemma1.1, π(G) ⊆ {2, 3, 5, 7, 13, 23, 317, 401, 1009}.
In this argument, first we show that π(G) = {2, 3, 5, 7, 13}. According to Lemma2.2, s2 = 354159

and 2 ∈ π(G). Since s23, s317, s401 and s1009 are not equal to none of nse(G) values, hence 23, 317,

401 and 1009 /∈ π(G), so π(G) ⊆ {2, 3, 5, 7, 13}. We have the following:

(1) If 2a ∈ ω(G), then 2a−1|s2a and 1 ≤ a ≤ 11;

(2) If 3a ∈ ω(G), then 2 · 3a−1|s3a and 1 ≤ a ≤ 11;
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(3) If 5a ∈ ω(G), then 4 · 5a−1|s5a and 1 ≤ a ≤ 2;

(4) If 7a ∈ ω(G), then 6 · 7a−1|s7a and 1 ≤ a ≤ 3;

(5) If 13a ∈ ω(G), then 12 · 13a−1|s13a and 1 ≤ a ≤ 3.

To show that π(G) = {2, 3, 5, 7, 13}, we investigate several cases.

Case(1) π(G) = {2}.
If π(G) = {2}, then ω(G) ⊆ {1, 2, 22, . . . , 211} and 4585351680+5307848k1+41395536k2+38211264k3+

275871960k4+327525120k5+573168960k6+382112640k7+343901376k8+732382560k9+705438720k10+

305690112k11 + 297198720k12 + 229267584k13 + 327525120k14 = 2n, such that k1, k2, . . . , k14 and n

are nonnegative integers. But this equation 0 < Σ14
i=1ki ≤ 12− 10 = 2 has no solution in integers.

Case(2) π(G) = {2, 3}.
In this case, |G| = 2n · 3m such that 1 ≤ n ≤ 11. If 33 ∈ ω(G), then exp(P3) can be 3, 9 and

27. If exp(P3) = 3, then by Lemma 2.3, |P3||1 + s3(s3 = 5307848) and |P3||38. If |P3| = 3, then

n3 = s3/φ(3) = 5307848/2 = 2653924 and [G : NG(P3)] = 2653924. So, 13 ∈ π(G). If |P3| = 9, then

|G| = 2n.32 such that 0 ≤ n ≤ 11.

Also, calculations show that:

4585351680 + 5307848 k1+41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+

382112640k7+343901376k8+732382560k9+705438720k10+305690112k11+297198720k12+229267584k13+

327525120k14 = 2n · 32, such that k1, k2, · · · ,k14 and n are nonnegative integers and 0 < Σ14
i=1ki ≤ 36.

Since 4585351680 ≤ 2n ·32 ≤ 36 ·732382560 ,then n > 11. Similarly, it is shown that |P3| ≠ 33, · · · , 37.
Now, it is assumed that |P3| = 38 and |G| = 2n · 38,1 ≤ n ≤ 11.

We have:

4585351680 + 5307848 k1+41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+

382112640k7+343901376k8+732382560k9+705438720k10+305690112k11+297198720k12+229267584k13+

327525120k14 = 2n · 32,
such that k1, k2, · · · ,k14 and n are nonnegative integers and 0 < Σ14

i=1ki ≤ 108. But, 4585351680 ≤
2n·38 ≤ 108·732382560 and n > 11. If exp(P3) = 32, then according to Lemma1.1 |P3||1+s3+s9. There

are several cases for s9. Namely, 38211264, 275871960, 327525120, 573168960, 382112640, 343901376,

732382560, 705438720, 305690112, 297198720 and 229267584. We have n3 = [G : NG(P3)] = s9/φ(9),

it is obtained 5, 7 or 13 ∈ π(G). If exp(P3) = 33, then |P3||1+s3+s9+s27 and s27 is one of the following

numbers: 41395536, 38211264, 327525120, 573168960, 382112640, 343901376, 732382560, 705438720,

305690112, 297198720 and 229267584. Since n3 = [G : NG(P3)] = s27/φ(27), it results that 5, 7, 13,

23, 37, 107, 331 or 2299753 ∈ π(G). Hence, 33 /∈ ω(G) and exp(P3) = 3, 32. If exp(P3) = 3, 32, then

similar as above, we have a contradiction and π(G) ̸= {2, 3}.
Case (3) π(G) = {2, 5}.

If 52 ∈ ω(G), then s5 = 38211264 or 229267584 and exp(P5) = 5, 52.

If exp(P5) = 5, then |P5||1 + s5 and |P5| = 5. Since n5 = [G : NG(P5)] = s5/φ(5), is concluded 3, 7

and 13 ∈ π(G). If exp(P5) = 52, by Lemma2.3 |P5||1+s5+s25(s25 = 275871960, 573168960, 732382560)
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and |P5||52. It is obvious |P5| ≠ 5 and we suppose that |P5| = 25. If |P5| = 25, then 3, 7, 13 or 23

∈ π(G).

Therefore 52 /∈ ω(G) and |G| = 2n · 5 such that 1 ≤ n ≤ 11. Hence, 4585351680 + 5307848k1 +

41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+382112640k7+343901376k8+

732382560k9 +705438720k10 +305690112k11 +297198720k12 +229267584k13 +327525120k14 = 2n · 5,
such that

k1, k2, · · · ,k14 and n are nonnegative integers and 0 < Σ14
i=1ki ≤ 24. But, 4585351680 ≤ 2n · 5 ≤

24 · 732382560 and n > 11.

Case (4) π(G) = {2, 7}.
We have 7|1 + s7 and s7 = 327525120. If 72 ∈ ω(G), then s72 = 41395536 or 732382560. Since

|P7||1 + s7 + s72 , is derived |P7||72. If |P7| = 7, then 7k + 1 = n7 = s7/φ(7) = 5458520 and 3, 5,

13 ∈ π(G). If |P7| = 72, then n7 = s72/φ(7
2) = [G : NG(P7)] = 985608, 17437680 and 3, 5, 13, 5449 ∈

π(G). Therefore, 72 /∈ ω(G) and |G| = 2n · 7 such that 1 ≤ n ≤ 11. Hence, 4585351680+ 5307848k1 +

41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+382112640k7+343901376k8+

732382560k9 +705438720k10 +305690112k11 +297198720k12 +229267584k13 +327525120k14 = 2n · 7,
such that

k1, k2, · · · ,k14 and n are nonnegative integers and 0 < Σ14
i=1ki ≤ 24. But, 4585351680 ≤ 2n · 7 ≤

24 · 732382560 and n > 11.

Case (5) π(G) = {2, 13}.
We have 13|1+s13 and s13 = 705438720. If 132 ∈ ω(G), then s132 = 343901376. Since |P13||1+s13+s132

, is derived |P13||132. If |P13| = 13, then 13k+1 = n13 = s13/φ(13) = 58786550 and 3, 5, 39191 ∈ π(G).

If |P13| = 132, then n13 = s132/φ(13
2) = [G : NG(P13)] = 2204496 and 3, 5 ∈ π(G). Therefore,

132 /∈ ω(G) and |G| = 2n · 13 such that 1 ≤ n ≤ 11. Hence, 4585351680 + 5307848k1 + 41395536k2 +

38211264k3+275871960k4+327525120k5+573168960k6+382112640k7+343901376k8+732382560k9+

705438720k10 + 305690112k11 + 297198720k12 + 229267584k13 + 327525120k14 = 2n · 13, such that

k1, k2, · · · ,k14 and n are nonnegative integers and 0 < Σ14
i=1ki ≤ 24. But, 4585351680 ≤ 2n · 13 ≤

24 · 732382560 and n > 11.

Case (6) π(G) = {2, 3, 5}.
In this case, |G| = 2n · 3m · 5 and 1 ≤ n,m ≤ 11. We have:

4585351680+5307848k1+41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+

382112640k7+343901376k8+732382560k9+705438720k10+305690112k11+297198720k12+229267584k13+

327525120k14 = 2n · 3m · 5, such that

k1, k2, · · · ,k14 and n,m are nonnegative integers and 0 < Σ14
i=1ki ≤ 288. But, 4585351680 ≤

2n · 3m · 5 ≤ 288 · 732382560 and n,m > 11.

If π(G) = {2, 3, 7}, then due to the values of nse 3 · 7 /∈ ω(G) and |P3||s7 = 28 · 39 · 5 · 13 and so

|P3||39. Similar to case (6), we have a contradiction.

Case (7) π(G) = {2, 3, 13}.
First, we obtain 2 · 13 /∈ ω(G) if 2, 13 ∈ π(G). If 2 · 13 ∈ ω(G), set P and Q are Sylow 13−subgroup

of G and are conjugate in G. Also CG(P ) and CG(Q) are conjugate in G. Therefore we have s2·13 =
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φ(2 ·13) ·n13 ·k where k is the number of cyclic subgroups of order 2 in CG(P ). Since n13 = s13/φ(13),

s13|s26 and so s13 = s26 = 705438720. According to Lemma2.3 26|1 + s2 + s13 + s26, a contradiction.

Hence 2 · 13 /∈ ω(G), it follows that the Sylow 2−subgroup of G acts fixed point freely on the set of

elements of order 13, |P2||s13 = 210 · 39 · 5 · 7 and so |P2||210. If 3 · 13 ∈ ω(G), then by Lemma2.3

3 · 13|1 + s3 + s13 + s39. Hence 3 · 13 /∈ ω(G), it follows that the Sylow 3−subgroup of G acts fixed

point freely on the set of elements of order 13, |P3||s13 = 210 · 39 · 5 · 7 and so |P3||39. In this case,

π(G) = {2, 3, 13} and |G| = 2n · 3m · 13 and 1 ≤ n ≤ 10, 1 ≤ m ≤ 9.

So,

4585351680+5307848k1+41395536k2+38211264k3+275871960k4+327525120k5+573168960k6+

382112640k7+343901376k8+732382560k9+705438720k10+305690112k11+297198720k12+229267584k13+

327525120k14 = 2n · 3m · 13,
such that

k1, k2, · · · ,k14 and n,m are nonnegative integers and 0 < Σ14
i=1ki ≤ 220. But, 4585351680 ≤

2n · 3m · 13 ≤ 220 · 732382560 and n > 10, m > 9.

In the remaining cases, in the same way, we obtain a contradiction. Therefore, π(G) = {2, 3, 5, 7, 13}
and |G| = 2n · 3m · 5 · 7 · 13 such that 1 ≤ n ≤ 10 ,1 ≤ m ≤ 9.

Also we know 29 ·39 ·5 ·7 ·13 = 4585351680 =
∑

sk∈nse(G) sk ≤ |G| = 2n ·3m ·5 ·7 ·13 ≤ 210 ·39 ·5 ·7 ·13.
So, we can assume that |G| = 29 ·39 ·5·7·13 or |G| = 210 ·39 ·5·7·13. The second step is G ∼= O7(3). We

show that there is no group such that |G| = 210 ·39 ·5 ·7 ·13 and nse(G) = nse(O7(3)). If G is a solvable

group, then n13 = s13/φ(13) = 28 ·38 ·5·7 and by Lemma1.4 3 ≡ 1(mod13). So, there is a contradiction,

and G is not solvable. Hence, G has a normal series 1 ◁K ◁ L ◁G such that L/K is isomorphic to

a simple Ki−group with i = 3, 4, 5 and 169 ∤ |G|. If L/K is isomorphic to a simple K3−group, from

[4, 14], L/K ∼= A5, L3(2), A6, L2(8), L3(3), U3(3) and U4(2). By [1] n2(L/K) = n2(A5) = 15, according

to [11], n2(G) = 15t ,2 ∤ t and n2 = s2 = 354159 = 15t. There is no solution for t, and for the other

groups, we can similarly rule it out.

If L/K is isomorphic to a simple Kn−group with n = 4, 5, then by Lemma1.4, L/K is isomorphic

to

L2(13), L2(25), L2(27), L2(64), L3(9), L4(3), G2(3), Sz(8), S6(3)

and O7(3).

If L/K ∼= L2(13), then 14 = n13(L/K) = n13(L2(13)) and n13(G) = 14t such that 13 ∤ t for some

integer t. Hence, s13 = 12 · 14 and t = 4199040 = 27 · 38 · 5. We have 27 · 38 · 5||K||27 · 38 · 5 so,

|K| = 27 · 38 · 5 and NK(P13) = 1. Therefore K × P13 is a Frobenius group and |P13|||Aut(K)|, a
contradiction.

If L/K ∼= S6(3), then s2(L/K) = s2(S6(3)) = 196911 and s2(G) = 196911t. Thus s2(G) =

196911t = 354159, a contradiction. Similarly, for the other groups L2(25), L2(27), L2(64), L3(9), L4(3), G2(3)

and Sz(8), we can obtain a contradiction. The last case is L/K ∼= O7(3). If G = G/K and L = L/K,

then

L ∼= L(CG(L))/(CG(L)) ≤ (G/(CG(L)) = (NG(L))/(CG(L)) ≤ Aut(L).
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We define that M = {xk|xk ∈ CG(L)}. We have: G/M ∼= G/CG(L) and O7(3) ≤ G/M ≤ Aut(O7(3)).

Also, G/M ∼= O7(3) or G/M ∼= 2 · O7(3). If G/M ∼= O7(3), then according to assumptions |M | = 2

and M = Z(G). Hence, G has an element of order 2 ·13, which is a contradiction. If G/M ∼= 2 ·O7(3),

M = 1 and G has a pure normal subgroup H such that H ∼= O7(3), nse(G) = nse(O7(3)). We know

n13(O7(3)) = 28 · 38 · 5 · 7 so, n13(O7(3)) < n13(G). According to assumptions n13(G) = 210 · 39 · 5 · 7
and s13(G) = 651174204 /∈ nse(G). Therefore, |G| = 29 · 39 · 5 · 7 · 13 = |O7(3)| and according to this

argument G ∼= O7(3).

□
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