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Maxwell equations in p time and q spatial dimensions are formulated. Properties of the Green’s function for the
associated (p,q)-wave operator are derived based on contour integration. The notions of electric and magnetic fields
in (p,q)-dimensions is explored by analogy with four dimensional physics and the problem of far field computation
of the radiation field generated by charges and currents in (1, » - 1) space-time is analyzed. SO(p,q) invariance
properties of the Maxwell equations are deduced and used to formulate SO(p,q)-group theoretic image processing
problems in (p,q)-dimensions. Dirac’s equation in (p,q)-dimensional space-time is derived using the Clifford algebra
of the Dirac gamma matrices. SO(p,q)-invariance of the Dirac equation based on the spinor representation of SO(p, ¢)
is mentioned. The Maxwell’s equations in (p,q)-dimensional curved space-time is analyzed using perturbation
theory in the context of maximally symmetric spaces which play a fundamental role in (p, 4)-dimensional
cosmological models for homogeneous and isotropic spaces. The Einstein-Maxwell equations for (p,q)-dimensional
gravity and electromagnetism is studied and used to derive the equations of motion of point charges carrying mass
moving under mutual gravitational and electromagnetic interactions in general relativity. Finally, Dirac’s equation in
(p,q)-dimensional curved space-time interacting with the (p,q)-dimensional electromagnetic field is looked at. U(1)-
Gauge, local SO(p,q) Lorentz and diffeomorphism invariance of this equation is analyzed. Local SO(p, ) invariance of
the curved space-time Dirac equation is deduced based on transformation properties of the Dirac matrices under the
spinor representation. The appendix presents some applications of group representation theoretic statistical image

processing on a manifold to the situation when the image field is described by the six component electromagnetic
field tensor on which the Lorentz group acts.
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Introduction

We first formulate the n-dimensional Maxwell equations on a flat space-
time manifold having q spatial degrees and p temporal degrees of freedom
with p + ¢ = n. We explain how to solve these equations by the method of
Green’s functions and then proceed to generalize these to the situation of
curved space-time background with any given Riemannian metric. We
derive these Maxwell equations from an action principle and also explain
how to determine the motion of charged particles in such an
electromagnetic field taking background curvature into account. We adopt
the differential geometric approach based on the calculus of differential
forms. We also explain the generalized Lorentz gauge invariance of the n-
dimensional Maxwell theory and then explain how the n-dimensional
Maxwell theory couples to the n-dimensional Dirac equation theory for
relativistic quantum mechanics using a Clifford algebra. Finally, we explain
the coupling of n-dimensional gravity with n-dimensional Maxwell theory
via the Einstein field equations and explain how measurements of the n-
dimensional Maxwell field at a discrete set of spatial points can be used in
the detection of n-dimensional gravitational waves both in a flat and in a
curved background metric of space-time. We discuss an important example
of n-dimensional maximally symmetric spaces that are important in
cosmology and explain how to formulate the Einstein-Maxwell field
equations in such a curved space-time in the presence of a finite set of
point charges that generate the current that produces the electromagnetic
field and that also execute motion in the electromagnetic field generated by
them. Some group theoretic aspects of the n-dimensional Maxwell
equations are also discussed especially invariance of the Maxwell equations
under the group SO(p, ) and how to solve group theoretic image processing
problems like estimating the SO(p, q) generalized Lorentz transformation
from measurements of the original electromagnetic field and a noisy
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version of the transformed electromagnetic field as well as constructing
pattern invariants for n-dimensional electromagnetic field images that
transform according to the general Lorentz group SO(p, g). There is some
discussion on the Green’s function in (p,q)-dimensional space-time and
how it can be applied to the special case of calculating the energy radiated
out by a charges in motion and currents in (1,7 - 1) space-time. We also
explain how the (p,g)-dimensional Green’s function can be used to
calculate approximately the Maxwell field in (p,q) dimensions when the
space-time manifold is given by a curved metric that is a weak
perturbation of flat space-time. Finally, we present some discussion on the
Clifford algebra generated by Dirac matrices in (p, g)-space-time with
applications to analysis of the Maxwell-Dirac equations in (p,q)-
dimensions. The spin group as the covering group of SO(p, ¢) as well as spin
representations of SO(p,q) constructed using the Dirac matrices are
presented and we explain how the spin representation can be used to
deduce the (global) SO(p, g)-invariance of the (p,q)-Dirac equation in an
external electromagnetic field. We explain how the (p,q)-space time Dirac
matrices can be constructed using the creation and annihilation operators
in Fermion Fock space and using commutators of these Dirac matrices,
how the spin representation of SO(p,q) can be constructed. This discussion
of the spin representation of SO(p, ¢) is based on Lie algebraic methods by
showing explicitly that the commutators of the Dirac matrices satisfy the
same Lie algebra commutation relations as the standard Lie algebra
generators of SO(p, q). Finally, we derive the formula for the (p,¢)- spin
connection and explain how it can be used to construct the (p, g)-Dirac
equation in curved space-time in such a way that this equation has local
SO(p, g)-invariance just as the conventional curved space-time Dirac
equation in (1,3) dimensions has local Lorentz invariance. Some discussion
of the Einstein-Maxwell equations in the presence of point charges in
(n+1)-dimensional space-time in motion has also been presented. This
analysis tells us how in » + 1-dimensional general relativity, point charges
move under their mutual gravitational and electromagnetic interactions
and also how to calculate approximately the corrections introduced by
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gravitational effects on the electromagnetic field generated by point
particles in motion when the gravitational field is also that produced by the
point particles.

Research highlights:

[1] SO(p,q) invariance of higher dimensional Maxwell equations with
applications to group theoretic image processing.

[2] Formulas for the Green’s function of the SO(p,q)-invariant wave
equation in (p, ¢)-space time dimensions.

[3] Formulation of the basic general relativistic equations describing the
motion of N point particles carrying mass and charge in the mutual
gravitational and electromagnetic fields generated by them in n-
dimensions.

[4] Deriving generalizations of the Maxwell curl equations and the electric
and magnetic fields in (p, 9)-dimensional space-time starting from the n-
dimensional potentials and an action principle.

[5] Formulating Dirac’s equation in (p, g)-dimensional curved space-time
using tetrad basis for the metric and the spinor connection of the
gravitational field.

Problem formulation

1. The generalized Lorentz group SO(p,q) and the n-dimensional
Maxwell field

The coordinates for our » = p + g-dimensional spacetime are (x!,x?,..,x")
where x!, ... x” are the time coordinates and x**!, ... x" are the spatial
coordinates. The metric of space-time is flat:

V4 n

d? = Y (@) = Y () = iy
i=1 i=p+1

where
n = () = diagll,, —1)]

The n-dimensional electromagnetic potential is 4, or equivalently as a
differential one form,

Ax) = A, (x)dx’

The n-dimensional electromagnetic field tensor associated with this
potential is

F=dd=4; d ndx' =(1/2)d; ;—4; )dx' N dv = (1/2)F d’ A d/
so that in component form,
Fiy=d; = A; ;= 04; = 0pd;

In the context of the above flat space-time metric, the Lorentz group is
O(p, q), namely, the group of all » x » real matrices g which preserve the
metric 7, ie,

glng=n
or equivalently,
G(x, x) = G(gx, gr)Vx € R"
where G is the (p, ¢)-Lorentz metric:
p n
Gx,x) = xTpx = Z:(x’v)2 - z (dx)?
i=1 i=pt1

2. The Clifford algebra of Dirac Gamma matrices in n=(p,q)-
dimensional space-time and spin representations of SO(p,q)

We introduce matrices y,, ...y, or appropriate size so that they generate a
Clifford algebra for the symmetric bilinear form G on R”: G(x, y) = xny,

Vil + Vi T 2’71'/'1
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or equivalently, writing

n
y(v) = Zwv,,
i=1

YO0 + 9@)y(v) = 2G(v, wl = vl v,u € R"
Let 7be an element of O(p, q). Then
WIV(Tu) + W(Tuyp(Tv) = 2G(Tv, Tu)l = 2G(v, u)
because by definition, O(p, ¢) consists of all » x » matrices that preserve the
quadratic form x — Q(x) = G(x,x) = xTyx. Now, choose a basis B = {e,...,e,}

for R” and let 7 € O(p, ¢). Let [T], = (Ty), the matrix of 7 in the basis B.
Then, we have with [v]; = ((v))), that

n
(Tv) = Z yiT,'jVj =
ij=1

T

2y
j
where

T_

7= zTijVi

) 1
Thus,

T.T T.T
Vv T = 2l

In other words, every T € O(p, ¢) induces by duality, a linear transformation
on the vector space V=span{y;:i=1,2,...,n} that preserves the
anticommutation relations of the Clifford algebra. Now suppose that we are
able to find for 7 € O(p, ¢), a matrix S(7) of the same size as the yi's such that

SOy =y = YTy

Note that this equation is consistent because
STy ST SOy~ + SWySn STy ST
= SDg;+ 7S~ =SSN ™ = 25,1
1t follows immediately from the definition of 5(7)
STy STy ™ = S(TDST)ASTYS(TY) ™!

for 7|, T, € O(p, ). Thus, it is reasonable to expect that 7 — S(7) will be a
representation of O(p, ¢):

S(T,T)) = S(T)S(T)), Ty, T, € Op, q)

In particular, we can restrict S to SO(p, ¢) and the resultant s is then called
the spinor representation of the Lorentz group SO(p, ¢). This representation
acts in the same vector space as that on which which y,.'s act. Such a
representation can be constructed easily by first defining the Gamma
matrices y; as a;+a* and ~i(a; - a,*) where the a; and ¢* are annihilation
and creation operators acting in the Fermion Fock space AR”

corresponding to the vectors e, and then constructing S(7) as
exp(X; 06N 71/4) where T= exp(¥; 00.)€G.])) with
€0, j)(ks m) = Nigdljm = Nimt1 - 10 Other words, if thera is an element of the Lie
algebra so(p, 9), then ds(9) = ¥, ANy y1/41s the corresponding element of
the Lie algebra of S(SO(p, ¢)). S(SO(p, ¢)) is called the spin group of SO(p, g) and
its action on the Fermionic Fock space or equivalently on the space on
which the Gamma matrices act defines the spin representation of the
Lorentz group SO(p, g).

3. (p,q)-dimensional Maxwell equations and their SO(p,q)-
invariance with applications to (p,q)-dimensional image
processing for electromagnetic fields

Returning back to the »-dimensional Maxwell equations, we construct the
action functional as

SIA] = C[FyFld", FT = i F i
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This action is SO(p, ¢) invariant and consequently, the corresponding field
equations will also be SO(p, ¢) invariant. The action principle §,,S = 0 give us
the field equations

o.F =
OJF 0

To verify SO(p,q) invariance, let T € SO(p,q). Then under 7, F¥ will
transform to

i i
(TF)” — TLF;HF m
and o, will transform to
ol =T,
J J
Then
T, ij _ km _ km _
0;(TF)? = T}, 0,F*" = T3, 0,F™ =
Tio, 7% = 0

Remark: Indices are raised and lowered using the metric 5, If
((Ty) = T € SOp. 9), then we have the equation

T =1
which can be expressed as
0Tl = 1y
or equivalently, using the raising and lowering of indices,
TiTy=ny
or
-4

with the Einstein summation convention over the repeated indices being
implied. W e can choose alter the one form 4 to 4’ = 4 + dA where A is an
arbitrary scalar field, without affecting the field 7 =d4 =d4 = F' since
d* = 0. We choose in particular, A so that A = — divd, ie

OA=08'0,A= ~04'
This gauge condition ensures that div4" = 0 and hence the field equation
i =
8jF 0
gives
o4 =0

Henceforth, we remove the prime from 4 thereby implicitly assuming that
A satisfies the gauge condition div4 =0 and hence the SO(p,q) wave
equation

04 =00,4=0
or equivalently,
» "
Q- Y D=0
i=1 i=p+1

For T € SO(p, q), we write 7= ((7;.)) rather than (T Thus, the SO, 9)
property is expressed rather as
Tl = i

im

Under a (generalized) Lorentz transformation 7 € SO(p, 9), the coordinate
system changes to

yi= T]ixf
so that

i .
np'y = nyT, Tx"x" =
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as it should be. It should be noted that under such a transformation, the
potential 4/(x) changes to

Biy) = TA/) = TA/(T~y)

or in matrix notation,
B(y) = TA(T™ ')
or
B=TAT ', T € SO@, q)
We write

B=n(DA

as a transformation from one n-vector field 4 on R” to another vector field B
on R”. It is clear then that

o(T,T,) = o(THm(T,), Ty, T, € SO(p, q)

so that = is a representation of SO(p, ¢) in the space of n-vector fields. It is
usual to assume some sort of integrability condition on the vector fields.
For example, in conventional electromagnetic field theory the energy of the
field may be taken a finite so that the partial derivatives of the vector
potential are square integrable. If we decompose the representation  into
the irreducible representations of SO(p, ), then since this is a real group, its
irreducible components will have principal, supplementary and discrete
series. It should be noted that if 4(x) satisfies the SO(p, ) wave equation as
well as the Lorentz gauge condition, ie,

0'0,4"(x) = 0,04 ,(x) = 0

then B(y) = ©(1)A(y) will also satisfy these two equations. To see this, we
observe that for y = 7x or y' = 7,

a/ax = (oy'1a¥)@/oy') = Ij 8/oy"
so that
0, = 1;,(0/0). (0/oxky =
qjkT;r;(a/ayi) @/y™) =
1,010V, (810y™) = o,

Remark: T € SO(p, q) implies 77T = 4 implies on taking inverse and noting
that 4! =5 that 7~ '47~ 7= 4 which implies 747" = 5 which implies that
7T € SO(p, q). We have thus shown that the generalized wave operator in
R" = R?+1 is invariant under generalized Lorentz transformations. It is also
easy to see that the gauge condition is also invariant:

oB/(y)/oy) = (ox'/ay)oT A (x)/ ox'
= (T")}Tf,'(aA’((x)/ax" = (7' D)joa* () ax' =
,04k()/ox’ = a4k 1ox*

In particular, div4 = 0 implies divB = 0, ie, diV(TAT~ ') = 0. When we make a
change of the frame by a generalized Lorentz transformation, the
transformed field will also therefore satisfy the Maxwell equations and the
resulting vector potential transforms to 747~ while the resulting field
tensor £ transforms to (T ® 7)F. 7~ . If we take as our representation space,
the set of antisymmetric field tensors F with a square integrability
condition, then we get a unitary representation 7 — U(7) of the locally
compact non-Abelian group SO(p, ¢):

(UMDF)x) = (T ® DF(T " 1x)

It is usual to denote the restriction of T® T to A%XRP9) by TA T and
regarding an antisymmetric field 7 as an element of the vector bundle
A’T*(RP-9) namely as a differential form of degree two over M =RP-4

endowed with the flat Riemannian metric ». Specifically,
F(x)= F,j(x)dx" A dv. Then U becomes a reprsentation of SO(p, ¢) in the vector
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bundle A’T*(R”-%) and we can study the irreducible representations of U.
Note that we can write

U(T)F = (T A T)FoT ™!

We can using this representation theoretic formalism of generalized
Lorentz transformations acting on an n-dimensional electromagnetic field
answer questions such as estimate the transformation 7 € SO(p, q) from
noisy measurements of the original field 7 and the transformed field
H = UF + w where W is noise, or construct invariants 1(F) for SO(p, q) ie,
IU(NF) = I(F) for all T € SO(p, ¢) and all fields 7. The latter will give us for
example given two fields F|, F, and their transformed versions Fi = U(T))F,
R Fé = U(T,)F, for some T, T, € SO(p, g), the information that Fl' came by
transforming 7, and not from F, and likewise FZ' came by transforming F,

and not from F,. In other words, we can solve the feature extraction
problem or equivalently the pattern classification problem for »-
dimensional electromagnetic fields in R?-4.

4. Analogy of (p,q)-dimensional Maxwell equations with the four
dimensional case

In analogy with the four dimensional case, we define the electric field
components by

4, 1<i<pp+l<j<n
and the magnetic field components by

B =4

i—pj-p = Aj i Aipp IS0 <0

Recall that there are p time coordinates »/,j=1,2,...,p and ¢ spatial
coordinates ¥/,j = p+ 1,...,n. For p > 1, we have additional fields, namely

Hi]-,lSi,jSp

which have no analogy in the conventional four dimensional or more
precisely R!-*-dimensional space-time. The definitions imply the following
"Homogeneous Maxwell equations” or the Maxwell curl equations

Fyxt Fig it Fri;j=0,0,j,k=1,2,....n

as can be verified by substituting . Fy=4; ;= 4; . Theseimply

O = Oy pt OBy p=0i=12 . .pjk=p+1l....n
or equivalently,
Ok = Op i T 0B = 0,k =1,2,...,q,i=1,2,...,p

This is the n-dimensional generalization of the four dimensional
homogeneous Maxwell equation

curlE+ 0B =0

Note that for each temporal index i = 1,2,...,p, we have an "electric field
vector” (£; ;i =1.2,...,q) with ¢ components and we have a "magnetic
field tensor” By:inj=1,2,....9) with ¢(q - 1)/2 independent components.
This magnetic field tensor cannot be replace in general by a magnetic field
vector since g(¢—1)/2 equals q only when ¢=3. The n-dimensional
generalization of the four dimensional Maxwell equation

divB =0
is given by
Bij,k+B/.k.‘.+Bki’j= 0,i,j,k=1,2,...,q

However in the n-dimensional situation, we have another set of
homogeneous Maxwell equations when p > 1 which has no analogy in four
dimensional physics, namely

Hy g+ Hy i+ Hy j=0,0,j,k=1,2,...,p
and
=0,,j=12,...,pk=p+1,...,n

Oty + Okl = O

geios.com

or equivalently,

BpikHy + O = OF = 0,i,j=1,2,....p,k=12,....q
This last equation is non-void only when p > 1, ie, when there is more than
one time coordinate.

5 Maxwell’s equations in an n-dimensional
symmetric space in the presence of moving charges

maximally

Maximally symmetric spaces are used frequently in cosmological models
as they correspond to homogeneous and isotropic space-time, as for
example, the Robertson-Walker metric. An n-dimensional maximally
symmetric space would be a generalization of the Robertson Walker space-
time in four dimensions and one can in principle solve for the scale factor
matrix which defines the expansion rate of our universe. Maxwell’s
equations in such a space-time could be solved approximately and that
would give us not only information about how the expansion of our
universe could generate inhomogeneities and anisotropicities in the cosmic
microwave background but also information about how the nature of the
expansion would be affected and how inhomogeneities and anisotropicities
in the cosmic microwave background could perturb the homogeneity and
isotropicity of our expanding universe.

Consider an » -1 dimensional surface in » dimensional Euclidean space
defined by the equation

Cijxixj =1
or equivalently,
xTex =1

where C = ((Cy) is a positive definite matrix. If we diagonalize C, then this
equation becomes the surface equation of an » -1 dimensional ellipsoid
immersed in n-dimensional Euclidean space. If further, after diagonalizing,
ie, rotating the frame, we also scale coordinates, then this becomes the
surface fo an » — 1 dimensional sphere in R”. More generally, if C is a non-
singular Hermitian matrix with p positive eigenvalues and ¢ negative
eigenvalues, then diagonalizing C using a rotation of space time followed
by an appropriate scaling of the coordinates, this surface assumes the form

q
Z (xi)Z =1

P
z (xi)Z —
i= i=p+1
or equivalently,
T, _ - di _
x'nx = 1,n = diag[l, Iq]

Since the metric x7yx is invariant under SO(p, ¢), it follows immediately that
this this surface is also invariant under SO(p,q). We now introduce an
additional coordinate z and define the following »-dimensional surface &
immersed in R”*!:

slox+ K22 =1
which is an abbreviation for
C ifxixj +KP=1

We wish to determine the linear transformations 7 of (x,z) € R"*! under
which this surface M remains invariant. Any linear transformation on R"*!
can be expressed as

',z") = Tx,2) = (Rx + bz, rTx + c2)
where
RER"" bHER"rER",x ER
The condition for M to be invariant under 7'is that
xTex' + K2 =1
ie

(Rx + bz)TC(Rx + bz) + K(rTx + c2)? = 1
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whenever
xTex + k22 =

Comparing coefficients, this gives the following necessary and sufficient
conditions:

RTCR = C,RTCb + Ker = 0,b7Ch + Kc* = K

The number of independent equations here for R,b,r,c is clearly
n(n+1)/2+n+1=(m+1)n+2)/2 and hence the number of degrees of
freedomin 7is (n + 1)> — (n + 1)(n + 2)/2 = n(n + 1)/2. The metric induced on M
from the Euclidean metric ds® = $%(dx”Cdx + Kdz?) on R"*! is also clearly
invariant under 7. Such metric on M therefore is invariant under a
maximum number of »(n+1)/2 independent transformations on M or
equivalently under a set of n(n+1)/2 linearly independent vector fields.
Such vector fields that leave the metric invariant are called Killing vector
fields. This means that the Riemannian manifold A having the metric

ds? = S¥(dx"Cdx + Kdz?) = S¥dxCdx + (d(1 — x"Cx)1/%)?)
induced by the above Euclidean metric on R”*! is a maximally symmetric
space.
Remark: More generally, if a p-dimensional surface » is defined by the
equations
z=fix),zER" P x ERP
then the metric on & induced by the Euclidean metric on R” is given by
ds? = dz"dz + dxTdx = dxT(1+ £ (x) TF (x))dix

Then, if 7 is transformation on R” that leaves A invariant in the sense that
if (x',z')=T(z), then z' =fix') whenever z=fx), then the induced
transformation on M will leave this induced metric invariant provided that
T on R” leaves invariant the Euclidean metric dx’dx + dz"dz on R”. This is
because,

(dz")Tdz" + (dxYTdx" = (dx )T+ f ()T (x))dx’

More generally, if the diffeomorphism 7 on R” leaves invariant the metric
dyTA(y)dy where y = (v, z) in the sense that 7' () A(TG)T () = A(»)Vy € R” in
addition to leaving the p-dimensional surface M:z = f{x) invariant, then 7,
when restricted to M will leave the induced metric on M invariant. Note that
the induced metric on M is given by

dx
(@, dftx) T)A(x,f(x»( o) )

= dx"B(x)dx
where
1
B&) = U, f 0D fx)|
’ B V)

where f'(x) is the n — p x p Jacobian matrix of x — f{x) from R? into R” 2.

The maximally symmetric space M can be used to define a comoving
metric on an » + 1 dimensional manifold with coordinates (z, x) as:

di? = di® - di?
where
dI? = Kdz? + dxTCdx,z = K~ 1/2(1 — xTCx)1/2

by making C = C(1), K = K(z) be functions of coordinate time r. Denoting this
metric by gij(t,x),5,j=0,1,... ,n,x" =1, we can then introduce the comoving
energy-momentum tensor

Tij = (p(0) +p(l))vlvj 7p(l)gij, vo=Lv;=0,i=12,...,n
and set up the » + 1-dimensional Einstein field equations

Ry = KTy = Tgy/2).ij =0.1.....n.k= = 8aG

geios.com
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This will give us the n+1-dimensional cosmological dynamics for a given K
that can be solved for C(»),K(#),p(t),p(r) in a consistent way given an
equation of state p(7) = fip(s)). The total number of independent Einstein
field equations are one for Ry, plus n+n(n-1)/2=nn+1)/2 for

R;1<i<j<n giving in all n(n+1)/2+1 equations for the symmetric

matrix C(s) totally n(n + 1)/2 variables in number plus K() one in number.
There is an additional variable p(s) to be solved for and that can be
determined from the vanishing of the covariant derivative of the energy
momentum tensor leading to the matter conservation equation. Indeed, the
matter conservation equation

T'!] =0

gives

(p+pVV),;=p'=0
or

(V) p 4+ pVivt = pi=0

Contracting with v/ gives

(p+pW),;=Vp ;=0
or equivalently since v/ =0,7=1,2,...,2,v'=0, we get the following
equation of continuity:

(0 +PN-8) =P =0
or

(0 +PN-g =P = o)
a function of only the » spatial variables x. Now, the space-time metric is

de? = di® — axTdx — d& @) V21 - xTcex) 2
g(t,x) = det(g (1, x))) can be computed in principle from this equation and can
be matched to
g(t,x) = = [(cox) + p@)/ (p(t) + p(H)]

to get an additional equation relating C(¢), K(z) to p(¢). Recall that p(¢) = fip(1))

is the assumed equation of state. Further, substituting the above equation
of continuity into the momentum equation, namely conservation of matter,
we get

(p(t) + pOH ;P i vivip =0
Using the comoving condition, this simplifies to
(@) +p)Th = pi+p ¢85 =0

This is an additional fluid dynamical equation. We next look at Maxwell’s
equations in such a maximally symmetric space taking into account an
interaction with the current field coming from the motion of N charged
particles in curved space-time. First assume that there is a classical current
density J“. The action functional for the (n+1)-dimensional Maxwell field as
well as the motion of the particles in the background maximally symmetric
space is derived from the action

N

141 = [[(- VOFIFAg - Tangld" = Y myf dr,

k=1

where
dr, = (gy(xk)dedxp' 2

We are assuming that the current ' is produced by the motion of N charged
particles with chargese, ..., ey
N

Jtx) = Y e 8" — 1)~ gt x) "2 - = = (1)
k=1
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where

i
dx k(t) dr;,

Vi) = dxi(0)/dr, = (=) Li=01,...,n,

dr Vdi

uit) = dx'(0)/dt = Vi(@). dry/dt

and x, is the n + 1 dimensional position vector of the k" charged particle.
Note that

drdi = (200t +2 Y, Somx e}t + > Gomx(dx}/di)(dxy )2
m=1 s,m=>1
Note that u2 =1 since xg = t. Carrying out the variation w.r.t the "‘2-1 we get
the n-dimensional geodesic equations

2.1 r s
d°x dx) dx,

— 4T () —. —
dr K dr, dry,

2 rs
k

o
= 7 —_—
e (xy) a, 2)
and on carrying out the variation wrt the fields 4; we get the Maxwell
equations with the discrete current source:

g ;= —\Fal'= = ()

The equations (1),(2),(3) must be jointly solved to obtain the particle
trajectories xj((t), i=1,2,...,d,k=1,2,...,N and the electromagnetic fields
Fy(0). Such a solution, could, for example be obtained by starting with the
trajectory x™(¢) for the situation when no charges are present, ie, x{*)’ is
the solution to the geodesic equation and then expanding the solution in
the case when charges are present as a perturbation series in powers of ¢
where ¢, is replaced by 6. ¢, showing that the charges are small:

x;{(t) + Z 5m.x,£m)l
m=0
and likewise,
Fyw) =2 5”’F,.‘/.'">(x)
m=0
The equations for the charged particle trajectories upto O(d) for example,
are
x;{ = x,ﬁo)i + 0. x;l )iy 0(52),
2 (0 ax (O g (0)s

. k k
+10 ({0 .
%) dry. dry.

2
dr

2. (1)i 0)r (0)s
@ ax (O dx

dv, =~ dy

i
2 + rrs.p

=)
dr,

1
X,E P

0)r (1)s
d, " dxy

+or! ({0 . =0
rs(xk ) dry dry

ax (0

L k
0
= ekF'/(x,i )) e
k

Note that these are linear differential equations for x{")/(¢) given that x{*)(¢)
has been solved for. Likewise, for the electromagnetic field:

_ (0) (1) 2
FI].—F[/. +§.F[/. + 0(57)

where F[;O) is the electromagnetic field in the absence of charges, for
example, the cosmic microwave background radiation and . F[(/.” is the

small perturbation to this background field caused by the presence of
charges executing motion: These fields satisfy

FOg) =0,

geios.com

FDINg() ;= "0, et~ dx (o) de
k

Here, we are assuming that the maximally symmetric metric is fixed and is
not affected by the electromagnetic fields generated by the charges.
Specializing to the maximally symmetric case, we have

de? = di2 — S2(adx"Cayx + (a1 ~ xTCo)?)
dr? — S2(dxTCdx + (xTCdx)2/1 — xTCx))

=d? - S2ax"[C+ Cxx /(1 - xTCx)ldx

Define
2=xTox h=x/r
SO
dr=x"Cdx/r,n"Ci = 1,2TCdi = 0
and
dxTCxxTCax /(1 = xTCx) = r2dr?/(1 - r?)
and
dx = dr. i+ rdi
SO

dxTCdx = (dr)* + r2da’Cdi
and the metric can be expressed as
di? = di® — S%dr? — SHPdRTC(tydn — SHPdr (1 - 17)
= di? - S2dr2 /(1 - r?) - SXt)2da T C(Hdn

This is a spherical maximal symmetric space. Here, we are assuming that
K > 0.If K <0, then we would get a hyperbolic maximally symmetric space
obtained with the factor 1/(1 - ) replaced by 1/(1 + +?) while if K = 0, we
would get a flat maximally symmetric space with the factor 1/(1 - r?) being
replaced by 1. It is convenient to absorb the factor $%(¢) into C(r) and express
the above metric as

de* = di? - SH0dr* 1 (1 - %) — daTC(dn

This metric is the » + 1-dimensional generalization of the four dimensional
Robertson-Walker metric. We indicate a method by which we can formulate
Maxwell’s equations in such a space-time. The number of independent
components in 7 is » — 1 owing to the constraint

alcwn =1
6. Green’s functions for the wave operator in (p,q)-dimensions

We now take a look at the generalization of the retarded Green’s function
for the wave operator in four dimensional space time, ie, in R'? to the n-
dimensional case, ie, in R”+9. In order to motivate this discussion, we first
observe that in flat (p,q) dimensional space-time, the Maxwell action
interacting with a n-dimensional current density ' is given by

(U4 FiFdne = [Jddne, Fy =4, = 4; |
and carrying the variation w.r.t the 4; gives

Fi = ji
o

Taking into account the generalized (p, )-Lorentz gauge condition

gives us the (p,q)-dimensional wave equation with source:
O4'(x) = Jo A') = 004" = = J'(x)

To solve this, we for an arbitrary source, we must first solve for the Green’s
function in (p,q)-dimensional space-time:
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0G(x) = 6"(x)

On taking (p,q)-dimensional Fourier transforms, this gives

G(x) = f(2n)”’jexp(ik.x)d”k/k2f --03)
where
P n
k.x= kfci = 1]ijkixj = Zkixi* z kit
i=1 i=p+1
and

P n
K= q[/k[kj _ kik[ _ Z(kf)z _ z (k2
i=1 i=p+1
Evaluating the »-dimensional integral in (3) is not easy. Let d(zp(l}(l; )
denote the solid angle measure in p-dimensional Euclidean space and
likewise qu(l}(p +1:n)). We write cos(8(k(1:p), %(1:p))) for the cosine of the

angle between the p-unit vectors i(1:p), and #(1: p) and likewise for ¢. Then,
we can write

Glx) = —(2m) ’”J. lexp(i | (1:p) | |x(1:p) | cos(O(k(1: p), X(1: p)))

—ilk(p + 1:n)| |x(p + 1:n) | cos(0(k(p + 1:n), 3(p + 1:m)))].

% LIK(:p)| 2= [kt 1em)| 2] k(L) Pk + 1) 99, ((1:p). d | K(L:p) [ d [ Kp + 12m) | € (hp + 1:m)

Writing for instance
[exp k(1 p) | [x(1:p) [ cos(OR(1:p). 2(1: Y, k(1 : )
= F(1k1:p)| [x(1:p)])
(Note that this integral is independent of %(1: p)), we get

F([K1:p)| [x(1:p)DF ([Kp + L:m)| [x(p + 1:m)|)
[k(1:p)| 2 = | k(p+1:m)|?

Gx)= —Qm) "

In the special case when p = 1,¢g = n - 1, ie, the situation of »-dimensional
Maxwell equations with one time coordinate x° and »-1 spatial
coordinates x', ..., x""! we have

n—1
@3- 2. Gk = 8"(x)
i=1
which gives on taking the » - 1 spatial Fourier transform,
@3+ KGR0, k) = 3(:0)
Laplace transforming w.r.t x, we get
2+ IDG(s, k) = 1
so that
n—1

G k) =k Lsin(e®)000). k = (Y (k)12
i=1

Taking the »-1-dimensional inverse spatial Fourier transform w.r.t
(K:i=1,2,...,n— 1) then gives with r = x0,

sinkt)
k

Gl = 660!, ..y = am) | explikr. cos(O)K"~2dk. dQ,, ()

where dQ, ,(9) is the solid angle measure as a function of the elevation
angle measured wir.t the pole direction (x':i = 1,2,...,n— 1) and

In—1
r= \ Z )2
i=1

I, (N =Qm)™" * IJ. exp(ir. cos(0))dQ,, _(0),

Defining

geios.com

dk(l:p)|.d|k(p+ 1:n)|

doi.org/10.32388/LZ87YF.2

we get
G(x) = [:k"’%in(kt)/n, kr)dk, t = x°
Expanding
1,_5() = D cm|n—2)r"
m=>0
where
e(m|n—2) = ) """ /m )| (cos(©)"d2,_5(©),

gives us

G(x) = z c(m|n— 2)r”’.|.:k”'+"734 sin(kt)dk

m=0

Observe that for m odd, ¥™. sin(kt) is even in k and hence
[ sintdk = (112)[” k™. sin(kiydk
= (112)Im| gk explikt)dk
= Im((— "5 ") = — 7. sin(mx/2)s ") (¢)
For m even,
[ sin(heydk = m{ ;K. exp(ikeydk

d’”
. _oam[® .
=~ Ioexp(lkt)dk]

=(- l)m/2£lm[(2n’)( —1/it + 7. 5))]
dm i

d’ﬂ
=(- l)m/2(27r)d_(l/t) =Qn)(— D)"2(= 1" ml !
tm

= @m(= )" Zm1/em!

This finally gives us the following expansion of the Green’s function:
G(x) = j:k"’%m(kz)/n, Jkr)dk =

= cmin- 2)r"’j:km*"’3xm(kt)dk

m=0

-2 ¥

m=0,m+neven

2 Y elm|n =2 (= 1) 20 4 = 312

m=0,m+nodd

c(m|n = 2" sin((m +n — 3)w/2)s "3 ()

7. Radiation by accelerating charges in (1, n— 1) dimensional
space-time

Letting G(x) denote the Green’s function, we can write down the solution to
Maxwell equations with source after adopting the Lorentz gauge:

A =[G —xxHd"i= 0.1, ,n -1
The electric field components are
E)=Fy=d; =4y pi=12....,n-1
and the magnetic field components are
Fij,1§i<j5n*1
Equivalently, we write
A0 =[G~ 1, |r=r e ey

To proceed further, we require an expression for the Poynting vector in »
dimensions. This is obtained from the energy-momentum tensor:

— Py k
7;’,‘- (@L/04; DA, 4~ L5}
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which gives after raising the index j and adding a total divergence term to
make the energy momentum tensor symmetric,

TV = (1/4)F %y — FOF
The energy flux is given by
0 _ b0 _ —
0= = FF; = = FyFu = FuFoq

Note that » is a spatial index and the sum runs over all spatial indices a.
This formula is the generalization of the four dimensional formula £ x B
once we note that F, is the electric field and F;, is the magnetic field. We
must calculate the energy flux 7%° in the far field zone retaining only terms
of order 1//""2 so that the integral of 7"z, over the » -2 dimensional
sphere gives a finite nonzero quantity. This means that 4, r) and hence
the electric and magnetic fields F,, F . 1 <a < b <n -1 must be evaluated

upto order 1/r"27!, Note that for n = 4 this reduces to the standard formula
for radiation fields, namely, that the electric and magnetic fields in the
radiation zone must be evaluated upto O(1/7) so that the Poynting energy
flux vector is evaluated upto O(1/+%). Now recall the Green’s function for the
wave operator in (1, » - 1) dimensions:

GGx) = [ k" Ssin(kn)l, _y(hr)dk, t = x°
where
L) = @m) " expliu. cos(0))d,,_(6)
We can write on changing the integration variable from & to u = kr,
o

G(x) = rzf"f u”

", y(ysin(ut/ rydu

As a check, taking n = 4 gives
L) = ) [ fexp(iu. cos(B))2z. sin(B)d#
= (27) "2 2sin(u)/u
giving
Gx) = (11222 2 sin(u)sin(ut/ rdu,

the causal part of which is clearly a constant times d(:/r — 1)//% = 5(t — r)/r as
expected. In the general case of (1, - 1) dimensions, we define the one
sided Fourier transform of /, ,(u):

J‘:In,z(u)exp(iuv)du =J,_,(v)
and then get assuming » to be even, that
[ou" 31, _yaysin(ut)du = ([ 5u" 31, _y@exp(iut)du)
=0 (= "3, _,0)
= —sin((n = 3)w/2)0" >Re(J,_(0) = sin((n — Nx/2)0" >Re(J, (1))
Thus, for even », the Green’s function for the (1, » — 1) manifold is given by

G) = G(t, ) = Coyr? ™. gD

(t/r)
where
C(n) = sin((n — Hx/2)
Note that
Clam)= —1,C(4m+2) =1

The vector potential is then

At,r) = jG(x— ¢ le=r e e ded
and in the far field zone » >> »', we get approximately

At =[G~ r=rx e e

geios.com

Note that the Fourier transform in the time domain of the exact potential is
given by

Afw,r) = jA {t, v)exp( — iwt)dt

[6\@, 1r=r" Vo, rHan= 1

where
G (0,1 = [G(t, Nexp( ~ iwndr
with
Gt ) = G) = 2 "[ou 31, _(wsin(ut/ r)du
Clearly,

G, =3)" 1m~3"’j:u"’31n, L) (S — u) — 8(rw + u))du
Assuming o > 0, this evaluates to
G(w,r) = —in. r37”(ra))"731n,2(wr)
= —im w’1731",2(wr)

8. The coupled (n+1)-dimensional Einstein Maxwell equations in
the presence of N charged particles carrying masses

Assuming that the metric has the form
di? = (1 +2¢)de? — (1 = 29)0 ., + h,)dx"dx" + 2h,dtdx"

in analogy with small perturbations of the Schwarzchild metric in four
dimensional space-time, where #,, is two degrees smaller than ¢ and 4, is
one degree smaller than ¢. Specifically, as per the principles of
perturbation theory in general relativity, ¢ is O(1/c?), i, is O(1/c* and h, is

O(1/¢%). Note that the summation indices r, s run over 1,2, ..., n. The energy
momentum tensor of the matter field of the N charged particles carrying
masses m,, ..., myand chargese,, ..., ey is given by

TV =Y md"x—x)(— g() Y dxl /dr)dxl/di),ij=0,1,...,n
k

Note that x° = . The energy-momentum tensor of the electromagnetic field
generated by the charged particles in motion is given by

ki _ b, _ pakgi
SY = (1/4)F "y ;= FUF,

The action functional of the gravitational field plus the electromagnetic
field plus the motion of the particles plus the interaction between the
charged particles and the electromagnetic field is given by

8= C [ Ry=gd"" lx = (/)| FIF \[=gd"™* \x = [Jid \[=gd"* 1x = 3 [mydr,
k

where J' is the n-current produced by the charged particles and is given by
Jix) = z e, 0"(x = x)(— gx) "~ l/Za'x;(/a’t
k

The curvature scalar R is calculated from the above metric and from the
above action, we derive the Einstein-Maxwell equations as well as the
geodesic equations for the particles in the electromagnetic field generated
by the charged particles themselves (note that the geodesic part of the
dynamical equations of motion of the particles correspond to motion under
the gravitational field produced by the particles themselves, thus motion of
the charged particles is under the mutually generated gravitational and
electromagnetic fields, or putting it in another way, the motion of each
particle takes place in the gravitational and electromagnetic fields
produced by the other particles. Variation of the total action w.r.t the metric
gives

Ry~ (1/2)Rg;; = K(T;; +S,),

Variation of the total action w.r.t the electromagnetic n-potential gives
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(FIN"g) j= —J\Fg= = X 8" — xdxi /dt
k

Variation of the total action w.r.t the x; gives the equation of motion of the
particles:

Ay + T (el /e L) = e, o) Ly

To proceed further, we must solve the Einstein field equations
approximately for the metric. First observe that for any particle, with x
denoting x, and v denoting v,,

—dr/dt = — (g + 280V + gn,vrv"')”2 =
—(1+2¢+2hov" = (1 —2¢W* — h, V)2
% —1-¢+v2

upto O(1/¢%). Note that we take v to be O(1/¢) because, actually v occurs in
the combination v/c in the metric differential. If we wish to also include
O(1/c* terms, then we get

—dildt= = 1= @+v22 = hyy" + ¢?/2 — 2¢v*

The energy-momentum tensor of the matter component can thus be
approximated using

TV =Y mdx - xk)(dx;f/dt)(dxj/dt)(drj/dt) -1
k

By expressing the Ricci tensor in terms of the functions ¢, #,, i, we can

s g

thus in principle solve for these functions in terms of xi(»), vi() and we can
also solve for the electromagnetic potentials 4, in terms of xjc(t), v;c(t) using

perturbation theory. Note that if we assume that the metric is a weak
perturbation of the flat space-time SO(1, » — 1) metric 7, ie,

n—1
nydxidy = di* = Y (dxhy? 1= x0
‘ k=1
then we can write upto linear orders in the metric perturbations,
gi=my+ h,-/-, \/*g =1-h/2,h= h; = ’7,'/'/’,'/" gl = Ny~ Wi, h = ’7i1(’ljmhkn1
where
hog=2¢.8,,= —2¢.0,,—h 1<rs<ng,=hy,1<r<n
Then upto linear orders in the metric perturbations,
Fin=g = g“g"\=gF = U1y = hig) Cipp = yp)(1 + h12)F
= NidljpFap * Sijast ab
where f;,,,, is a linear function of the metric perturbations:
Sijab = ~ Miahjp = Miphia * Nighph! 2

The n+l-dimensional Maxwell equations in curved space-time in the
presence of point charges can then be expressed upto linear terms in the
metric perturbations as

NialipFap ;  FiaFap) = = 28" = x((O)dx\(0)/dt = ~ = ()
k

To proceed further, we assume the the gauge condition (ie, the »n+ 1-
dimensional Lorentz gauge condition in curved space-time)

“'\Fo) =0
which upto linear terms in the metric perturbation reads
(= WA+ hiDAp) ;=0
or equivalently,
iy i = Gl

where k; is also a linear function of the metric perturbations:

geios.com

k= hy =2

Taking this gauge condition into account, Maxwell’s equations (a) become
“MigipAa jp T Nidkipdp) ja T FyarFap) j= ~ e - X (O)dx(0)/di
k
or equivalently,

04y = (yAy) o+ alljeF o) j+ > e — x, (O, Ho/dt, 0= 1,09,
k

Assume that AB is a free wave in flat (1, n) space-time. It satisfies the wave
equation

04%=0
a

The perturbation to this electromagnetic wave caused by moving charges
and gravitational effects is then obtained by applying the Green’s function
for (1, n) space time to the above equation:

34,0 = [ Gl = xYMlhpdd) 10 ) + 1) &)+ D@ = xy(t ekt )/t
k

Note that this formula is also applicable to (p, g)-space time provided that
we use the formula for the (p,q)-Green’s function derived above. This
evaluates to

04,0 = [ Gl =) 6+ 1oy SN
e[ Gt r = x (e Nt
k

Sometimes, especially when there is no external plane wave, and we are
interested in calculating the motion of the charges in the mutual
gravitational and electromagnetic field produced by themselves, it is more
accurate to consider the unperturbed electromagnetic field to be that
produced by the charges in motion:

A% =Y e [ Glu—1 = xy (¢ Wy i)
k

The perturbation to this field caused by gravitational effects is then
34,0 = [ G =X MkyAD 1)+ 1oy a1

A remark: Suppose we have an initial metric of (p, g)-dimensional space-
time like the maximally symmetric metric described earlier or the metric
discussed here, obtained by approximately solving the Einstein field
equations for a system of gravitating particles moving under their
gravitational interaction. We denote this metric by g/i‘?)(x). We wish to
calculate the change in the metric caused by the electromagnetic fields
generated by these gravitating particles when they carry charge.
Linearizing the Einstein tensor around the back-ground g}ﬁg)(x), with i, ()
denoting the small perturbation in the metric, the Einstein field equations
read

L1, = K. S, (x)

oy

where £ is a second order linear partial differential operator with
coefficients determined by the background metric and its space-time
partial derivatives and S, (r) is the energy-momentum tensor of the

v
electromagnetic field generated by the charges. Formally, we can invert this
equation and derive

— -1
) = KL 1(S,)()
Here, K = — 8zG/c*. Note that the background em field F/ﬁf) satisfies

(F(O)/“'(x)\/fg(o)(x))wv = = Y e\ O o —x{O)dx O dr
k

where x,fo) are the trajectories of the charged particles calculated using the
geodesic equations in the background metric g/if,’), For example, if the
background metric is given by the maximally symmetric model, then Ff”‘,”
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represents the anisotropic and inhomogeneous part of the electromagnetic
radiation field with the homogeneous and isotropic part being described by
the pressure p(7) via the energy-momentum tensor of matter and radiation
in the comoving model. /,,(x) would then give us the inhomogeneous and
anisotropic perturbations to the metric of the cosmological model
produced by moving charges. In case we are able to postulate a probability
distribution for the initial positions and velocities of the charges, then the
geodesic equations with electromagnetic interactions discussed earlier
would give us corrections to the comoving positions and velocities
20" ax(9"/dr in terms of their initial values and hence the statistics of
these perturbed trajectories could be calculated. We would then replace the
comoving values x° and dx(*)/dt by their perturbed versions which are
now stochastic processes in the above Maxwell equations and hence we
could calculate the statistical correlations of the electromagnetic field
FO () and hence the linearized Einstein field equations for the metric

v

perturbations #, (x) would yield the metric correlations. By studying the

1
structure of these statistical correlations, we can predict the statistical
effects of radiation on the expansion of our universe including on the

formation and evolution of galaxies.

Appendix A.1

Some further remarks on the (p, ¢)-wave equation: The Green’s function for
the (p, 9) wave operator with p + g = nis

P n
Q- Y HGE) = 0"()
i=1 i=p+1

and by Fourier transforming, we get
Gx) = @m)~"[expiky. x, = hey. %)k dhy/ (K — k)
where

n
Z Kix!

P
. .
xi=Gh )= P X kX = Zk’x',kz.xz =
i-1 i=p+1

where

p n
k=KL Ry = (LR = YRR =Y (kY

i=1 i=p+1
This integral can be expressed as

G(x) = G(ry,ry) =

(2m) *ﬂjkl 00k ycos(@) = ikyrycos(B,)kE kg~ ‘dnp, 1(0)dQ, (O )dk dky | (k3 ~

where
R T
n=\Lehn = X 6
i=1 i=p+1

Fp(u) = (27) 7p_|‘exp(iu. cos(f)))de(H), u€R

Defining

(Note that F(—u)= Fp(u)), we can write
G) = Gy ry) = | b1 ks oF Kk F (e DR K ey dkey 1 () - )
= r(ﬂr;qjul e YT (u))F (up)du duay /((uy7)? = (ay /7))
T g"Fp(ul)Fq(uz)

(/)2 = (uy/ry)?

u

=4y Y| duydu

One of the solutions is obtained by replacing the denominator in the
integrand by

(uy /1) = (uy/ry)? — i€, € — 0+

geios.com
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so that the integral wrt », has a pole in the upper half «,-plane at
(ryuy/r,) +i€ and another in the lower half u -plane at —(ru,/ry)* - ie.
Closing the contour in the upper half », plane by a large semicircle (this is
justified when r, > 0 (ie the (p, g)-dimensional generalization of the causal
condition on the Green’s function), we get from the Cauchy residue
theorem that

G(x) = G(r|,ry) = (i7t/4)ri 7pi‘;7qIR(rlu2/r2)p711437IFp(r11¢2/r'2)Fq(u2)d1¢2/u2

= (i7r/4)r§7p7qJ.Ru€+quFp(r]uz/rz)Fq(uz)duz/uz

For example, in the standard (1, 3)-dimensional case, we have p=1,¢4=3
and F(u) is proportional to exp(iu) while F5(u) is proportional to sin(u)/u so
F\(ruy/ry)Fs(u,) is proportional to exp(—iu,(1-r,/r,))/u, and hence
b " I72F (ryuy/r)F(uy)/uy i proportional to exp(—iuy(1-r,/ry) which
integrates wrt u, to give &(1-r /r,) =ryd(r, —r,) and hence G(r,r,)
becomes proportional to -, %ry8(r) — r9) = 8(r, — r,)/r, and recalling that
r, = t,r, = r, this becomes the standard four dimensional retarded Green’s
function formula 6(¢ - »)/r of the four dimensional theory.
A remark: It should be noted that we are justified closing the contour for
the integral w.rt. », by a semicircle of infinite radius in the upper half plane
only under the condition that r|. cos(9,) > 0. In the special case when p = 1,
ie, there is only one time dimension, this condition reduces to r, > 0. In the
general case when p > 2, assuming r, > 0, we have to express the integral
Wrt 6, as a sum of two parts, one in which cos(9)) > 0, ie, 0 < 6, < z/2 and
two in which cos(6,) < 0 ie, /2 < ¢, < z. In the first part, the contour w.r.t u,
is to be closed in the upper half plane by a large semicircle and in the
second part, it is to be closed in the lower half plane by a large semicircle
and the residue theorem be used accordingly.

Appendix A.2
1.The Maxwell-Dirac equations in (p, g)-dimensional flat space-
time

Let » denote the (p,q)-metric: 1 = diagll,, 1,]. Consider Dirac matrices
7 k=1,2,...,nsothat

YWt Yk = 2

Dirac’s wave equation is

(iy0 — myp(x) = 0,x € R"
Zg)here summation over the repeated index  is implies. This implies

(740 + m)(iy,,0,, — My(x) = 0
or equivalently the (p,q)-dimensional Klein-Gordon equation
@10 + MO(x) = 0
ie
p n
(@+myy=0,0= Y0~ 2 4
k=1 k=p+1

This equation corresponds to the (p,q)-dimensional relativistic energy-
momentum relation:

P n
2 _ 2 2
= +
ZPk z Pk m
k=1 k=p+1

Consider now the Lie algebra so(p, ) of SO(p, q). Any element X in this Lie
algebra satisfies

Xy+nx=0
or equivalently, without implying summation,

Kty Xy =0
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This means that
X+ X;=0,1<ij<pp+l<ij<n
Xi—X;=0,1<ispp+l<js<n,
Xj,»*XUZO,erl <i<ml<j<p

A basis for so(p,q) is therefore given by the set of »xn matrices
Eyj=Epl<ij<pp+l<ij<n and E;j+Eul<ispptl<j<n Using the
commutation relations for these matrices, it is easily seen that
prl/41<i<j<n form a basis for a representation of so(p, ¢). In fact, we
can express the above basis for so(p, ¢) as the set of all matrices J;; where

k NS ok
i)y = 6illjm — ‘)j’h‘m

A quick check that these are indeed matrices in so(p, ¢) follows from the
readily verifiable identity

ka’hd + ”/nlf]f =0,

for J = J; We next verify the commutation relations

e I N P

and complete the story by using the anticommutation relations of the Dirac
matrices to show that Sy =Drpri4 satisfy the same commutation relations:

[Si> Sl = miaSit + niuSjie = ninSjt = NS
This representation of so(p, g) is called the spinor representation. Note that
we are assuming » = p + ¢ to be even. It then follows that sincey, ,, =7,...7,
anticommutes with all the yj's, that y, ., commutes with all the Si'/s and in
fact upto linear combinations, 1 and y,.; are the only matrices that
commute with all the S’.;s‘ Thus, the centre of the spinor representation has

dimension two and therefore the spinor representation decomposes into
the direct sum of two irreducible representations.

2. Dirac’s equation in (p, ¢) dimensional curved space-time taking
into account interaction with the electromagnetic field

Dirac’s equation in curved space time [2,8] is
[e‘a‘y“(ia“ +il, +ed,)—mly =0

where T, is the SO(p,q) spinor connection of the gravitational field and ¢/, is
the tetrad of the metric g"":

ab ooV
aa

gv=n

with » = diag[l , -1, p being the flat space-time metric in (p, g)-space time.
The spinor connection can be derived from the assumption that the
covariant derivative of the tetrad ez must vanish:

0=ce

_p ay ab,  _ _ abp, . _ b
o~ D@y + @y e, = 0.1 = @ 1y vl /4, 74 = iy

Inverting this equation gives us the spinor connection as

w®= - el —TP e%) = —elhe?
v w,v uwop v

Note that a, b are generalized Lorentz indices, ie, (p, g)-space-time indices
while y, v are curved space-time indices. It is easily seen that this Dirac
equation is invariant under both local SO(p,q) (generalized Lorentz)
transformations as well as under (p,q)-space-time diffeomorphisms. Note
that if A(x) is an element of the group SO(p, ¢) that is a function of the (p, 9)-
space time coordinates and if U is the spinor representation of SO(p, ¢), then

AR UNAE) " = Ay

A(x) is called a local SO(p, q) transformation or a local generalized (p,q)
Lorentz transformation, local because it is a function of the space-time
coordinates. Under such a local SO(p, 9) transformation, we have that the
tetrad undergoes the transformation

geios.com

e — Ajj(x)efj(x)
and the wave function transforms as
p(x) — UAG®))yp(x)

From these facts, it easily follows that the spinor connection of the
gravitational field transforms under a local SO(p,q) transformation as

T,() = UA@IE@UAR) ™~ @,0A®)). UAR) ™!

and that the Dirac equation remains invariant. In order to prove the above
law of transformation of the spinor connection, we must consider an
inifnitesimal SO(p, ¢) transformation:

AG) = 1+6.0(x)

where 6(x) = ((¢;(x))) is an element of the Lie algebra so(p, ¢), ie

Oy X140+ 1p,05(6) = 0
which is the same as
Ocp) + Opc6) = 0

where the local SO(p,q) indices a, b, c are raised and lowered using the flat
(p,@)-metric ». ¢ is an infinitesimal real number. It is instructive to derive
the curved space-time Klein-Gordon equation for a charged particle in
(p,q)-dimensional space-time from the Dirac equation by expanding

DF@)(i0,, + i, (x) + ed (x)) + m]. [/(x)(i0,, + il ,(x) + ed, (x)) = m]y(x) = 0
where
Y0 = ey
are Local Dirac matrices satisfying the anticommutation relations

PO (x) + Y (x)H(x) = 28" ()]

in view of the anticommutation relations satisfied by the flat space-time
Dirac matrices

749+ ybyt = 20
and the tetrad property:
Naps(¥ey(x) = g"(x)
This Klein-Gordon equation can equivalently be expressed as
(G0, + T, () + ed ()]? = m*ly(x) = 0

and the above squared operator can be expressed in terms of the Riemann
curvature tensor of the metric g It is known in the literature as
Lichnerowicz formula for the square of the Dirac operator. This formula has
been obtained in the more general case when 4, is a non-Abelian Yang-
Mills potential. By assuming the metric to be a weak perturbation of (p,q)-
dimensional flat space-time, we can solve for the wave function
approximately using perturbation theory with our formula for the (p,q)-
dimensional flat space-time Green’s function. We do not discuss the details
of this procedure here as although the computations are tedious, they are
straightforward.

Appendix A.3

Here we briefly survey one important group representation theoretic
algorithm in statistical image processing.

The Wiener filter on a homogeneous space

Let M be a differentiable manifold on which a group G acts transitively.
Assume that M is endowed with a measure x that is invariant under G. Let
be a Hilbert space and consider the Hilbert space # = L%(M, b, ) consisting
of all measurable functions f: M — b for which | || fix) | *du(x) < ». G acts on
# according to the unitary representation U defined by

doi.org/10.32388/LZ87YF.2 11


https://www.qeios.com/
https://doi.org/10.32388/LZ87YF.2

(U@ = Mgifig 'x)./ € H.g € G.x EM

where ¥ is a unitary representation of G in h. Suppose that we are able to
decompose U into irreducibles, ie,

mﬂ
H= @@Hn,k

n=1 k=1

with#, ;,k=1,2,...,m, being identical copies of each other and #,, ,isa U
-invariant subspace such that the restriction of U to #,, , is an irreducible
unitary representation r, of G. Thus z, appears with a multiplicity of m, in
the decomposition of U into irreducibles. We write this as

v=@mn,

nz1
Now let
By i={lew>j=12....d,}
be an orthonormal basis for #,, ; so that

(U@, Js, = (@8 € G

Then define the operators

d

n

D) ley kj><en i jl
i1

This operator maps #, , onto #, ,in a one-one way. In terms of kernels,,

d

n

Pk k@)= Zen,k,j(")én,k'.j(y)
-1

It is easy to verify from orthogonality of the subspaces
Hy k=1 mun=12,... that
Pk kPt = w0k tPu k1’

or equivalently, in terms of kernels,
J.Pn,k,k'(’ﬁy)- P 1,00, 2)dy = 00k 1Py k1'%, 2)

Note that P, , , is the orthogonal projection of # onto #,, ;. Consider now
two random image fields f;,/,: M — b with correlations

E(i@)fi0)*) = Ry ), = 1,2
Assume G-invariance of these correlations:
V@Ry(g 'x.g W) * = Ryx.»)g € Gx,y EM
This is the same as saying that
E(U1)()- U0 *) = B0 *)
The best linear estimate of 1, based on f, is then
7169 = [K 000y

where by the orthogonality principle, the filter x that minimizes
E | f,(x) - ;)| *satisfies the Wiener-Hopf integral equation:

Ry(x,2) = J.K(x, PRy, 2)dy
or equivalently, in operator form
Ry = KRy
Now by G-invariance of R ,, R,,, the G-invariance of X immediately follows:
V@Kg g W * = K(x,»)
or equivalently,

U@KU@* =K

geios.com

Now if F(x,y) is any L>-G-invariant function on M x M, ie,
F(gx, gv) = F(x,y),g € G,x,y € M, it can be expanded as

Fy)= D 2k k)P, 4 (x3)
n,k,k'

This is because

VP, 4 x€ g W * = Y URe, , (U@E, » 0)*
J

= 2 @Y ks O @) ey i O

Jad

= 20 ek e 0
i

Zen,k,'(x)(n,k'.'(y) ! n,k,k'(xa)’)
J J
J

Equivalently,
U@Py kU™ =Py pi bk =1,2,..m,

Note that here we have used the fact that z,(g) ( = [U(g)| 4 Js k) is a unitary

matrix and is independent of k=1,2,...,m,. Now to solve the above
Wiener-Hopf integral equation, in view of the G-invariance of the
concerned functions, we can write

K= 2 dglnk kP, ;4.
nk, k'
Rp= X dppmk kP, g s

nk k'

Ry = 2 dngn b KIP, ¢
nkk'

and then using the above identity, get
gk KOP = XAk k Vg LIVP, Py g
= ok K Ve, 100,05 Py i
= D agln b k Yy, K IYP, 4

so

Aok 1y = Y A, bk Vg, k' 1 W, k1
-

or equivalently, in matrix notation,
A () = Ag(m)Ayy(n) € C"n* "
where
App(n) = ((Ayo(n, K, k’)))lSA,I(’Sm”
etc. This gives the solution
Agln) = A p(n). Agy(m) !

and completely solves the G-invariant Wiener filtering problem. Note that
in the context of electromagnetic fields, G is the group of 4 x 4 Lorentz
transformations on the manifold M = R* the Hilbert space h in which the
signals take values is the space of all 6 x 6 skew symmetric real matrices 7
with inner product induced by the Frobenius norm and the representation
v of G is given by

FoV@F) =(g®g) Flg® g’

There are other important statistical image processing problems whose
solutions involve use of group representaion theory, for example,

[b] The matched filtering problem.
[c] The pattern classification problem.

[d] The group transformation estimation problem.
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A nice account of these can be found in [15].

Conclusions

In this paper, we have explained how to use properties of the SO(p, ) group
to formulate Maxwell’s equations in »-dimensions with p time coordinates
and ¢ space coordinates by starting with an » = p + ¢ vector potential. We
derive the (p,q) dimensional wave equation for the electromagnetic
potentials and explain how to calculate the associated Green’s function in
order to solve the (p,q)-dimensional Maxwell equations in the presence of
an n-current density. We have discussed properties of this Green’s function
and also explained how to use to calculate the power radiated out into » — 1

space when there is one time variable. We have also explained how to
derive generalizations of the homogeneous Maxwell field equations in (p, ¢)
-dimensional space-time from the potentials. We then generalize the -
dimensional Maxwell equations to curved space-time and arrive at the
Einstein-Maxwell equations in »-dimensional space-time. These equations
are used to describe the motion of N points charges carrying masses
moving under their mutual gravitational and electromagnetic interactions
in the general theory of relativity. For this formulation, we first write down
expressions for the energy-momentum tensor of the matter, of the
electromagnetic radiation field and the current density produced by N

discrete point masses moving in n-dimensional space with one time
variable and then derive the Einstein-Maxwell equations from the standard
variational principle. Perturbative approaches to solving these equations
are discussed with applications to (p,q) dimensional cosmological models
based on the theory of maximally symmetric spaces. Specifically, we
explain how an initial random distribution of particles carrying mass and
charge can generate random electromagnetic fields which perturb
homogeneous and isotropic cosmological models stochastically and may
help in explaining the formation of galaxies as inhomogeneities and
anisotropicities in the metric tensor perturbations. In this paper, we also
formulate Dirac’s relativistic wave equation in (p, g9)-dimensional space
time and use it to describe the quantum mechanics of a an electron moving
in such a space-time manifold. We discuss the SO(p, ¢) invariance of Dirac’s
equation by using the technique of spin representations of SO(p,q).
Specifically, we show how to construct Dirac matrices in (p, ¢)-dimensional
space-time using creation and annihilation operators on Fermion Fock
space. The spin group as the outer cover of SO(,q) is then constructed
using Lie algebraic methods applied to commutators of the Dirac matrices.
Spin representations are also constructed using the action of Dirac
matrices on the Fermion Fock space. Finally, we construct Dirac’s
relativistic wave equation in the presence of an electromagnetic field and
curvature of the n-dimensional space-time manifold. In order to construct
such an equation, we introduce the spinor connection of the gravitational
field using the gravitational tetrad as well as the commutators of the Dirac
matrices which we have shown to be generators of the Spin representation
of SO(p,q). Higher dimensional Maxwell equations as pointed out by
Professor Newcomb can be used to model psychic fields. It is therefore
natural to consider the Combined Maxwell-Dirac-Einstein field equations
in higher dimensions as a method to describe the effects of gravitation and
charges on such psychic fields where charges are not classical point
charges but rather characterized by the Dirac wave operator field. In other
words, the charges that we speak of are to be regarded as higher
dimensional generalizations of the sea of electrons with some of the
electrons removed to form positrons as first enunciated by Dirac. Finally,
we formulate Dirac’s equation in (p,q)-dimensional curved space-time in
terms of the terad, the spin connection of the gravitational field and (p,q)-
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space time Dirac matrices. The spin connection is derived from the
condition that the covariant derivative of the tetrad basis vanishes and it is
shown to lead to the curved space-time Dirac equation having all three
symmetries: U(1) gauge invariance along with the electromagnetic field,
local SO(p, g9)-invariance also called local generalized Lorentz invariance,
and diffeomorphism invariance. The appendix includes a presentation of
the Group-representation theoretic image processing problem of predicting
one image field based on another when the random fields are G-stationary.
This has applications to filtering out G-invariant noise. We explain this
problem and its solution in the context of the Lorentz group acting on the
electromagnetic field. This is important because all image fields are
actually electromagnetic fields and all the standard operations on such
image fields like rotation and motion are best described by Lorentz
transformations.
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